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We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction
of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin
transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a
hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual
upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder
layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion
artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion
correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average
normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure
(SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when
motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the
mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the
corrected images and the motion-free brain data were similar.

1. Introduction

Magnetic resonance imaging (MRI) is used to diagnose
many conditions, and there is no radiation exposure [1].
MRI image resolution and the signal-to-noise ratio have
increased as the technology progressed, but longer scan
times increase susceptibility to motion artifacts (MAs) [2].
Patient movement compromises the k-space [3]; blurring
or ghosting artifacts appear in reconstructed images. Espe-
cially for patients who are unable to control their move-
ments, such motion distortions may affect the diagnosis.
Therefore, the need to deal with subject motion is always

considered by MRI researchers. MRI data are collected in
the Fourier domain, often termed the k-space. Every point
in that space represents an image frequency; a change in
even one k-space location affects the entire image. Both non-
rigid and rigid motions are frequently visible on MRI [4].
Nonrigid motion refers to spontaneous deformation that
may be physiological, such as cerebrospinal fluid (CSF) flow,
respiration, coughing, and swallowing. Rigid motion is gen-
erated by spontaneous random gestures and is more com-
mon in “disobedient” subjects such as children or those
with degenerative neurological disorders (e.g., Parkinson’s
disease). Motion parameters [4] are derived directly from
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raw data by reducing the errors associated with motion-
related data inconsistencies. However, it is difficult to accu-
rately specify the motion parameters given the nonconvex
nature of the computation and the long processing time.

Several strategies that prevent motion or correct artifacts
have been developed to solve such motion-related issues.
The most basic method is inhibition of patient movement
via breath-holding or anesthesia [5]. An attempt has been
made to combine this with parallel imaging (PI) to reduce
the burden on the patient [6]. This approach minimizes scan
times by using a smaller number of frequencies. However,
the scans remain susceptible to artifacts if subjects cannot
control their movements. MRI navigators [7] are commonly
employed to measure patient motion; these navigators have
in-bore cameras and markers [8]. These prospective tech-
niques yield partial k-spaces based on trajectory information
[9]. Retrospective methods that process data after MRI [10]
are aimed at correcting motion. Such retrospective techniques
are used in conjunction with algorithms that estimate motion
without initially gathering motion data. However, in these sce-
narios, complicated and unexpected patient motions restrict
computation. In general, the traditional approaches are associ-
ated with additional costs, increased scan times [11], and
sequence changes [12]. The resolution of MAs is of major
clinical importance; it is essential to automate the correction
of MRI motion abnormalities without the use of navigators.

Recently, deep learning (DL) has proven extremely effec-
tive for image processing [13], including image reconstruction
[14] and detection [15]. The complex and nonlinear properties
of DL are combined with unsupervised or supervised learning.
DL is now widely used to reconstruct MRI images [16], as well
as for motion correction, because motion-tracking equipment,
extended scan times, and sequence modification are not
required [17]. A neural network (NN) is trained using large
datasets that typically employ motion-contaminated images
as inputs and motion-free images as labels. A specific type of
NN, the convolutional NN (CNN), improves hidden attribute
extraction because the hierarchical structure is extremely deep
[18]. Convolutions efficiently extract features; CNNs have
always dominated the field of computer vision (CV). Many
attempts have been made to use DL paradigms to reduce
MAs. Meding et al. [19] developed a data-driven, fully auto-
mated CNN to determine whether MAs in images impacted
the quality of MRI recordings. Eschewing the interscan
method, they employed a binary classification model to distin-
guish “motion” and “no motion.” The Inception-ResNet [20]
architecture-based motion correction network (MoCo-Net)
[11] is a two-dimensional (2D) encoder-decoder system
trained by simulated motions. Automatic multistream CNNs
were developed by Oksuz et al. [21] and Zhang et al. [22] to
find MAs in cardiac MRI scans. Kustner et al. [23] used a
variational autoencoder (VAE) and a generative adversarial
network (GAN), i.e., image-to-image translation techniques,
for retrospective correction of rigid and nonrigid MAs. The
GAN yielded the best motion-free realistic images. Johnson
and Drangova [24] created a three-dimensional (3D) version
of a 2D pixel-to-pixel network based on a conditional GAN
and used this for 3D rigid-body motion correction of brain
MRI scans. Test volumes with motion-contaminated data

were qualitatively explored. Duffy et al. reviewed 3D CNNs
used for retrospective MA reduction and their capacity to
recognize morphological modifications in brains with Parkin-
son’s disease [25]. The network accelerated motion estimation
and reduction (NAMER) [26] is a motion correction network
that combines artifact recognition with motion estimation.
Wang et al. [12] used a CNN that employed data fidelity to
correct 2D motions. Even when used to correct 3D motions,
the CNN outperformed a simple data fidelity model in terms
of image quality. To eliminate MAs in MRI scans, Liu et al.
[27] created a deep residual model that coupled distorted
inputs to outputs with fewer artifacts. However, such correc-
tion methods cannot be used if patient motions are unpredict-
able; all of the studies cited above focused on fundamental
(fixed) motion patterns [11]. Image reconstruction has long
proven highly challenging. Appropriate network training
requires novel data generation methods that handle MAs
arising for various reasons. Also, all methods described above
are CNN-based; the receptive field of a CNN is constrained by
the network depth and the convolutional kernel. A large
kernel significantly increases computing costs, and a deep
network may be associated with a vanishing gradient.
Convolution is locally sensitive and independent of distance
and is thus the basis of CNN feature extraction (Figure 1(a)).
Two-dimensional convolution (Conv2D) is not long-range-
dependent and is therefore locally sensitive.

A recently developed unique transformer was initially
used for natural language processing (NLP) [28], and later
for medical image analysis [29], based on a self-attention
(SA) mechanism [30]. However, it is not easy to switch from
NLP to CV tasks. First, the scales differ. Unlike language
components (such as the word tokens of NLP tasks), visual
components (such as pixels) of CV tasks frequently vary in
terms of scale. Second, resolution may be an issue. Pixels
in images or frames are typically of significantly higher res-
olution than words in phrases. However, given the improved
image reconstruction and synthetic ability of transformers
acting on real images, transformers are now linked to MRI
in a variety of ways. Newer transformers perform well on
tasks requiring reconstruction [31] and superresolution
[32]. The “shifted windows” (Swin) transformer [33] uses
Swin-based multihead self-attention (MSA) to replace the
typical MSA. Swin transformer-based networks perform
extraordinarily well, even outperforming CNN-based tech-
niques; Swin-based systems serve as cutting-edge solutions
for complex vision-based tasks. Figures 1(a) and 1(b) show
that limiting the scale of SA in a local window is a trade-off that
reduces computational complexity. The receptive fields ofMSA
and windows-MSA/Swin-based-MSA (W-MSA/SW-MSA) are
greater than those of Conv2D. W-MSA and SW-MSA are uti-
lized by Swin transformers to shift windows; MSA operates
over the entire image space. As the cross-window relationship
may be disregarded if all attention actions proceed in fixed
windows,W-MSA and SW-MSA alternate throughout the later
transformer layers.

We present the Motion Artifact Correction by Swin
Network (MACS-Net), a unique mode of MA correction
based on a Swin transformer module and the Unet architec-
ture [34] that ensures rapid MRI scan reconstruction. This
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integration of Swin transformer and Unet architecture leads
to a model that generalizes well across a range of image sizes
and complexities, as it can capture both the global structure
and local details of the image.

The major contributions of this study are as follows:

(i) We integrated the Unet framework with a Swin
transformer block (STB) to develop a novel network
that identifies and corrects MAs during MRI scan
reconstruction

(ii) A dual upsample block is introduced including both
subpixel and bilinear upsample algorithms. Experi-
mentally, this outperformed initial upsampling alone

(iii) This MACS-Net performs on the publicly available
brain motion artifact datasets

2. Materials and Methods

The artifact-free ground truth image (G) is reconstructed
from the fully sampled motion-free k-space (k) by executing
the inverse Fourier transform (IFT):

G = IFT k 1

During restoration, a reconstructed artifact image (y) is
denoted as

Y =D G +m, 2

where D is the degradation function and m represents the
MAs. DL mitigates such artifacts (m) by learning how they
impact MRI scans. MA reduction was designed and simu-
lated using Swin transformations and a Unet architecture;
we employed a dataset with authentic MAs.

2.1. Dataset Generalization and Preprocessing. It is difficult
to pair motion-contaminated and motion-free k-spaces;
most state-of-the-art approaches are thus trained using syn-
thetically corrupted images derived from motion-free data.
A phase shift can be added to the frequency domain of a
k-space to simulate MAs, or rotations and translations can
be implemented in the spatial domain. Several degrees of

motion severity can be introduced by varying the extent of
motion. In our analysis, we used the Movement-related Arti-
facts (MR-ART) [35] dataset with information on the heads
of 148 healthy adults (95 women and 53 men) who under-
went 3D structural T1-weighted MRI. Both motion-free
and motion-affected data from the same volunteers are
available. T1-weighted 3D magnetization-prepared rapid
gradient-echo (MP-RAGE) anatomical images were collected
via two-fold in-plane generalized autocalibrating partial paral-
lel acquisition (GRAPPA) acceleration with an isotropic spa-
tial resolution of 1mm3 (repetition time TR = 2,300ms,
echo time TE = 3ms, inversion time TI = 900ms, flip
angle FA = 9°, and field of view FOV = 256 × 256mm).
No participant (age range: 18–75 years; median age: 25.16
years; interquartile range: 10.50 years) had any neurological
or psychiatric condition. Images were captured with the heads
motionless and next moving both slightly and markedly; there
are three datasets for each participant. For each subject, three
T1-weighted structural scans were obtained using the same
parameters but with three different settings: STAND (no
motion), M1 (brief motion, within 5 s), and M2 (longer
motion, 5–10 s). A fixation point was set in the middle of the
display during each acquisition, and participants were told to
look at the point. Participants were advised to remain
completely still during the STAND scan and to nod their
heads during theM1 andM2 scans. Brain Imaging Data Struc-
ture (BIDS) software organized and anonymized the 3D
images. The Pydeface tool [36] was used to erase facial details.
The authors provided the basic image quality parameters of the
MRI quality control (MRIQC) [37] reports on all scans; this
rendered labelling more precise. To describe howMAs affected
the clinical utility of the images, board-certified neuroradiolo-
gists awarded artifact scores to each scan. For each subject,
the STAND scan was rated as good (score 1), the M1 scan as
medium (score 2), and the M2 scan as poor (score 3).

Among the 148 volunteers’ (95 women and 53 men) data
files, 80 (50 women and 33 men) were used for training, 48
(30 women and 15 men) for validation, and 20 (15 women
and 5 men) for testing. Each file contained three sets of data
(ground truth, low motion, and moderate long motion).
Each set contained 179 sagittal cross-sectional T1-weighted
(256 × 256) MRI image slices. During the training of the net-
works, normalized high MA images served as inputs and

Conv2D CNNs MSA transformers

(a) Limitations

Swin transformers
W-MSA SW-MSA

(b) Solutions

Figure 1: The receptive fields for two-dimensional convolution (Conv2D), multihead self-attention (MSA), and shifted window-based MSA
(W-MSA/SW-MSA) are shown in (a) and (b). Receptive field of operation, green box; pixel, yellow box; self-attention patch, red box.
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motion-free images as outputs. On the other hand, the com-
parative networks were evaluated by both low and high MA
images. No data augmentation was applied during training.

2.2. Network Architecture. The NN for MA correction using
the Swin transformer (MACS-Net) is shown in Figure 2. In
MACS-Net, the input image is divided into nonoverlapping
patches of a fixed size, which is commonly referred to as the
“patch size.” The patch size determines the granularity at
which the model processes the image and affects the spatial
resolution of the output features. A smaller patch size allows
the model to capture more fine-grained details in the image,
but it increases the computational cost and memory require-
ments. Conversely, a larger patch size reduces the computa-
tional cost and memory requirements, but it may result in
the loss of fine-grained details. The patch size is determined
by the window size and the number of patches that cover the
entire image. The input image size of this proposed network
is 256 × 256 pixels, and the window size is 32; therefore, the
number of patches is 256/32 × 256/32 = 64, and the
patch size is 4 pixels. There are three modules for shallow
feature extraction (SFE), Unet feature extraction (UFE),
and reconstruction.

2.2.1. SFE. Artifacts input images y ∈ Rh×w×3, where h and w
are the height and width of each distorted image. We used a
single 3 × 3 convolutional layer MSFE to obtain low-
frequency information (such as colors or textures) from
the inputs. A representative shallow feature Fs ∈ Rh×w×c is
derived as follows:

Fs =MSFE y , 3

where c is the number of channels that analyze shallow fea-
tures; here, c = 96.

2.2.2. UFE. Subsequently, high-level multiscale deep features
Fd ∈ Rh×w×c were obtained from each shallow feature Fs
via UFE:

Fd =MUFE Fs , 4

where MUFE is the Unet framework of the STB with
eight Swin transformer layers (STLs) in each STB. The
STB and STL are described in detail below.

2.2.3. Reconstruction Module (RM). An artifact-free image
x̂ = Rh×w×3 is generated from a deep feature Fd via 3 × 3 con-
volution FRM :

x =MRM Fd , 5

where x̂ is the artifact-corrected output from the input
artifact-containing image (y).

2.3. Resizing Module. As Unet feature maps vary in scale,
resizing modules that engage in down- and upsampling is
required. These MACS-Net modules employ a patch merg-
ing and a new dual upsampling technique, respectively.

2.3.1. Patch Merging. To connect the input features of each
cluster of adjacent 4 × 4 patches to the down-sampling
module, we employed a hierarchical vision transformer
[33] and a linear layer to produce the output features for
the desired number of channels. Alternatively, input feature
map unfolding could serve as the first stage of convolution.

Artifacts image Corrected image

Skip connection

Conv 3 × 3, GELU
Swin transformer block
Patch merging
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H = W = 256

H

4 C× ×
W

4
H

4 C× ×
W

4

H

8 2C× ×
W

8
H

8 2C× ×
W

8

H

16 4C× ×
W

16
H

16 4C× ×
W

16

H

32 8C× ×
W

32

Dual up-sample

Feature maps

Figure 2: The Swin transformer-based method for correction of MAs. C: number of channels; GELU: Gaussian error linear unit.
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2.3.2. Dual Upsampling. The basic Swin-Unet [38] uses a
patch-expanding approach for upsampling, which is almost
equivalent to transpose convolution but deals with block
effects more rapidly. To avoid image distortion, we used a
new dual upsampling method that combines the bilinear
and PixelShuffle [39] techniques. Bilinear upsampling con-
siders the nearest four pixels surrounding each pixel in the
lower-resolution image. It then performs a weighted average
of these pixel values to calculate the corresponding pixel
value in the higher-resolution image. It is simple and fast
but may not produce the best results, especially when the
upsampling factor is large. PixelShuffle upsampling rear-
ranges the elements of the tensor by grouping neighbouring
elements and moving them to different spatial locations in
the output tensor. It is more complex and computationally
demanding but provides better results. The combination
ensures high-quality upsampled images and exploits the com-
putational efficiency of bilinear upsampling. Here, the expo-
nential linear unit (ELU) served as the activation function.
Figure 3 shows the architecture of the new upsamplingmodule.

2.4. Swin Transformer Block. Transformers [40] are at least
as effective as CNNs for image classification [41] and NLP.
However, two fundamental issues arise when using a trans-
former to handle a visual task. First, the scales of images
and sequences differ markedly. A transformer requires a
number that is similar to the sum of squares of all parame-
ters in a one-dimensional (1D) sequence; a transformer can-
not handle long sequences effectively. Second, transformers
do not make dense predictions, such as segmentation, effec-
tively, such that they must be completed at the pixel level
[42]. The Swin transformer handles several pixel-wise vision
tasks by using Swin to reduce the number of parameters.

Figure 4 shows that an STB replaces the conventional
convolution layer of the Unet extraction module. The funda-
mental NLP transformer layer [30] serves as the STL foun-
dation. Each STL number is a multiple of two. Window
multihead self-attention (W-MSA) and shifted-window
multihead self-attention (SW-MSA) are represented by sep-
arate STLs. Certain issues arise when transformers directly
perform CV tasks, as indicated in Introduction. A cyclic shift

technique was used to reduce computation time with main-
tenance of the properties of convolution, i.e., the rotation,
translation, and size invariance of the relationship between
the receptive field and the layers.

2.5. Swin Transformer Layer (STL). The STL uses Swin,
unlike the traditional MSA module. Two sequential STLs
are shown in Figure 5. The next two transformer layers use
the W-MSA and the SW-MSA modules, respectively. In
W-MSA, the input sequence is divided into multiple fixed-
size segments or “windows,” and self-attention is applied
to each window independently. This approach helps to
reduce the computational cost of self-attention, as it allows
for parallel processing of the windows. In SW-MSA, the
windows are shifted by a certain amount (e.g., half the win-
dow size) to overlap with adjacent windows. This approach
assists in alleviating the information loss issue while allowing
for parallel processing.

The continuous STLs based on the window-partitioning
approach can be written as

p̂L =W −MSA LN pL−1 + pL−1,

pL =MLP LN p̂L + p̂L,

p̂L+1 = SW‐MSA LN pL + pL,

pL+1 = MLP LN p̂L+1 + p̂L+1,

6

where LN indicates layer normalization and MLP is a
multilayer perceptron with two completely linked layers
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activated by GELUs. p̂L and pL are the outputs of the Lth

block of (S)W-MSA and the MLP module, respectively.

3. Assessment Metrics and Experimental Setup

3.1. Assessment Metrics. The normalized root mean square
error (NRMSE), structural similarity index measure (SSIM),
and peak signal-to-noise ratio (PSNR) were used to evaluate
network performance. The NRMSE analyzes pixel differ-
ences between a reference and network predictions:

NRMSE G, X =
1/N ∑N

i=1 Gi – Xi
2

max G –min X
, 7

where N is the image size, i is the slice position, and G and X
are the motion-free (ground truth) and reconstructed
(output) images, respectively. The SSIM perceptual index
compares the mutual dependencies of adjacent pixels in
terms of structural traits, contrast, and brightness, i.e., deter-
mines how similar the two images are. To compute the SSIM
between G and X, we employ

SSIM G, X =
2μGμX + q1 2σGX + q1

μ2G + μ2X + q1 σ2G + σ2X + q1
, 8

where μG and μX are the average values of G and X,
respectively, σ2G and σ2

X are the respective pixel variances,
and σGX is the covariance. q1 and q2 are used for data
division:

q1 = 0 01v 2,

q2 = 0 03v 2,
9

where v =max G –min X .
The PSNR parameter quantifies the connection between

the peak potential signal power and noise that reduces signal
fidelity:

PSNR G, X = 10 log10
255

1/N ∑N
i=1 Gi – Xi

2
10

These three metrics are frequently used to evaluate
image reconstruction. Higher SSIM and PSNR values, but
lower NRMSE values, indicate better images.

3.2. Experimental Setup. For model training and testing, we
used a Windows 10 Pro-64-bit computer with an Intel Core
i7-9800X 3.80GHz processor, 128GB of RAM, and an
NVIDIA GeForce RTX 2080Ti graphics processing unit.
All models were implemented using the PyTorch v1.11.0
modules of PyCharm and Python 3.8. Commencing at 10-4,
the learning rate decreased every 20 epochs with a decay factor
of 0.96. During training, 500 epochs were completed with a
small batch size of 8. All tested networks were implemented
identically.

3.3. Loss Function. We used the following mean absolute
error (MAE) function to optimize (minimize) the MACS-
Net error:

Loss G, X = 〠
N

i=0
Gi − X̂i , 11

where N indicates the number of pixels in the image and G
and X are the ground truth (motion-free) and reconstructed
(output) images, respectively. The use of normalized data
accelerated the convergence of both the training and valida-
tion losses (Figure 6). The regularizing effect afforded by the
high connectivity reduced the risk of overfitting during
training.

The PSNR of the validation dataset was assessed during
training of the comparative models. When machine learning
is supervised, a validation dataset is used to compare the
effectiveness of various trained models; this aids the selection
of appropriate hyperparameters. Figure 7 shows that our
MACS-Net generates higher and more stable PSNR values
than other networks.

4. Results and Discussion

The performance of MACS-Net was compared to those of
MoCo-Net [11], Modified-2D-Net (which uses a CNN to
correct out-of-field-of-view MAs) [12], Namer-Net [26],
the MC-Net motion correction network [43], Stacked-Unet
(which uses self-assisted priors) [44], and Mark-Net (which
performs MA reduction and k-space analysis) [45]. These
methods are mainly used in encoder-decoder frameworks,
particularly Unet, and executed convolutional operations.
Conversely, the proposed MACS-Net method used the Unet
framework with “shifted windows” (Swin) transformer
block. The Swin transformer block extracted features from
the input image and generated a low-dimensional represen-
tation, which passes through the Unet to generate the arti-
facts’ free final images. All the comparative methods in this
manuscript have been evaluated by the same 256 × 256 size

Layer norm

W-MSA

Layer norm

MLP

Layer norm

SW-MSA

Layer norm

MLP

pL–1 pL

pL

p̂L p̂L+1

pL+1

Figure 5: Two Swin transformer layers (STLs).
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images. The architecture of the neural network being used
might be designed to operate efficiently on inputs of a cer-
tain size. A 256 × 256 image can contain sufficient informa-
tion for the model to make accurate predictions or analyses.
It is a balance between having enough detail to extract mean-
ingful features and keeping the computational requirements
manageable. Processing larger images requires more computa-
tional resources, including memory and processing power.
Using smaller input sizes [12] can make computations faster
and more feasible, especially in real-time applications or when
dealing with large datasets, but it may reduce the necessary
information of the images. The NRMSE, SSIM, and PSNR
values were derived via numerical analyses. The average
reconstruction times for both types of motion were computed.
Table 1 lists the similarities and dissimilarities among the
methods in terms of the network parameters, up- and down-
sampling methods, activation functions, and training time in
the same environment. MACS-Net uses patch merging and a

new dual upsampling technique instead of the average, Max,
or GlobalMax_pooling method; the new technique better
represents features. MACS-Net employs the GELU and ELU
activation functions instead of the rectified linear unit (ReLU).
When learning complicated data patterns, the GELU may be
better than the ReLU because the shape of the former is
smoother (more continuous). The ELU yields more precise
results and converges costs to zero more rapidly than the
other functions.

A total of 3,500 images were used to evaluate the perfor-
mance of all networks. Table 2 lists the mean and standard
deviation NMRSE, SSIM, and PSNR values when motion was
brief and moderate; all state-of-the-art techniques were
employed. Clinical evaluations of edge sharpness, motion fidel-
ity, and image distortion, as well as diagnostic scores, should be
added to these quantitative metrics when evaluating recon-
structed images. The post hoc paired t-test and one-way anal-
ysis of variance (ANOVA) were used to identify statistically
significant changes. A p value <0.01 indicated statistical signif-
icance. All measurements and acceleration parameters differed
significantly (p < 0 01) according to one-way ANOVA. The
observations and numerical analyses show that MACS-Net
yielded the best NRMSE, SSIM, and PSNR values. Paired
t-tests showed that the transformer-based MACS-Net was
better than CNN-based methods. Aside from the quantitative
results, our new method processes images more rapidly than
the other methods. On average, MACS-Net requires 21 s to
correct brief MAs, whereas the CNN-based approaches need
≥22 s; the time required in cases with moderate motion was
26 and >26 s, respectively.

Figures 8 and 9 show the visual assessments (obtained
via different methods) of motion-corrected slice 82 images
with brief and longer motions, respectively. Both figures
include reference images (a), images with MAs (b), and var-
ious visual evaluations of the motion-corrected images (c–i).
The CNN-based models eliminated MAs effectively, but the
reconstructed images were distorted compared to the refer-
ence images. MACS-Net precisely corrected the artifacts
and reconstructed the images (i) such that they were similar
to the reference (a). When motions were brief or moderate,
MACS-Net performed better than the CNN-based techniques.
Also, MACS-Net outperformed the other approaches in terms
of the quantitative values. The PSNR of slice 82 increased from
26.46 to 34.44dB when motion was brief and from 24.88 to
32.25dB when motion was moderate. Network generalizability
was apparent; MAs in the test dataset were suppressed. MACS-
Net optimally removed artifacts because, during image recon-
struction, MACS-Net focuses on features essential for accurate
diagnosis.

Table 3 summarizes the ablation studies of base Unet
[34], Swin Unet [38] with bilinear upsampling, and Swin
Unet with PixelShuffle upsampling and proposes Swin Unet
with new dual upsampling (combining bilinear and Pixel-
Shuffle) approaches for both types of motions. Traditional
Unet architectures commonly used transposed convolutions
(also known as deconvolutions) for upsampling in the
decoder layers. Transposed convolutions learn a set of train-
able parameters to upsample feature maps. Swin Unet with
bilinear upsampling replaces transposed convolutions with
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Figure 6: Training and validation losses of the proposed method.
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Figure 7: PSNR data acquired during model training.
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bilinear upsampling during the decoding phase. It provides a
smooth interpolation of pixel values compared to transposed
convolutions. Swin Unet with PixelShuffle upsampling
provides the model with the ability to learn specific
rearrangement patterns during training, making it more
adaptable to image reconstruction. The dual upsampling
approach (Figure 3) has benefited from the efficiency of
bilinear upsampling and the ability of PixelShuffle to rear-
range feature maps for increased spatial resolution. The
proposed method provides the best performance in both
types of motions compared to the base Unet and other
upsampling modules according to Table 3 outcomes.

In general, conventional methods such as navigator-
based respiratory gating, image averaging, and image filter-
ing are widely used in clinical settings to reduce MAs. How-
ever, all of these methods have certain limitations; they
correct only specific motions or require multiple scans.
Recently, DL methods have been used to correct MAs in
MRI scans. Typically, an NN is trained on an image dataset
with and without MAs, and the trained network is used to

remove artifacts from new images. One common approach
uses a CNN trained using superresolution imaging; this
increases image resolution by adding details lost because of
MAs. Another approach employs a GAN to generate images
free of MAs by comparing the created and original images.
In contrast, the Swin transformer-based model allows a net-
work to learn motion patterns and then filter out MAs.
Notably, for both brief (within 5 s) and moderate (within 5
to 10 s) motions, the transformer-based approach outper-
formed the CNN-based methods, although this method has
certain limitations. First, DL models are highly dependent
on the quality, diversity, and representativeness of the train-
ing data. In this case, only T1-weighted sagittal brain slices
have been used. So, it is important to evaluate this model
in different clinical settings such as T2-imaging contrast,
knee and abdomen datasets, and axial and coronal brain
slices. Second, this model is considered a “black box” due
to their complex architecture. Therefore, understanding the
decision-making process of this model, especially in a med-
ical context, needs further investigation.

Table 1: Comparison of state-of-art motion correction methods.

Year proposed Method Parameters Resizing module Activation function Training time (hmin)

2018 MoCo-Net 47,120,129 MaxPooling ReLU 67 20

2019 Namer-Net 893,899 — ReLU 81 24

2020 Modified-2D-Net 3,363,215 Conv with stride 2 ReLU 23 52

2022 MC-Net 5,496,001 MaxPooling ReLU, sigmoid 20 44

2022 Stacked-Unet 4,017,966 Average_pooling, GlobalMax_pooling ReLU 136 49

2023 Mark-Net 1,623,236 MaxPooling LeakyReLU 23 22

— Proposed MACS-Net 33,227,907 Patch merging, dual upsampling GELU, ELU 56 54

Table 2: Average NRMSE, SSIM, and PSNR values and reconstruction times of state-of-art techniques analyzing two different motions.

Type Approach
NRMSE (×10-2)
Mean ± std

SSIM (×10-2)
Mean ± std

PSNR (dB)
Mean ± std Time (s)

Brief motion (<5 s)

Zero filled 45 25 ± 0 07 79 43 ± 0 09 18 24 ± 3 05 —

MoCo-Net 29 06 ± 0 07 88 81 ± 0 07 22 14 ± 3 70 27

Namer-Net 17 67 ± 0 06 91 28 ± 0 07 26 48 ± 2 47 42

Modified-2D-Net 17 64 ± 0 06 91 27 ± 0 07 26 49 ± 2 46 22

MC-Net 17 63 ± 0 06 91 29 ± 0 07 26 50 ± 2 48 27

Stacked-Unet 17 96 ± 0 06 91 26 ± 0 07 26 34 ± 2 51 29

Mark-Net 17 70 ± 0 06 91 27 ± 0 07 26 46 ± 2 47 22

MACS-Net (proposed) 17 51 ± 0 06 91 72 ± 0 07 26 57 ± 2 52 21

Moderate motion (5–10 s)

Zero filled 60 30 ± 0 03 33 86 ± 0 04 15 64 ± 1 54 —

MoCo-Net 31 92 ± 0 07 87 19 ± 0 07 21 25 ± 3 13 38

Namer-Net 21 26 ± 0 07 89 78 ± 0 06 24 88 ± 2 16 48

Modified-2D-Net 21 20 ± 0 07 89 78 ± 0 07 24 90 ± 2 15 27

MC-Net 21 18 ± 0 07 89 82 ± 0 07 24 91 ± 2 17 34

Stacked-Unet 21 58 ± 0 07 89 75 ± 0 06 24 75 ± 2 20 39

Mark-Net 21 27 ± 0 07 89 77 ± 0 07 24 88 ± 2 16 33

MACS-Net (proposed) 21 04 ± 0 07 90 33 ± 0 07 24 99 ± 2 20 26
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Figure 8: Reconstructed images of slice 82 of the test dataset with
brief motion (<5 s). (a) The motion-free ground truth image. (b)
The image with an MA. Images corrected by (c) MoCo-Net, (d)
Namer-Net, (e) Modified-2D-Net, (f) MC-Net, (g) Stacked-Unet,
(h) Mark-Net, and (i) MACS-Net.
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Figure 9: Reconstructed images of slice 82 of the test dataset with
moderate brief motion (5–10 s). (a) Motion-free ground truth
image. (b) The image with an MA. Images corrected by (c)
MoCo-Net, (d) Namer-Net, (e) Modified-2D-Net, (f) MC-Net, (g)
Stacked-Unet, (h) Mark-Net, and (i) MACS-Net.
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5. Conclusion

Our MACS-Net architecture uses a new Swin transformer
backbone to correct MAs. The new dual upsample module
prevents aliasing artifacts. MACS-Net effectively removes
MAs from MRI scans and improves image diagnostic qual-
ity. Higher image quality often leads to more accurate and
reliable diagnostic information. Automated correction of
MAs reduces the time required for image analysis and inter-
pretation, allowing for more efficient use of resources. Fur-
thermore, this method can contribute to a more positive
patient experience, potentially increasing compliance and
reducing anxiety during MRI procedures. However, it is
premature to suggest that the Swin transformer can replace
convolution; the performance of Swin transformer-based
NN architectures must be further evaluated and optimized.
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