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This paper extends our previous method for COVID-19 diagnosis, proposing an enhanced solution for detecting COVID-19 from
computed tomography (CT) images using a lean transfer learning-based model. To decrease model misclassifications, two key
steps of image processing were employed. Firstly, the uppermost and lowermost slices were removed, preserving sixty percent
of each patient’s slices. Secondly, all slices underwent manual cropping to emphasize the lung areas. Subsequently, resized CT
scans (224 × 224) were input into an Xception transfer learning model with a modified output. Both Xception’s architecture
and pretrained weights were leveraged in the method. A big and rigorously annotated database of CT images was used to
verify the method. The number of patients/subjects in the dataset is more than 5000, and the number and shape of the slices
in each CT scan varies greatly. Verification was made both on the validation partition and on the test partition of unseen
images. Results on the COV19-CT database showcased not only improvement from our previous solution and the baseline but
also comparable performance to the highest-achieving methods on the same dataset. Further validation studies could explore
the scalability and adaptability of the developed methodologies across diverse healthcare settings and patient populations.
Additionally, investigating the integration of advanced image processing techniques, such as automated region of interest
detection and segmentation algorithms, could enhance the efficiency and accuracy of COVID-19 diagnosis.

1. Introduction

The unprecedented global challenge posed by the COVID-
19 pandemic has underscored the critical need for advanced
diagnostic methodologies to effectively curb the virus’s
spread. Among these methodologies, computed tomography
(CT) imaging has emerged as a vital tool in providing
detailed insights into the manifestations of the disease. In
this context, the utilization of CT scan images has proven
instrumental in detecting the presence of the virus and
understanding its impact on the respiratory system. The
intricate details captured by CT scans offer a comprehensive
view of the pulmonary structures, making them invaluable
for early and accurate diagnosis [1].

To address the urgency of timely and precise COVID-19
diagnosis, the integration of advanced computational tech-
niques has become imperative. Deep learning, particularly

through the lens of transfer learning, has demonstrated
remarkable potential in enhancing diagnostic accuracy and
efficiency. Transfer learning, a paradigm that leverages pre-
trained models to expedite the learning process, plays a piv-
otal role in the analysis of medical images. In the realm of
COVID-19 diagnosis, these approaches contribute signifi-
cantly by automating feature extraction and pattern recogni-
tion, thereby streamlining the diagnostic workflow [2].

The importance of employing deep learning, and specif-
ically transfer learning, lies in its ability to decipher complex
patterns within CT images associated with COVID-19 man-
ifestations. By building on knowledge gained from related
tasks, transfer learning models quickly adapt to the unique
characteristics of COVID-19 pathology. This not only expe-
dites the diagnostic process but also enhances the accuracy
of identifying subtle nuances in CT scan images indicative
of viral infection. The potential of these approaches to
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revolutionize COVID-19 diagnosis underscores the need for
continued research and development in this domain [3].

Building upon our previous methodologies [4], the new
proposed solution seeks to further elevate the accuracy of
COVID-19 diagnosis through a refined approach. We choose
to keep the solution light and avoid more deep learning
incorporation. Therefore, we focus on processing the data
before inputting it into a modified and lean Xception model.
This innovative preprocessing strategy is aimed at addressing
specific challenges encountered in CT scans, such as nonrep-
resentative slices, by systematically removing them. More-
over, the proposed method involves manual cropping of
images to retain only the pertinent lung areas in each slice,
focusing the analysis on regions critical for COVID-19 detec-
tion. The rationale behind this image processing technique is
to enhance the effectiveness of the subsequent transfer learn-
ing model. By providing the model with refined and relevant
input data, we aim to optimize its performance in discerning
COVID-19-related patterns.

In this paper, we present a literature review in Section 2.
We then move on to Section 3 to present the methodology
focusing more on our proposed image processing techniques
and quickly discussing our modified Xception referring to
our previous paper on that. Section 3 also mentions the
COV19-CT database used for our study. In Section 4, we
introduce the results of our new solution, show the improve-
ment that we achieved in comparison to our previous study,
and compare it to the baseline performance and other alter-
natives. In Section 5, we make our conclusion and discuss
the study’s limitations building the possibility of future
research directions.

2. Literature Review

In recent years, the application of CT scan image processing
techniques has gained substantial attention in the realm of
COVID-19 diagnosis. These techniques prove useful in
keeping the solution lightweight by replacing deep learning
models with data preprocessing. Researchers have explored
innovative approaches to enhance the accuracy of detection
models by strategically manipulating CT scan slices. A note-
worthy study in [5] came second on the leader of the work-
shop aimed at COVID-19 diagnosis. The authors discussed
the significance of selectively removing uppermost and low-
ermost slices from chest CT scans. They came to leave only
40% of the slices at the center of each patient’s CT scan
image. The rationale behind this technique was to focus on
central slices, optimizing the dataset for COVID-19 detec-
tion. Their findings demonstrated that this slice removal
method contributed to a more precise localization of relevant
anatomical regions, laying the groundwork for improved
diagnostic performance.

Further, investigations into the manual cropping of CT
scan slices have yielded promising outcomes. In an earlier
study of ours [6], manual cropping was employed to accen-
tuate lung areas in chest CT images. The study recognized
the importance of emphasizing regions crucial for COVID-
19 detection, and manual cropping emerged as a viable solu-
tion. By systematically resizing each slice to specifically high-

light the lung areas, the study reported heightened sensitivity
and accuracy in identifying COVID-19-related patterns.
These approaches showcased the impact of focusing on the
region of interest in the images and image segmentation.

To measure the efficiency of using slice processing tech-
niques on the final diagnosis of COVID-19, a challenging
database, named “COV19-CT-DB,” was utilized by many
researchers [7–12].

The baseline approach in [7] proposed a CNN-RNN
model, comprising a CNN part for local 2D slice analysis
and an RNN part for sequential analysis of the entire 3D
scan. The model outputs probabilities for each CT scan slice,
and the final diagnosis is determined by a voting scheme,
specifically an “at least one” approach. If at least one slice
predicts COVID-19, the entire CT scan is diagnosed as
COVID-19; if all slices predict non-COVID-19, the whole
CT scan is diagnosed as non-COVID-19. Furthermore,
preprocessing of the images involves extracting CT images,
clipping voxel intensity values, and normalizing. The meth-
odology utilizes ResNet50 transfer learning as the CNN
model, followed by a GRU layer in the RNN model. The
macro F1 score achieved was 0.96 on the test partition.
ResNet transfer learning network is considered heavy com-
pared to other transfer learning models, given the number
of parameters that it has to train.

Another study that utilized a transfer learning approach
selected 3D ResNet architecture to propose a solution on the
same database [13]. A CT scan classifier employing three-
dimensional convolutional neural networks (CNNs) is based
on the ResNet 3D 18 model. The preprocessing step stan-
dardizes the number of slices in CT scans, reducing resolu-
tion sizes through bicubic interpolation. The model was
fine-tuned for COVID-19 detection and severity classifica-
tion, and adjustments include input channel modifications
and dropout integration. The macro F1 score achieved on
the test partition was 0.878. The study could also be consid-
ered heavy using the ResNet model in 3D-shaped image
input.

The second highest macro F1 score on the test set came
from the work that introduced the CMC-COV19D network
for COVID-19 diagnosis. It combines contrastive represen-
tation learning (CRL) and mix-up classification. In the
CRL process, CT scans undergo stochastic data augmenta-
tion, encoding, projection to a low-dimensional vector, and
classification. The contrastive loss function distinguishes
positive and negative pairs among augmented samples.
Mix-up classification enhances model generalization, creat-
ing mix-up samples and labels during training [14].

The highest-achieving method [15] came with a two-step
approach. Initially, they use conventional backbone net-
works for extracting semantic feature embeddings from each
CT scan slice. Subsequently, they introduce a long short-
term memory (LSTM) and transformer-based subnetwork
to facilitate temporal feature learning, resulting in spatio-
temporal feature representation. This two-step LSTM model
effectively prevents overfitting and enhances performance.
The two-step LSTM model excels in minimizing false nega-
tives, while the 2-step Swin model excels in minimizing false
positives. The use of heavy Swin transformers and other
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deep learning methods leads to a nonlean solution in this
study, albeit a definite great performance.

Finally, our previous Xception-based solution [4] came
with a macro F1 score of 0.82, proposing a lean transfer
learning-based solution. We kept the solution easy to follow
by minimally processing the input images. The Xception
model performed better when compared to other heavier
transfer learning alternatives, namely, VGG16, introducing
a lighter transfer learning-based solution.

In recent years, the utilization of CT scan image process-
ing techniques has garnered significant attention in the
domain of COVID-19 diagnosis. These techniques offer a
means of maintaining a lightweight solution by focusing
on data preprocessing rather than employing complex deep
learning models. Notably, our previous research explored
the efficacy of manual cropping to highlight lung areas in
chest CT images, demonstrating heightened sensitivity and
accuracy in identifying COVID-19-related patterns. Further-
more, the strategic removal of nonrepresentative slices from
CT scans has shown promise in optimizing datasets for
COVID-19 detection. To assess the impact of these slice pro-
cessing techniques on the final diagnosis of COVID-19,
researchers have turned to challenging databases such as
the “COV19-CT-DB.” Previous studies have employed vari-
ous methodologies, including transfer learning approaches
utilizing heavyweight models like ResNet50, which, while
effective, may pose computational burdens due to their large
parameter sizes. In contrast, our proposed solution leverages
the Xception model, chosen for its lightweight architecture
and comparative accuracy. By incorporating slice processing
techniques into our methodology, we aim to enhance diagnos-
tic performance while maintaining computational efficiency.
This approach represents a strategic balance between simplic-
ity and effectiveness, offering a promising avenue for advanc-
ing COVID-19 diagnosis using CT images.

3. Methodology

The method follows in two parts. Our previous solution did
not include the image processing part in the solution. This
method is aimed at adding this part before using a classifier
for diagnosing the disease (https://github.com/IDU-CVLab/
COV19D_2nd).

3.1. Image Processing. In the pursuit of refining the input
data for our classifier, we implemented two key image pro-
cessing techniques, each designed to bolster the model’s
accuracy and minimize misclassifications at the patient level.
It is worth noting about the COV19-CT database used in our
study that medial preprocessing details of the slices such as
normalization were not provided to the competing teams
when sharing the data. Rather, the images in the database
were received mainly in loosely compression format: Joint
Photographic Experts Group (JPEG) format, grayscale
images, with 8-bit depth.

Firstly, selective slice removal was applied. Our first
image processing technique involves the judicious removal
of slices from each CT scan, strategically aimed at preserving
only those slices that distinctly represent COVID-19 mani-

festations. Specifically, we systematically eliminate 40% of
the slices in each CT scan, removing an equal number of
uppermost and lowermost slices. This curation ensures that
the retained slices are central and, therefore, more likely to
encapsulate the characteristic features of COVID-19 pathol-
ogy within the patient. By discarding nonrepresentative
slices, we intend to enhance the model’s focus on the most
relevant sections of the CT scan, thereby contributing to a
more accurate and nuanced classification. This selective slice
removal process aligns with the overarching goal of tailoring
the input data to the unique characteristics of COVID-19
presentations in each patient. Recognizing that the upper
and lower extremes of CT scans may not consistently cap-
ture the crucial features indicative of the virus, our approach
optimizes the dataset to foster a more precise and targeted
analysis.

Secondly, Manual Cropping for Lung Area Emphasis
was applied. The second facet of our image processing strat-
egy involves manual cropping of all slices, transitioning from
the original 512 × 512 dimensions to a standardized size of
227 × 300. Figure 1 shows the resulting cropped slices from
the original images. This deliberate resizing is not merely
an arbitrary adjustment; rather, it is a meticulous act aimed
at emphasizing the lung areas within each slice. The manual
cropping was made so that the lung areas in the representa-
tive slice, i.e., not the uppermost and lowermost slices of the
CT scan, are both in the resulting images. These slices are
the slices that will be left after the slice removal techniques
and the cropped areas are the areas of interest showing the
virus infection. Figure 1 shows the cropping made on a rep-
resentative slice. The resulting images are of the size 227 ×
300. By focusing on the anatomical regions most pertinent
to COVID-19 detection, we facilitate the classifier in honing
its attention to the key structures indicative of the viral infec-
tion. The choice to manually crop each slice aligns with the
understanding that the nuances of COVID-19 pathology
often manifest prominently in the lung areas. This deliberate
act of slice cropping enhances the classifier’s ability to dis-
cern subtle patterns associated with the virus, ultimately
contributing to heightened diagnostic accuracy.

Finally, all slices were resized to 224 × 224, adding more
channels to reach 3 as a standard input image for the Xcep-
tion model. The reason behind resizing again is that the
Xception model expects input of the same dimensions. In
addition, the workstation capabilities for sufficient low train-
ing time as well as common practicality indicate 224 × 224 to
be the selected input image dimensions.

3.2. Modified Xception Model Classifier. In our previous
methodology in [4], we used an Xception model [16] with
a modified output to make final diagnostic decisions.
Figure 2 shows the Xception model architecture with the
adapted output.

The Xception model architecture employed in our meth-
odology comprises a series of layers designed to extract fea-
tures from input data. Initially, a global average pooling layer
aggregates feature maps across spatial dimensions, reducing
computational complexity while preserving relevant infor-
mation. Subsequently, a dense layer with 128 filters and
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rectified linear unit (ReLU) activation facilitates nonlinear
transformations, enhancing the model’s capacity to capture
complex patterns in the data. Batch normalization is applied
to stabilize and accelerate the training process by normaliz-
ing activations within each minibatch. A dropout layer with
a rate of 0.2 is incorporated to prevent overfitting by ran-
domly deactivating a fraction of neurons during training.
Finally, a dense layer with a sigmoid activation function out-
puts the class probability of a slice being a non-COVID-19
case. The final layer’s output represents the class probability
of being a non-COVID-19 case slice. This class probability is
then compared against a predefined threshold, determining
the slice’s classification as COVID-19 or non-COVID-19.
These individual slice-level determinations collectively lead
to patient-level diagnoses, as explained in the latter sections
of the paper. Several class probability thresholds were
explored to optimize performance, and their effects were
evaluated on the validation set of the COV19-CT database.

For model compilation, we employed the Keras platform
[17], utilizing the “Adam” optimizer initialized with a learn-
ing rate of 0.001. The loss function was set as “binary cross
entropy.” Our model was trained across 15 epochs, a deter-
mination that emerged from rigorous experimentation. Dur-
ing these trials, it was observed that further increasing the
epoch count resulted in only marginal improvements in val-
idation loss over a prolonged timeframe. Figure 3 shows
training and validation loss during the training period.

Training the CNN model, with a batch size of 32, across
the epochs necessitated approximately 10 days of computa-
tion. This was facilitated on a workstation operating a
GNU/Linux system, equipped with 64GiB of system mem-
ory and powered by an Intel(R) Xeon(R) W-2223 CPU @
3.60GHz processor. These specifications offer insights into
the computational resources and time investment involved
in achieving our model’s refined performance for COVID-
19 detection.

In our training process, we employed transfer learning
models with a 3-channeled input, utilizing pretrained
weights from the ImageNet model. Notably, we rendered
the model’s weights nontrainable during our training phase

to preserve the pretrained features. To enhance the training
dynamics, we implemented callback mechanisms, specifi-
cally utilizing the “ReduceLROnPlateau” callback. This
mechanism is a dynamic learning rate adjustment strategy
commonly used in deep learning model training. It operates
by continuously monitoring a specified metric, in our case,
the validation loss. If the validation loss does not improve
over a predefined number of training epochs (in this case,
2 epochs), the learning rate is adjusted downward by a cer-
tain factor. This approach was particularly useful in optimiz-
ing the performance of our COVID-19 detection model,
considering the complex and multifaceted nature of
COVID-19-related patterns in CT images. By adaptively
adjusting the learning rate when stagnation occurred in the
validation loss, we aimed to facilitate model progress
through challenging regions of the loss landscape.

3.3. The Dataset. The dataset utilized in this investigation is
an extension of the COV19-CT-DB, playing a crucial role by
providing a comprehensive collection of CT scans essential
for the detection of COVID-19. This dataset encompasses a
significant number of CT scans, encompassing 1,650 instances
of COVID-19 and 6,100 non-COVID-19 cases. This balanced
distribution facilitates a robust assessment of the performance
of the proposed method across different classes.

What distinguishes the “COV19-CT-DB” dataset is not
only its size but also its diversity, encompassing variations
in the number of cases and the variability in COVID-19
manifestations. The CT scans in the dataset have been
meticulously labeled by a panel of experts, each possessing
over 20 years of experience, ensuring the accuracy and reli-
ability of the labels, crucial for the construction and evalua-
tion of machine learning models. The consensus of the
annotation came with 98% agreement. Furthermore, poly-
merase chain reaction (PCR) test results were used for con-
firmation in the annotation of the images.

The dataset’s diversity, spanning a spectrum of COVID-19
and non-COVID-19 cases, introduces unique challenges and
opportunities. Given that COVID-19 exhibits a range of man-
ifestations, capturing this variability becomes vital for the
development of an effective detection model. The inclusion
of cases with varying degrees of lung involvement and diverse
clinical presentations in the “COV19-CT-DB” dataset mirrors
the real-world complexity of COVID-19 instances.

With its comprehensive labeling, extensive size, and
diversity, the “COV19-CT-DB” dataset serves as an ideal
foundation for assessing the effectiveness of the proposed
method. Its suitability arises from its capacity to rigorously
evaluate the model’s performance on diverse cases, ensuring
not only accuracy but also robustness in identifying COVID-
19 instances within varying clinical contexts. Each CT scan
consists of a variable number of slices, ranging from 50 to
700, and access to this dataset is facilitated through the
“ECCV 2022: 2nd COV19D Competition.” Table 1 illus-
trates the distribution of COVID-19 and non-COVID-19
cases for our study.

3.4. Performance Evaluation. The proposed model was eval-
uated via the COV19-CT-DB database using accuracy,

Figure 1: Rectangular cropping of the slices.
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macro F1 score, and confidence interval. Accuracy, recall,
precision, and macro F1 score are fundamental metrics used
to evaluate the performance of classification models, includ-
ing our COVID-19 detection model. Accuracy represents
the proportion of correctly classified instances out of the
total instances, providing an overall measure of the model’s
correctness. Recall, also known as sensitivity, measures the
model’s ability to correctly identify positive instances out

of all actual positive instances. Precision, on the other hand,
quantifies the proportion of correctly identified positive
instances out of all instances classified as positive by the
model, reflecting the model’s ability to avoid false positives.
The macro F1 score combines precision and recall into a
single metric, considering both false positives and false
negatives, thereby providing a balanced assessment of the
model’s performance across different classes [18]. On the
other hand, confidence intervals, as calculated for the
reported validation accuracy scores, offer insights into the
reliability and variability of the results. They indicate the
range within which the true accuracy of the model is likely
to fall, providing a measure of uncertainty around the
reported performance metric. A narrower confidence inter-
val suggests higher confidence in the reported accuracy
score, while a wider interval indicates greater uncertainty.
Understanding the implications of confidence intervals is
crucial for interpreting the robustness and generalizability
of the model’s performance beyond the specific dataset used
for validation. Thus, by providing context and interpretation
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Figure 2: Xception model architecture (adapted for our task).
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Table 1: Distribution of cases in the COV19-CT database.

Annotation Training data Validation data

COVID-19 CT cases 882 224

Non-COVID-19 CT cases 1110 468
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for these performance metrics and confidence intervals, we
aim to enhance the readers’ understanding of the model’s
evaluation and contribute to a more informed assessment
of its reliability and variability [19]. Below are the equations
for the performance measuring matrices that are added:

The accuracy is calculated as in

Accuracy =
True positives + true negatives

True positives + false positives + true negatives + false negatives
,

1

where positive and negative cases refer to COVID-19 and
non-COVID-19 cases.

The macro F1 score was calculated after averaging preci-
sion and recall matrices as in

Macro F1 =
2 × average precision × average recall
average precision + average recall

, 2

where the precision and recall for classification tasks are
defined as in

Precision =
True positive

True positive + false positive
, 3

Recall =
True positive

True positive + false negative 4

The confidence intervals were used to check the range
variance of the reported results. The residuals of the interval
can be calculated as in

Radius of interval = z ×
value considered × 1 − value considered

n
,

5

where z is the number of standard deviations from the
Gaussian distribution and n is the number of samples.

4. Results

The results of our methodology are discussed on the valida-
tion set both at the slice level and at the patient level.

4.1. Results at Slice Level. Table 2 shows the training perfor-
mance for different metrics.

To calculate the confidence interval for the resulting val-
idation accuracy score (0.8848), equation (3) was used. In
the equation, z is taken as z = 1 96 for a significance level
of 95%. By that, we can obtain the confidence interval keep-
ing in mind that the number of samples (slices) in the vali-
dation set is 30235, to be approximately 0.0036. With that,
the validation accuracy score can be said to be 0 8848 ±
0 0036.

Using the above-mentioned method, predictions were
made through different class probability thresholds. These
thresholds are compared to the model output. The model
has only one output, which is the probability of the slice
being a non-COVID-19 slice. After that, the majority voting
method for each CT scan was deployed to decide whether

the patient belonging to that CT scan was COVID-19 posi-
tive or not. Figure 4 shows performance results on the vali-
dation set at the patient level for four different class
probability thresholds. The comparison was made in terms
of the validation accuracy and the macro F1 score.

The findings indicate that, among the three suggested
class probability thresholds, the 0.15 threshold level gives
the best performance. This holds when considering both val-
idation accuracy and validation macro F1 score. Conse-
quently, our proposed approach exceeds the baseline model
score, as reported in [5], in terms of macro F1 score, achiev-
ing a score of 0.88 on the validation set.

To further validate our results, we test the method on the
test partition of unseen images. The partition is named
“ECCV Partition” from the COV19-CT database. The high-
est macro F1 score achieved is 0.88. Similar to our results on
the validation set, the highest macro F1 score is achieved
with a class probability threshold of 0.15. With that, the
threshold to be selected for further comparison and evalua-
tion is at 0.15 threshold. Figure 5 shows the results of the test
partition.

Our previous method, which was proposed without
image preprocessing, reached only 0.82 macro F1 score on
the ECCV test partition. These results indicate that our
extended method far exceeds the previous one.

Further, our macro F1 score is now comparable to more
alternative solutions that are on the leaderboard as can be
seen in Table 3. The table shows our proposed method com-
pared to the highest-achieving solutions, and the solutions
used a transfer learning approach on the same test partition.

In an attempt to understand the model’s misclassification
at the patient level, we conducted a statistical analysis [20]
given the number of misclassified slices and the number of
all slices for each patient in the validation set, the COVID-
19-labeled cases. Table 4 shows the average percentage of
misclassification happening in the targeted dataset. The table
also shows the correlation between the two values. The statis-
tical study was conducted at a 0.7-class probability threshold.

5. Discussion

From the statistical results of misclassification of COVID
cases, we can conclude that for every COVID-19 misclassi-
fied patient, some numbers of slices were correctly classified.
We also find a highly positive correlation between the num-
ber of slices in each CT scan and the number of misclassifi-
cations. In other words, the increased number of slices
increases misclassification and vice versa. All in all, tuning

Table 2: Performance results of the training at the slice level.

Performance metric Score

Average training accuracy 97.30%

Average validation accuracy 88.48%

Average recall 0.917

Average precision 0.909

Macro F1 score 0.891
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the voting method/threshold at the patient level can help
optimize the method’s results to the needs of the clinics of
hospitals. For example, voting on considering the patient to
be a COVID-19 patient if 20% of their slices were predicted
as COVID-19 would mean that more patients will be consid-
ered COVID-19 positive than otherwise they would with a
majority voting approach.

6. Conclusion and Further Work

In conclusion, we have extended our previous method by
adding image processing techniques to CT scan slices before
classification. The image processing techniques included
uppermost and lowermost slice removal in each CT scan
and manual rectangular cropping to the original slices to
focus on the lung areas. For classification, our method uses
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84.56%

87.01%
0.88

0.87
0.86

0.82

0.15 0.4 0.5 0.7
Class probability threshold

Validation accuracy
Macro F1 score

Validation accuracy and macro F1 score from different class 
probabilities at patient level

Figure 4: Model performance against different class probability thresholds on the validation set.

Table 3: Average macro F1 score results from the comparison of
validation and test partitions.

The method Test set

ACVLab [15] 0.891

FDVTS [14] 0.891

MDAP [13] 0.878

Our previous method (IDU-CVLab) [4] 0.82

Baseline 0.690

Our extended method (with a 0.15 threshold) 0.880
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Figure 5: Macro average F1 score results on the test partition for different class probability threshold.

Table 4: Statistical analysis of the number of misclassifications for
each patient.

Number of all COVID-19 cases in the validation set 224

Average percentage of misclassification 16.47%

Max percentage of misclassification 60.81%

Min percentage of misclassification 13.89%

Correlation between the number of misclassified
slices and all number of slices

0.998
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the same transfer learning approach that we introduced in
our previous study, a modified Xception model classifier.
Proposing the image processing techniques in this paper
gave better performance compared to our previous solution,
the baseline solution, and many other alternatives on the
same dataset. With that, we propose an accurate and lean
solution.

The limitation of this study lies in the manual choice of
the percentage at which central slices are kept in each CT
scan. In this study, we considered leaving 60% percent of
representative slices for each patient. However, using this
percentage can give better performance results. On this note,
the authors wish to further their studies by tuning this per-
centage to produce better performance for the solution.

Another limitation lies in the manual cropping of the
images to keep the lung area. This cropping may give better
performance if tunned, or if proper segmentation of the lung
areas was deployed. This shall be another gap for improve-
ment and research to be conducted in the future.

Data Availability

Data are provided and should be ordered from the corre-
sponding entity as stated in the “Methodology” section and
“Dataset” subsection.

Additional Points

The code related to this study can be found on GitHub at
https://github.com/IDU-CVLab/COV19D_2nd.
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