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Additive manufacturing has gained popularity among material scientists, researchers, industries, and end users due to the flexible,
low cost, and simple manufacturing process. Among number of techniques, fused deposition modeling (FDM) is the most
recognized technology due to easy operation, lower environmental degradation, and portable apparatus. Despite numerous
advantages, the limitations of this technique are poor surface finish, dimensional accuracy, and mechanical strength, which must
be improved. +e present study focuses on the implementation of the genetic algorithm and Taguchi techniques to achieve
minimum dimensional variability of FDM parts especially for polymeric biocomposites. +e output has been measured using
standard testing techniques followed by Taguchi and genetic algorithm analyses. Four response variables were measured and were
converted into single variable with combination of different weightages of each response. Maximumweightage was given to width
of FDM polymeric biocomposite parts which may play critical role in biomedical and aerospace applications. +e advanced
optimization and production techniques have yielded promising results which have been validated by advanced algorithms. It was
found that layer thickness and orientation angle were significant parameters which influenced the dimensional accuracy whereas
best fitness value was 0.377.

1. Introduction

Additive manufacturing technologies manufacture the part
through layer-by-layer strategy as opposite to conventional
subtractive manufacturing techniques [1]. +e major ad-
vantage of these advanced manufacturing techniques over
traditional manufacturing techniques is digitalization of the
process which receives input form computer-generated
product designs [2–4]. +e rapid production and custom-
ization of parts with low cost and lower tooling requirements
also add to the advantages of these manufacturing strategies
[5]. Out of numerous additive manufacturing techniques,

fused deposition modeling (FDM) is the most adapted and
utilized technique due to lower installation cost and ease of
operation [6]. +e step-by-step procedure of manufacturing
is shown in Figure 1.

+e apparatus of FDM contains extrusion head, nozzle,
platform, motors, and microcontroller, which controls the
whole operation [7, 8]. +e schematic of the FDM process
along with major components is shown in Figure 2. As one
layer is actually deposited, build platform moves downwards
(in Z direction), and subsequent level of material is actually
deposited, and the process is actually repeated till the desired
part is actually attained [9–11]. At times, another filament of
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washable material is actually utilized to allow for overhanging
part that is very easily washed away after fabrication [12].

FFF supplies the personalized products with minimum
lead time and manufacturing, cost but the physical strength
of part is surely a situation of interest for researchers as
extensive variation in physical properties is actually expe-
rienced because of perturbation in design [13–15]. Addi-
tionally, issues related to lower physical strength of FFF parts
might impede the usability of the products for particular
programs [16, 17]. Hence, there is surely a necessity of
intelligent optimization tools for maximization and pre-
diction of physical strength of FFF parts. +ere are many
input parameters of FFF technology, which have a con-
siderable effect on tensile strength, compressive strength,
flexural, and impact strength of FFF part [18–20]. Even-
though many research studies have been carried out for
optimization of process parameters of FFF, recent research
has focused on development of advanced mathematical tools
and hybrid algorithms which may enhance and forecast the
physical strength of FFF parts [21–26]. Next section dis-
cusses about recent literature on impact of FFF process
parameters on mechanical stability and implementation of
sophisticated and hybrid algorithms employed for optimi-
zation of process parameters of FFF technology [23].

2. Literature Review

+ere are numerous process parameters of FFF technology
which have a significant impact of surface quality, mechanical
strength, and hardness of fabricated parts. Raster angles of 90°

and 0° resulted in higher tensile strength in direction parallel to
deposition of filament during the FFF process. On the other
hand, positive air gap resulted in smooth surface, which also
improves the shore D hardness. Gao et al. [24] added poly-
ethylene glycol with different concentrations inside polylactic
acid for strength enhancement. It was noticed that bond
strength between the layers has significantly increased, whereas
mechanical anisotropy was reduced. +e intermolecular dif-
fusion and entanglement at bond location were found to be the
most possible reason for strength enhancement. In another
study [25], the fracture toughness of continuous carbon fiber
reinforced nylon composite by varying the printing speed, bed
temperature, and nozzle temperature. It was observed that
fracture toughness reduces with printing speed increases,
whereas an improvement has been noticed with an increase in
nozzle and bed temperature. When compared to their tradi-
tional equivalents, FFF-fabricated polymer components have
weak and anisotropic mechanical characteristics [26].

Many researchers have implemented the advanced op-
timization tools, artificial intelligence, and machine learning
approached. Xue et al. [27] developed a variational
autoencoder based upon machine learning and Bayesian
optimization for designing a 3D printed prototype with
customized macroscopic elastic properties. Goh et al. [28]
implemented the neural network technique for exploring the
relationship between process parameters and mechanical
strength of PolyJet 3D printed parts. Finally, the genetic
algorithm was used to identify optimum design conditions
to attain desired shore D hardness. Another study reported
[29] that the hierarchical machine learning was imple-
mented on 3D printed silicone elastomer using freeform
reversible embedding, which is difficult due to the need to
deposit a Newtonian prepolymer liquid phase within a
Bingham plastic support bath. +e printed speed was in-
creased more than twice using this optimization tool,
whereas mechanical strength was not compromised.

Despite several advantages and potential applications, the
major challenge faced by machine learning and artificial in-
telligence in 3D printing are data acquisition, computational
cost, and standards for qualification [30]. Furthermore, in the
field of bioprinting, machine learning can be used for opti-
mization of process parameters, minimization of dimensional
variability in implants, manufacturing fault detection, and
estimation of morphological properties of materials [31].

3. Experimentation

3.1. Planning of Work. +e secondary data have been used
for analysis through Taguchi and genetic algorithm pro-
cesses. Five parameters have been used with three levels
each, while four dimensions are measured as given in
Table 1. +e data of initial and final dimensions of width,
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Figure 1: Step-by-step procedure of the FDM process.
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Figure 2: Schematic and components of FDM.
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length, diameter, and thickness have been used to convert
into single response with different weightages.

+e maximum weightage of 70% is given to width (W),
while equal weightage of 10% is given to length (L), diameter
(D), and thickness (T). +e equation used for conversion is
as follows:

ModW � 0.7ΔW + 0.1ΔL + 0.1ΔT + 0.1Δ D. (1)

4. Results and Discussion

+e genetic algorithm is a method based on natural se-
lection, the mechanism that drives biological evolution,
for addressing both limited and unconstrained optimi-
zation problems. A population of individual solutions is
repeatedly modified by the genetic algorithm. At each
phase, the genetic algorithm chooses parents at random
from the current population and utilizes them to generate
the following generation’s children. +e population
“evolves” toward an ideal solution over generations. +e
genetic algorithm may be used to handle a number of
optimization problems that are not well suited for tra-
ditional optimization techniques, such as issues with
discontinuous, nondifferentiable, stochastic, or highly
nonlinear objective functions. +e evolutionary algo-
rithm can be used to solve issues involving mixed integer
programming, in which certain components must be
integer-valued. In the present study, the impact of five

FFF process parameters, i.e., layer thickness, orientation
angle, raster angle, raster thickness, and air gap has been
studied on dimensional accuracy of parts. +e genetic al-
gorithm approach has been implemented on to calculate
Mod W, which is the output of four different dimensional
accuracy parameters with different weightages.

+e output in form Mod W consists weightages given
to different response variables which have been initially
evaluated using Taguchi analysis. Figure 3 shows the mean
and SN ratio graphs of output and defines the relationship
between input and response. It must be noted that layer
thickness is the most prominent parameter followed by
orientation angle. +e layer thickness of 0.178mm yielded
the maximum value of SN ratio which signifies better
dimensional stability. Furthermore, the orientation angle
of 0° was optimum for attaining better dimensional ac-
curacy. In case of air gap, the SN ratio is maximum at
0.004mm, whereas it is reduced by maximum and min-
imum values of air gap, i.e., 0 mm and 0.008mm, re-
spectively. +e impact of raster angle and raster width is
minimum on SN ration of dimensional accuracy. +e SN
ratio is maximum at 0° and 60° raster angle settings,
whereas 0.4064 raster width yielded better dimensional
stability.

+e significance value and rank of each parameter are
given in Table 2, as derived from Taguchi analysis.

+e equation has been generated for Mod W using re-
gression analysis and described as

Table 1: Input and output parameters used for analysis.

Exp.
No.

Factors Responses
Layer thickness

(mm) A
Orientation angle

(°) B
Raster angle

(°) C
Raster width
(mm) D

Air gap
(mm) E

Mod
W� 0.7ΔW+ 0.1ΔL+ 0.1ΔT+ 0.1ΔD

1 0.127 0 0 0.4064 0 0.816457
2 0.127 15 0 0.4564 0.004 0.806392
3 0.127 30 0 0.5064 0.008 0.951515
4 0.127 0 30 0.4564 0.004 0.883827
5 0.127 15 30 0.5064 0.008 0.851524
6 0.127 30 30 0.4064 0 0.686596
7 0.127 0 60 0.5064 0.008 0.791827
8 0.127 15 60 0.4064 0 0.979389
9 0.127 30 60 0.4564 0.004 0.928935
10 0.178 0 0 0.4564 0.008 0.507068
11 0.178 15 0 0.5064 0 1.072302
12 0.178 30 0 0.4064 0.004 0.906102
13 0.178 0 30 0.5064 0 0.731976
14 0.178 15 30 0.4064 0.004 0.899691
15 0.178 30 30 0.4564 0.008 0.819047
16 0.178 0 60 0.4064 0.004 0.66351
17 0.178 15 60 0.4564 0.008 0.999945
18 0.178 30 60 0.5064 0 0.727309
19 0.254 0 0 0.5064 0.004 0.849293
20 0.254 15 0 0.4064 0.008 1.35796
21 0.254 30 0 0.4564 0 1.223476
22 0.254 0 30 0.4064 0.008 1.096522
23 0.254 15 30 0.4564 0 1.433019
24 0.254 30 30 0.5064 0.004 0.962855
25 0.254 0 60 0.4564 0 0.956191
26 0.254 15 60 0.5064 0.004 1.244108
27 0.254 30 60 0.4064 0.008 1.148151
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Figure 3: (a) Mean plot. (b) SN ratio plot.

Table 2: Response table for means.

Level A B C D E
1 0.8552 0.8107 0.9434 0.9505 0.9585
2 0.8141 1.0716 0.9295 0.9509 0.9050
3 1.1413 0.9282 0.9377 0.9092 0.9471
Delta 0.3272 0.2609 0.0139 0.0417 0.0536
Rank 1 2 5 4 3
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ModW � −3.58 + 0.0A + 0.0096B − 0.0064C + 20.0 D − 71.4E

+ 40.2A∗A − 0.000898B∗B + 0.000012C∗C − 17.9 D∗D

− 295E∗E − 0.0121A∗B − 0.0302A∗C − 27.7A∗D

+ 155A∗E − 0.000100B∗C + 0.0478B∗D

+ 1.167B∗E + 0.0232C∗D + 0.520C∗E.

(2)

It can be observed that parameter A, i.e., layer thickness
has the maximum impact in dimensional accuracy followed
by orientation angle. +e analysis using ANOVA has been
carried and is given in Table 3. In the present study, the
R-squared value is 71.28%.

Similar results have been observed after ANOVA
analysis which indicates that maximum contribution of
54.06% and 38.35% of layer thickness and orientation angle
has been measured. +e analysis using the genetic algorithm
has been performed, and charts are derived which show the
fitness scaling, current best value, and overall best values and

means as shown in Figure 4. +e charts are plotted between
fitness value vs. generation, current best value vs. variable, and
expectations vs. raw sores. +e results yielded by the genetic
algorithm optimized and predicted the results with higher
accuracy as compared to conventional optimization tech-
niques. It was predicted that optimum parameter settings
would be 0.127, 0, 0, 0.4064, and 0.008 for layer thickness,
orientation angle, raster angle, raster width, and air gap, re-
spectively, with objective function value of 0.377730056.

+e efficacy of the genetic algorithm is validated as
previous studies have found similar results, but time and

Table 3: ANONA analysis of response parameters.

Source DF Seq SS Seq MS F value P value Percentage contribution
A 2 56.100 23.0502 12.37 0.001 54.06
B 2 36.797 13.3986 7.19 0.006 38.35
C 2 0.063 0.0315 0.02 0.983 0.06
D 2 0.420 0.2100 0.11 0.894 0.40
E 2 0.571 0.2855 0.15 0.859 0.55
Error 16 9.804 1.8627 9.44
Total 26 103.755
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Figure 4: Fitness scaling and best values predicted by the genetic algorithm.
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efforts done to achieve the results were more along with
errors in calculations. +e parameters used for the genetic
algorithm are given in Table 4.

+e dimensional accuracy of FDM-printed polymeric
biocomposite parts plays the vital role as medical implants
are installed in human body, and dimensional variability
may cause postsurgery complications [30].

5. Conclusions

Fused deposition modeling (FDM) of polymeric bio-
composites has been extensively used for rapid tooling,
medical implants, aerospace components, engine parts, and
household equipment. +e process parameters of FDM have
significant impact on surface roughness and dimensional
variability which must be minimized to increase the usability
and applicability of this technique. +e dimensional accu-
racy of FDM-printed polymeric biocomposite parts plays a
vital role as medical implants are installed in human body,
and dimensional variability may cause postsurgery com-
plications. Also, in some situations, the weightage given in
every dimension of part is not same; hence, there is need of
the advanced optimization technique which could provide
accurate results for complex situations. In the present study,
unequal significance was given to response variable, and a
combined response factor has been optimized using the
genetic algorithm. +e results achieved were better as
compared to Taguchi analysis and lesser time taken for
finding the best value. +e predicted results were validated
with 99.12% accuracy which indicated the improved efficacy
of the genetic algorithm.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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