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Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of
these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. Tis study aimed to evaluate
(in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus
Rhizoctonia solani. Te endophytic fungus Paecilomyceswas isolated fromMoringa oleifera leaves and cultured on potato dextrose
broth for the production of the fungal metabolites. Te activity of Paecilomyces fltrate against the radial growth of Rhizoctonia
solani was tested by mixing the fltrate with potato dextrose agar medium at concentrations of 15%, 30%, 45%, and 60%, for which
the percentages of inhibition of the radial growth were 37.5, 50, 52.5, and 56.25%, respectively. Te dual culture method was
conducted on PDA medium to observe the antagonistic nature of the antibiotic impacts of Paecilomyces sp. towards the
pathogenic fungus. Te strength of the antagonistic impacts was manifested by a 76.25% inhibition rate, on a scale of 4 an-
tagonistic levels. Ethyl acetate extract of Paecilomyces sp. was obtained by liquid-liquid partition of the broth containing the
fungus. Gas chromatography-mass spectrometry (GC-MS) analysis identifed the presence of important chemical components
e.g., (E) 9, cis-13-Octadecenoic acid, methyl ester (48.607), 1-Heptacosanol, 1-Nonadecene, Cyclotetracosane (5.979), 1,2-
Benzenedicarboxylic acid, butyl 2-methylpropyl ester, di-sec-butyl phthalate (3.829), 1-Nonadecene, n-Nonadecanol-1, Behenic
alcohol (3.298), n-Heptadecanol-1, 1-hexadecanol, n-Pentadecanol (2.962), Dodecanoic acid (2.849), 2,3-Dihydroxypropyl ester,
oleic acid, 9-Octadecenal, and (Z)-(2.730). Tese results suggest that secondary metabolites of the endophytic Paecilomyces
possess antifungal properties and could potentially be utilized in various applications, such as environmental protection and
medicine.

1. Introduction

Biologically active natural compounds are molecules that are
produced either by plants or plant-related microorganisms,
such as endophytes. Many of these metabolites have a wide
range of antimicrobial activities and other pharmaceutical
properties [1]. Endophytic fungi are microorganisms that are
held within plant tissue without stimulating obvious disease

symptoms [2]. Tey are an important source of many sec-
ondary metabolites that are biologically active [3], such as
tannins, favonoids, coumarins, alkaloids, phenolic, pep-
tides, lactones, phenylpropanoids, terpenes, polyketides, and
lignans [4]. Fungal endophytes are a natural source of new,
physiologically active substances that are signifcant for
medicine [5]. Anticancer and antimicrobial agents derived
from the endophytes fungi (more than 70%) are biologically
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active natural compounds or their derivatives [6]. Bi-
ologically active compounds demonstrated signifcant im-
pacts on immunological diseases, such as
hypocholesterolaemia and diabetes, as well as issues related
to oxidative stress. Tey are also helpful in enhancing crops
and reducing the negative efects of abiotic stresses [7].

Paecilomyces is a widespread flamentous fungus that
inhabits environments such as food products, soil, and
decomposing plants. It includes various species that are both
harmful and saprophytic [8], some species can infect
humans [9], nematodes [10], and can grow on the rhizo-
sphere of many plants [11]. Te interaction between the
plant and Paecilomyces may also improve plant health and
provide protection against plant pathogens through diferent
mechanisms [12]. Paecilomyces acts as a biological control
agent and therefore has positive efects on crop growth [13].
Te genus Pacecilomyces has numerous species which can
produce diferent secondary metabolites; with a total of 148
active metabolites have been reported [14] that can be used
for agrochemicals or drugs development. Tey possess di-
verse biological activities, including cytotoxic [15], fungi-
cidal [16], insecticidal [17], herbicidal [18], bactericidal [19],
nematicidal [20], and antitumour [21]. Endophytic fungi
help in promote plant competence through several mech-
anisms of action. Te modes of action include endophytes-
pathogens interactions (direct mechanisms) such as the
production of antibiotics [22] and lytic enzymes [23], even
though enzymes may not be merely efective as antagonism
agent, they may enhance antagonistic activities when
combined with other mechanisms. Competition is a pow-
erful mechanism used by endophytes in preventing path-
ogens from colonizing the host tissue [24] and enhanced
plant defensemechanisms (indirect mechanism) endophytes
increase the plant defense mechanism by production of
secondary metabolites and enhanced resistance of plant
host. An example of innate pathogen resistance that has been
developed may be a specifc or unspecifed resistance [25].

Many crop species are susceptible to the pathogenic
fungus Rhizoctonia solani. It is the causal organism of stem
canker and black scurf in potatoes (Solanum tuberosum L.).
Being the latter the most prevalent disease in the nation [26].
Disease caused by Rhizoctonia can result in marketable yield
losses of up to 30% in potato and considerable losses in
quality. While quantitative losses result from infections of
stems, stolons, and roots, which afect tuber size and
number, qualitative losses are mostly caused by the creation
of malformed tubers and the growth of sclerotia on the tuber
surface (known as black scurf ) [27]. Tus, as potatoes that
are one of the basic nutrition sources of the world pop-
ulation, the purpose of the current study is to assess the
antifungal activity against Rhizoctonia solani of secondary
metabolites obtained from Paecilomyces sp.

2. Materials and Methods

2.1. Endophytic Fungus. Te endophytic fungus Paecilo-
myces sp. (JN227071.1) was previously isolated and identifed
by polymerase chain reaction technique (PCR) [28] from
Moringa olifera leaves. Te fungal isolate was cultivated on

potato dextrose agar (PDA) and stored in refrigerator at 4°C,
the culture was transferred out every two months in new
PDA medium.

2.2. Fungi Testing Culture. Te pathogenic fungus Rhizoc-
tonia solani was obtained from the Department of plant
protection, Agriculture College, University of Baghdad. Te
fungus was maintained on PDA slant and stored at 4°C,
before use transferred to PDA plate for 5–7 days at 28°C.

2.3. Fermentation and Extraction. In order to obtain bio-
active compounds from Paecilomyces sp., the fungus isolate
was cultured in potato dextrose broth (PDB). Conical fask
(250ml) containing 100ml of PDB were inoculated with
three agar plugs (5mm) from 7 day old fungal, incubated at
28°C, 120 rpm for 14 days. Fermentation broth and fungal
biomass were separated using a-Whatman flter paper (no.
1), and the culture broth was extracted by ethyl acetate (1 :1
v\v). Te organic extracts were evaporated by oven at
(50°C) [29].

2.4. Antifungal Activity Assay on Potato Slices. Slices of
potato tubers were used to investigate the bioactive chem-
icals produced by Paecilomyces Sp.; specifcally for their
ability to protect against Rhizoctonia solani, according to
[30] with modifcations. To sterilize the surface of potato
tubers, sodium hypochlorite (2%), and (70%) ethanol al-
cohol were used; they were then washed three times with
sterile distilled water (10minutes each) and cut into slices
under sterilized conditions. Potato slices were fooded in the
fungal fltration medium or the PDB medium (control so-
lution) for one hour in sterile dishes. Te potato slices were
then removed from the immersion solution, blotted with
sterile flter paper to remove excess solution, and air-dried.
Tey were then put in sterile dishes, while some slices were
inoculate with a disk (5mm) of pathogenic fungi and in-
cubated at 28°C for 7 days. Each treatment was performed
with three replicates.

2.5. Efects of Paecilomyces Filtrate on Rhizoctonia solani
Growth. Te growth of the pathogenic fungus Rhizoctonia
solani was investigated to assess the efects of Paecilomyces
fltrate. Fungal fltrate was added after sterilize with Milli-
pore flter (0.22 μm) to the growth medium to obtain
concentration of 15%, 30, 45, and 60%. Plates without fungal
fltrate served as control. Te mixture was mixed well and
then poured in petri dishes until hardened. Rhizoctonia
solani 5mm disks (7 days old) were placed in the middle of
the petri dishes and incubated at 28°C for 7 days. Te growth
inhibition percentage was calculated according to [31].

2.6. Test of Antagonistic Activity. Te dual culture-plate
antagonism assay was used to assess the infuence of the
endophytic fungus Paecilomyces sp. against R. solani [31].
Te fungi were grown for seven days at 28°C on PDA
medium in PDA Petri dishes. 5-mm plugs of Paecilomyces
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sp. and R. solani were co-cultured and incubated at 28 2°C.
Te plugs were positioned on either side of the Petri dish’s
center with 4 cm distance from one another. R. solani was
inoculated as control. Te control’s colony size gradually
approached that of the plate. All control and test plates were
run in triplicate. Te following parameters were used to
assess pathogen growth inhibition: the percentage of
R. solani radial growth inhibition at [100× (R1−R2)/R1],
where R1 and R2 are the radial growth values of fungi in the
control and tested plates, respectively [32]; (ii) the mode of
inhibition on a scale of 0 to 4, with 0 denoting no growth
inhibition, 1 denoting a growth inhibition of 1 to 25 percent,
and 2 denoting a growth inhibition of 26 to 50 percent [33].

2.7. Gas Chromatography-Mass Spectrometry (GC/MS)
Analysis. GC-MS analysis of ethyl acetate extracts of Pae-
cilomyces sp. was performed using a Clarus 500/580 Perkin
Elmer GC machine (Connecticut, USA), equipped with an
AOC-20i auto-sampler and Elite-1 fused silica capillary
column (100 percent methyl polysiloxane, 30m, 0.25mm,
and 0.25m), which was used to perform the extraction. As
a carrier gas, helium (99.99 percent) was employed at
a constant fow rate of 1ml/min. Samples of 0.5 l were in-
jected with a ratio (1 :10), while the injector temperature was
280°C. Te oven temperature was set to automatically rise
from 110°C to 200°C and then at a rate of 5°C/min up to
280°C (10min). With a runtime of 36minutes, mass scans
were performed in the range of 40–450Da at electron energy
of 70 eV (0.5 sec scan interval). Using the National Institute
of Standards and Technology’s (NIST) database, the mass
spectrum of the GC-MS was analysed. Te spectrum of the
components kept in the NISTcollection was compared to the
mass spectrum of the unidentifed components [34].

2.8. Statistical Analysis. Te SPSS software (version 23) was
used to assess signifcant statistical analysis. All the exper-
iments were carried out in triplicates. Te one-way ANOVA
and the Duncan’s test were used to assess whether there were
any signifcant diference between the means.

3. Results and Discussion

3.1. Te Protective Efects of Pacilomyces sp. Filtrate on the
Growth of Rhizoctonia solani on Potato Slices. Te results
showed that potato slices treated with Paecilomyces fltrate
alone, whether treated with the pathogenic fungus or not,
had no clear growth of R. solani. Te cell-free fltrate
inhibited R. solani growth on potato slices, recording 100%
inhibition at the stock solution concentration (Figures 1(a)
and 1(b)). As for the potato slices treated in the PDB me-
dium, whether with or without treatment with the patho-
genic fungi, the growth of the R. solani appeared clear on the
treated slices (Figures 1(c) and 1(d)). Tis result agrees with
that reported previously [30]. An earlier work [31, 35]
showed that Paecilomyces lilacinus (pt361) cell-free fltrate
inhibited the leaf spot caused by S. sclerotiorum at all tested
concentrations. Many studies have shown that diferent
strains of Paecilomyces sp. produced metabolites with

antifungal activities, like varioloid A, B [36], paciloxocin A,
M [37], monocillin VI, VII [38], aigilomycin B, C, D, LL-
2640-1, and 1,2-epoxyaigilomycin D [39]. According to
studies, the synthesis of chitinase, leucinotoxins, acetic acid,
and protease by Paecilomyces lilacinus is the factor re-
sponsible for the antinematode activity [40].

3.2. Efects of the Filtrate on Rhizoctonia solani Growth.
Te results showed that Paecilomyces fltrate has an efect on
the radial growth of the pathogenic R. solani, starting from
the concentration of 15% to 60%, compared with the control,
but at diferent levels (Figure 2, Table 1). Te percentages of
radial growth inhibition of pathogenic R. solani were 37.5%,
50%, 52.5%, and 56.25% at the concentrations of 15, 30, 45,
and 60%, respectively. A previous report [35] found that the
cell-free fltrate of P. lilacinus (pt361) caused strong in-
hibition of radial mycelial growth of S. sclerotium, ranging
from 60.3 to 100%. Another study [31] found that the
mycelial growth, germ tube elongation, and spore germi-
nation of Penicillium digitatumwere completely inhibited by
the culture fltrate of Paecilomyces lilacinum at the con-
centration of 64%. Diketopiperazine, terezine D secondary
metabolites derived from Paecilomyces cinnamomeus
showed biological activities against Sordaria fmicola by their
efects on radical growth, causing a 50% reduction at 200 μg/
disk [41]. Farinomalein, a maleimide-containing chemical,
isolated from Paecilomyces farinosus showed strong actions,
at 5 g/disk, against the plant Phytophthora sojae [42]. Leu-
cinostatin is a complex antibiotic that was isolated from
Paecilomyces lilacinus [43], of which the compounds leu-
cinostatin A [41] and leucinostatin B [44] were later sepa-
rated and showed antibacterial and antifungal activities [45].
Parcilomyces lilacinum antifungal properties may be at-
tributed to the existence of bioactive metabolites, such as the
leucinostatins known as paecilotoxins [46]. Leucinostatins
have been shown in several studies to be highly efective
against a variety of fungi and bacteria [35, 47, 48].

3.3.Test ofAntagonisticActivity. Dual culture method on the
solid medium was performed in the current study to observe
the antagonistic nature of the endophytic fungus Paecilo-
myces sp. against the pathogenic fungus Rhizoctonia solani.
Te results listed in Figure 3 show a strong antagonistic
impact against the pathogen, where the inhibition rate was
76.25% and on a scale of 4 to determine the level of an-
tagonistic according to [33]. Researchers have indicated that
the antagonistic interactions between fungi can be consid-
ered as biological control against pathogens [49]. Te dif-
ference between endophytic fungi and pathogenic indicated
the emergence of a specifc condition; the endophytic fungus
grew above the pathogenic fungus at their point of contact,
causing a highly signifcant inhibition of growth. Tis case
indicates that there has been a mycoparasitism behavior by
the endophytic fungus towards the pathogenic one. Re-
searchers [50, 51] have shown that the condition of
mycoparasitism is due to the secretion of enzymes by the
parasitic fungus, which leads to the decomposition of the
walls, and eventually the death, of the partner fungus. It has
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been found that the cell-free fltrate of Paecilomyces lilacinus
(pt361) caused a 65% inhibition of radial growth of
Seclerotinia sclerotiorum, as demonstrated by using the dual
culture test, with an inhibition zone of 5.9mm [35]. Also, it
has been reported that, without any physical contact, Pae-
cilomyces lilacinum was able to inhibit Penicillium digitatum
growth by 68.2% based on the dual culture test [31]. It was
suggested that this inhibition points to the presence of
fungistatic metabolites produced by Paecilomyces lilacinum
grown on the medium. Te production of volatile organic
molecules, such as acids, alcohols, alkenes, aldehydes, esters,
terpenes, ketones, benzenoids, and pyrazines, as well as the
production of bioactive metabolites, enzymes, and toxins,
can cause in antagonism relation among the fungi without
physical contact.Tese substances signifcantly contribute to
the antagonistic efects and the fungal recognition systems
through chemical signaling [52, 53].

3.4. GCMS Analysis. Te ethyl acetate extract of Paecilo-
myces sp. showed a bright yellow color. Te composition of
the ethyl acetate extracts analyzed by GC-MS is presented in
Table 2 and Figure 4. Te analysis of Paecilomyces extract

revealed the presence of of (E) 9, cis-13-Octadecenoic acid,
methyl ester (48.607); 1-Heptacosanol, 1-Nonadecene,
cyclotetracosane (5.979); 1,2-Benzenedicarboxylic acid,
butyl 2-methylpropyl ester, Di-sec-butyl phthalate (3.829);
1-Nonadecene,n-Nonadecanol-1, behenic alcohol (3.298);
n-Heptadecanol-1,1-Hexadecanol, n-Pentadecanol (2.962);
Dodecanoic acid (2.849); 2,3-dihydroxypropyl ester, Oleic
Acid, 9-Octadecenal, (Z)-(2.730).

Te major components of the ethyl acetate extract of
Paecilomyces were 9, cis-13-Octadecenoic acid, methyl ester,
10-Octadecenoic acid, and methyl ester, which belongs to
a group of oleic acid esters with cancer preventive, insec-
tifuge, anti-infammatory, choleretic, and anemiagenic ef-
fects [54]. Due to the presence of many phytoconstituents,
including various octadecanoic acid methyl esters, the
Achyranthes ferruginea plant demonstrated considerable
antioxidant, cytotoxic, and free radical scavenging capa-
bilities [55]. Hexadecenoic acid methyl ester had the highest
antimicrobial efect against clinical pathogenic bacteria [56].
Te fatty acid composition, such as pentadenoic acid (a
saturated fatty acids), and showed the antibacterial and
antifungal activities of fatty acidmethyl esters from the white
oak plant extract [57]. Dimethyl phthalate may cause
membrane channel misopening and cell membrane de-
formation. Isolated from B. mcbrellneri, di (2-ethylhexyl)
phthalate and di-n-butyl phthalate exhibit a broad-spectrum
of antibacterial activities [58]. Gram-positive S. epidermidis
and S. aureus and Gram-negative E. coli, P. aeruginosa, and
Klebsiella pneumoniae are all susceptible to being inhibited
by phthalates. Di (2-ethylhexyl) phthalate from Calotropis
gigantean fowers has antibacterial efects on B. subtilis [59]
and antifungal activities against Candida albicans [60]. Te
chemical di-n-butyl phthalate, obtained from a new marine

(a) (b) (c) (d)

Figure 1: R. Solani’s reaction to Paecilomyces fltrate on potato slices, (a) R. solani-inoculated potato slices, (b) solely with PDBmedium, (c)
with Paecilomyces fltrate and R. solani, (d) treated with Paecilomyces fltrate alone, and. Growth was tested at 28°C for 7 days.

Control

Figure 2: Efects of Paecilomyces sp. fltrate on the growth of R. solani as tested by the dual agar method on PDA at 25°C for 7 days.

Table 1: Efects of the fltrate on Rhizoctonia solani growth.

Concentration (%) Colony diameter(mm) mean± SD
15 5.06± 0.05b
35 4.06± 0.06b
45 3.83± 0.05c
60 3.53± 0.05c
Control 8.06± 0.06a
∗Diferent letters represented signifcant diference at P≤ 0.05.
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(a) (b) (c)

Figure 3: Antagonistic interaction between the endophytic Paecilomyces sp. and the pathogenic Rhizoctonia solani grown on PDA at 28°C
for 7 days.

Table 2: Bioactive compounds identifed in the ethyl acetate extract of Paecilomyces sp. Data from NIST standard reference database: NIST
chemistry webbook.

Peak Library ID Area % R. Time
1 Acetic acid, 2-ethylhexyl ester 0.988 9.743
2 n-Decanoic acid 1.396 13.429
3 1-Tetradecanol, Trichloroacetic acid, n-Tridecan-1-ol 1.083 13.750
4 Tetradecane 0.567 13.863

5 Phenol, 2,5-bis (1,1-dimethylethyl), Oxirane, [[4-(1,1-dimethylethyl) phenoxy]
methyl]- 1.023 15.400

6 Dodecanoic acid 2.849 16.243
7 n-Heptadecanol-1, 1-Hexadecanol, n-Pentadecanol 2.962 16.594
8 Fluoroacetic acid, dodecyl ester, Lauryl acetate 0.623 16.747

9 2-Propenoic acid, tetradecyl ester, 2-Propenoic acid, pentadecyl ester, 2-Propenoic
acid, tridecyl ester 2.656 17.885

10 1-Nonadecene, n-Nonadecanol-1, Behenic alcohol 3.298 19.198

11 8-Pentadecanone, 5-Keto-2,2-dimethylheptanimine, Decanoic acid, 2-propenyl
ester 1.255 20.146

12 Hexadecanoic acid, methyl ester 3.040 21.174

13 Butyl 2-methylpropyl ester, di-butyl phthalate, 1,2-Benzenedicarboxylic acid,
di-sec-butyl phthalate 3.829 21.328

14 n-Hexadecanoic acid, Pentadecanoic acid 2.468 21.623
15 1-Nonadecene Behenic alcohol, 1-Heneicosanol 0.660 21.708
16 Heptacosane, 1-chloro-, Tritetracontane, Tetratetracontane 0.800 22.558
17 10-Nonadecanone 2.976 22.861

18 Octadecenoic acid, methyl ester, (E) cis-13-Octadecenoic acid, methyl ester,
9-Octadecenoic acid, methyl ester 48.607 23.575

19 9-Octadecenoic acid, Oleic acid, 6-Octadecenoic acid 1.698 23.960
20 1-Nonadecene, Behenic alcohol, 1-Heneicosanol 0.552 26.046
21 1-Heptacosanol, 1-Nonadecene, Cyclotetracosane 5.979 26.841

22 Cyclohexanecarboxylic acid, pentadecyl ester, Cyclohexanecarboxylic acid, undecyl
ester, 2-Isobutoxy-4-methyl-[1–3] dioxaborinane 1.524 27.100

23 1-Cyano-4-(5-hexenyl)benzene, cis-11-Hexadecenal, 13-Octadecenal, (Z)- 1.524 27.100
24 Phthalic acid, di (2-propylpentyl ester, Bis (2-ethylhexyl) phthalate 0.934 27.390

25 3-n-Butylthiophene-1,1-dioxide, difuoro (methylamino) phosphine sulfde,
1,3-Dioxane-2-ethanol, tert-butyldimethylsilyl ether of 5,5-dimethyl dioxane 1.688 28.525

26
Benzenepropanoic acid, 4-(1H-1,2,3,4-tetrazol-1-yl)-, cis, 6-Octadecenoic acid,
trimethy lsilyl ester, 5,5-dimethyl-1,3-dioxane-2-ethanol, tert-butyldimethylsilyl

ether
1.070 28.719

27 Oleic acid, 2,3-dihydroxypropyl ester, and 9-Octadecenoic acid (Z) the ninth decade 2.730 29.001

28 Hexanoic acid, pentadecyl ester Hexanoic acid, hexadecyl ester, 2-Ethylbutyric acid,
nonyl ester 0.581 29.800
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Streptomyces species [61], greatly reduced the spore ger-
mination and mycelial growth of Colletotrichum fragariae.
Di-n-butyl phthalate was reported to inhibit mycelium
growth and spore germination of Colletotrichum musae,
Gaeumannomyces graminis, and Colletotrichum gloeospor-
ioides [62, 63]. Long-chain primary alcohols are present in
the S. amplexicaulis leaf extract. A crude extract can be made
from the leaves of this plant, which is a synthetic mixture of
six chemicals (1-tridecanol, 1-pentadecanol, 1-heptadecanol,
1-nonadecanol, 1-eicosanol, and 1-tricosanol). Lower
amounts of S. amplexicaulis leaves demonstrated antibac-
terial action [64]. Cyclotetracosane (hydrocarbon) possesses
higher biological activities than the other fractions of
Jatropha zeyheri [65].

4. Conclusions

Paecilomyces sp. is a type of endophytic fungi that plays an
important role in biological control. GC-mass fungus extract
results show diferent types of secondary metabolites that
possess antifungal and antibacterial properties. Antagonistic
interactions between fungi can be considered as biological
control against pathogens. Te use of biologically active
secondary metabolites of endophytic fungi as a biological
control against plant diseases is essential and will help
mitigate the harmful side efects of the use of synthetic
pesticides on plant growth and crop production. Tus, the
production of pesticides from the secondary metabolites of
endophytic fungi will go a long way towards improving food
security.
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