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Tis research deals with the temperature increment and responsiveness of skin tissue to a continuous fow of surface heat induced
by a constant-voltage electrical current. Te exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been
obtained. It is used to confne the variables to a limited domain to solve the governing equations. Te transition temperature
reactions have been measured and investigated. Te fgures provide a comparison of the Pennes, Tzou models, and Vernot-
te–Cattaneo models. Te numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-
phase-lag time parameters which have signifcant infuences on the distributions of the dynamic and conductive temperature rise
through the skin tissue.

1. Introduction

Many methods of treatment and application rely sub-
stantially on temperature transfer through living skin tissue
[1]. Lasers, microwaves, and other technological break-
throughs have also contributed to the progress of biothermal
transfer. Several experts, including Pennes’s works, weigh in
on bioheat transmission research in living biological tissues
[2]. He refned the parabolic equation of the model for living
tissues and introduced the frst bioheat transfer model.
Pennes’s biological transmission technique has also been
used to describe the consistency and nature of temperature
action in live bodies and biological tissues. On the exterior,
such irregular results demonstrate a hyperbolic conduction
behaviour which is called the non-Fourier model of heat
conduction. Vernotte and Cattaneo’s (V-C) multiple
modulations of the heat conduction law were given as
a linear thermal extension form of the well-known Fourier
law to describe this kind of hyperbolic diferential equation.
To analyze the infuence of microwave and fux thermal
activity, they created a thermal wave model [3, 4]. Many

methods were tried to cure diferent types of skin tissue
problems without hurting the good tissue around or near
them. Xu et al. obtained the solution of Pennes’s bioheat
transfer equation (PBTE) analytically. In addition, they
investigated skin bioheat transfer, skin biomechanics,
thermal injury, and skin structure [5]. Te dual-phase-lag,
hyperbolic, and parabolic biomass transport models were
used to investigate the thermomechanical activity based on
the non-Fourier skin tissues under diferent surface thermal
loading constraints. Xu and colleagues found substantial
discrepancies between Pennes’s thermal wave and dual-
phase-lag (DPL) anticipation models [6]. Furthermore,
Rossmanna and Haemmerich investigated how the thermal
characteristics, perfusion, and dielectric properties of bi-
ological tissues vary with temperature at hyperthermic and
ablation temperatures [7]. Moradi et al. have focused on the
temperature change in skin tissue caused by heating with
a time-dependent surface [8]. Te model of Tzou was ex-
panded by using the dual-phase-lag (DPL) technique, which
considers the delayed activity in a high rate of reaction.
Despite the lengthy operation, the small-scale response was
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discovered in good time [9, 10]. O¨zis¸ik and Tzou have
introduced phase lag behaviour for a temperature gradient
[11]. Askarizadeh and Ahmadikia used the dual-phase-lag
(DPL) model for solving transient heat transmission dif-
culties in skin tissue [12].

Non-Fourier thermal activity was used in the Liu and
Chen heat conduction of the dual-phase-lag (DPL) model to
assess the thermal transit in biological tissue and to diagnose
hyperthermia [13]. Zhang defned phase lag or relaxation
periods in terms of tissue and blood properties, the in-
terphase charge of the parameter of heat transfer, and
perfusion rate [14]. He discovered that the lap durations for
living tissues are identical. Dutta and Kundu conducted
a study on thermal wave propagation for a changing and
constant thermal fow through a skin tissue surface to detect
hyperthermia [15].

To analyze the increment distribution of deep skin tis-
sues temperature in a human leg, Agrawal and Pardasani
suggested utilizing a fnite element approach [16]. Kumar
and Rai investigated the thermal behaviour using the dual-
phase-lag (DPL) model based on time-fractional consider-
ation [17]. Moradi et al. used the dual-phase-lag (DPL)
bioheat transfer model with an analytical approach on skin
tissue as a fnite domain of cosine, continuous, and pulse
thermal fow conditions on the skin’s bounding surface [8].

Liu and Xu improved a diferent analytical approach for
Pennes’s bioheat equation solution for fuctuations in the
temperature of skin tissue due to the sinusoidal thermal fow
[18]. Shih et al. overcame the impacts of studying the
temperature reaction on the biological skin tissue under sine
heat fux [19]. Te exact analytical solution of Pennes’s
bioheat and hyperbolized bioheat transfer models for pe-
riodic constant and pulsed train heat fux boundary con-
ditions has been provided by Ahmadikia et al. [20]. To
characterize the impacts of the pulsatile blood fow in
thermal disruption, Horng et al. used a statistical model [21].
He observed that the thermal region of the tumor had a pure
little variation on the continuum range of blood from usual
to parabolic blood fow velocity profles. Shih et al. in-
vestigated how the thermal relaxation time interacts with the
pulsatile blood fow during thermal treatments in living
tissues [22]. Youssef and Alghamdi obtained the solution to
one-dimensional problems of thermoelastic dual-phase-lag
(DPL) skin tissue based on specifc temperature stress [23].
Kundu and Dewanjee pioneered the response of a non-
Fourier thermal approach in one layer of skin tissue [24].
Ezzat and Alabdulhadi introduced a novel mathematical
model of a generalized thermoviscoelasticity theory based on
Pennes’s bioheat transfer equation with a dual phase-lag to
investigate the biothermomechanics behaviour in the skin

tissue [25]. Ezzat constructed the model of the thermo-
viscoelasticity theory of fractional dual-phase-lag heat
conduction law with rheological properties of the volume to
investigate one-dimensional bioheat transfer and heat-
induced mechanical response in human skin tissue [26].
In Pennes’s bioheat transmission and heat-induced me-
chanical response in human living tissue with variable
thermal conductivity based on rheological parameters of the
volume, Ezzat presented a novel notion of memory-
dependent derivative [27]. Many applications of analytical
analysis of the dual-phase-lag model of bioheat transfer have
been constructed and solved [28–32].

In the current work, the exact solutions of a novel
mathematical model of skin tissue will be obtained in the
framework of the dual-phase-lag (DPL) heat conduction
model when the bounding plane of the surface of the skin
tissue is exposed to a continuous heat fux due to a constant
voltage of the thermoelectric efect. To obtain the exact
analytical solutions, variables will be separated into a fnite
domain. Te infuence of the dual-phase-lag time parame-
ters, voltage value, resistance value, and electric shock time
value will be investigated and discussed. Comparing the
three diferent models of bioheat conduction is themain goal
of this work and is a novel efort.

2. Basic Equations

Temodel of bioheat transmission was created to investigate
the time-dependent temperature increment caused by a heat
source or thermal loading. Pennes created the frst biological
tissue model in the context of the classical Fourier’s law of
heat conduction as follows [23, 33–36]:

∇2T �
ρC

K

zT

zt
+
ρbwbCb

K
T − Tb( 􏼁 −

1
K

Qmet + Qext( 􏼁, (1)

where ρb, wb, Cb, and Tb are the blood density, blood
perfusion rate, specifc heat of the blood, and blood tem-
perature, respectively. K, ρ, and C are the thermal con-
ductivity, density, and specifc heat of the skin tissue.
T denotes the absolute temperature function. Qmet is the
metabolic heat generated by the chemical reaction inside the
skin tissue, and it is assumed to be a constant, while Qext is
the external heat source and it could be a function. Finally,
∇2 is the well-known Laplace operator.

Vernotte and Cattaneo (V-C) have updated the classic
Fourier law of thermal transfer by positioning the as-
sumption of the fnite and limited speed of the propagation
of the thermal wave and utilizing the following hyperbolic
heat conduction form [23, 33–36]:
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where τq � (α/c20)> 0 is defned as the relaxation time pa-
rameter, c0 gives the thermal wave’s speed inside the me-
dium, and α gives the thermal difusivity.

Te dual-phase-lag (DPL) heat conduction equation is
based on the dual response between the temperature gra-
dient and heat fow, which modifes the heat conduction
equation of Tzou’s classical Fourier’s.

Ten, in this case, the heat conduction equation takes the
following form [23, 33–36]:
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where τT ≥ 0 is the second relaxation time parameter, which
gives the phase lag time of the temperature gradient.

We assume the temperature increment’s function to take
the following form [35]:

θ � T − Tb. (4)

Ten, we obtain the heat conduction form as follows:
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3. Problem Formulation

We assume that the region of a skin tissue 0≤x≤ L obeys the
dual-phase-lag formulation as in equation (5) (see Figure 1).

Te medium is initially quiescent and has no external
heat source i.e., Qext � 0, while Qmet is a constant.

We consider the surface of the skin tissue x � 0 to be
subjected to constant heat fux q0, while the surface of the
other side x � L has a zero-heat fux.

Tus, the heat conduction model takes the following
form [35]:
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Te initial conditions take the following form:

θ(x, t)|t�0 �
zθ(x, t)
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� 0. (7)

Te boundary conditions take the following form:
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Te boundary value problem (B. V. P.) in equations
(6)–(8) contains nonhomogeneous partial diferential

equations with nonhomogeneous boundary conditions on
the surface of the skin tissue. Hence, the diferential equa-
tions must be formulated in two parts, i.e., a steady part and
a transient part as follows [35, 37, 38]:

θ(x, t) � θ1(x, t) + θ2(x). (9)

Ten, the transient part takes the following form:
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where the second part of the steady state is as follows:
d
2
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Figure 1: Te skin tissue is subjected to a thermoelectrical loading.
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where λ2 � (wbCbρb/k)> 0 and c � (1/k)> 0.
Te steady-state part has the following boundary con-

ditions [35]:
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Ten, according to the boundary conditions of equation
(8), the solution of equation (6) is as follows:
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λK sinh λL
+

cQmet

λ2
. (13)

Te initial conditions and the boundary conditions of the
transient part of the diferential equation (7) take the fol-
lowing form:
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To get the solution of equation (10), we write the ex-
pansion of the function θ1(x, t) in the Fourier series ex-
pansion as follows [35, 37, 38]:
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where it must satisfy the boundary conditions in
equation (15).

By substituting equation (16) into equation (10), we
obtain the following equation:
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Te solutions of equation (17) in general forms take the

following form [35, 37, 38]:

ϑn(t) � anf1 k1n, t( 􏼁 + bnf2 k2n, t( 􏼁n � 0, 1, 2, . . . , (18)

and from this, we have

ϑ1(x, t) � 􏽘
∞

n�0
anf1 k1n, t( 􏼁 + bnf2 k2n, t( 􏼁􏼂 􏼃 cos ωnx( 􏼁,

(19)

where k1n, k2n are the solutions of the characteristic equation
represented as

k
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Te roots of the characteristic equation (20) take the
following form:
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where ∆n � A2
1n − 4A2n.

To use the initial condition of equation (14), we must
expand θ2(x) in a Fourier series expansion as follows:
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lowing linear system of algebraic equations:
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In this case, the exact solution of equation (6) takes the
following form:
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Tus, in this case, the exact solution of equation (6) is
[35]
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(38)

Now, we will consider that the skin tissue has been
considered to be subjected to a thermal shock for a small
value of time t0 due to the thermal efect of an electrical
shock with a constant voltage V (V) and a constant re-
sistance of the skin tissue Re(Ω) [36].

According to Joule’s equation of electrical heating, we
have [36]

q0 �
V

2
t0

Re

, (39)

where t0(t0 > 0) is the time interval parameter of the
electrical shock.

4. Results and Discussions

Te temperature distribution of skin tissue is examined by
using three bioheat transfer models (V-C, Pennes, and
Tzou). Table 1 shows the values of the pertinent thermal
parameters that were used in the numerical results and
calculations for this project [17, 23, 24, 30–32, 35, 39].

In Figures 2–6, we plot the solutions of the heat con-
duction temperature given in equation (38) versus the
length. All fgures from 26 seem to have the same behaviour,
which is that the temperature decreases rapidly as the length
increases. Specifcally, in Figure 2, we compare the tem-
perature increment distribution for the voltage values V �

100V, andV � 120V. It is clear from the fgure that as the
value of the voltage increases, the temperature will rise when
the length is less than 0.008. However, there is no big dif-
ference shown in temperature after this point.

We also studied the infuence of resistance when Re �

300Ω andRe � 400Ω in the temperature increment distri-
bution, as shown in Figure 3. It clearly shows that the high
resistance plays a signifcant role in reducing the temper-
ature when the length is less than 0.008. Tis result seems to
agree with what is expected intuitively.

Figure 4 shows the temperature increment distribution
for the two diferent values of electric shock time,
t0 � 1.0 s, and t0 � 1.5 s. We noted that as the electric shock
time increases, the temperature increment distribution will
also rise which intuitively makes sense.

We can compare this fgure with Figure 8 in [26], where
both fgures represent the same result and the same attitude
of the temperature increment based on the diferent values of
the ramp-time heat parameter.

In Figure 5, we compare the temperature increment
distribution considering the three cases of relaxation time
parameters, τT, τq. When τT < τq, the temperature declines
slightly and uniformly over the x-axis whereas the tem-
perature will start to increase somewhat if the value of τT

exceeds or is equal to the value of τq. Te values of the
temperature increment take the following order:

θ τT > τq􏼐 􏼑> θ τT � τq􏼐 􏼑> θ τT < τq􏼐 􏼑. (40)

Figure 6 compares the distribution of the temperature
change for three diferent bioheat models, which are Pennes,
Vernotte–Cattaneo, and Tzou. Te Tzou model plays
a considerable role in reducing the temperature. Te values
of the temperature increment based on the three studied
models take the following order:

θ(Pennes)> θ(Vernotte − Cattaneo)> θ(Tzou). (41)

Equation (41) shows that the profle of the speed of the
thermal wave through the skin tissue is decreasing from
Pennes’s model, Vernotte–Cattaneo, to Tzou. In other
words, Tzuo’s model ensures that the thermal wave transfer
through the skin tissues at fnite or limited speeds is better
than other models, thus making this model the best and
closest to the reality of the physical behaviour of the skin
than other models. So, depending on the lag-time param-
eters of temperature gradient and heat fux makes the model
of Tzou more successful and more useful than the other
models.

Ten, we studied the behaviour of temperature in-
crement distribution over time to understand as to what
extent can other factors such as voltage, resistance, electric
shock time, and relaxation parameters infuence the tem-
perature, and this is shown in Figures 7–11.

Figures 7–11 show the deep fuctuation in temperature at
a high altitude in the frst few seconds. Ten, it gradually
stabilizes into a periodic motion as time increases.
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In Figure 7, the distribution of the temperature in-
crement is illustrated for two values of voltages,
V � 100, andV � 120. It indicates that the voltage has
a signifcant infuence on the temperature increment dis-
tribution. Moreover, increasing resistance and shock time
seem to have a non-neglected efect on the temperature
increment distribution either by increasing or decreasing the

Table 1: Te skin and blood materials properties.

Parameters Units Skin
K W/m·°C 0.215
ρ kg/m3 1,000
ρb kg/m3 1,060
C J/kg·°C 4,187
Cb J/kg·°C 3,800
Wb ml/Cm 0.00052
Tb °C 37
τT s 10
τq s 30
L m 0.01

0 0.002 0.004 0.006 0.008 0.010
x (m)

0.1

0.2

0.3

0.4

0.5

θ 
(°

C)

V = 100 V
V = 120 V

Figure 2: Te function of temperature increment with diferent
values of voltage when Re � 300Ω, t � 300 s, t0 � 1.0 s, τT � 20 s,
and τq � 20 s.

0 0.002 0.004 0.006 0.008 0.010
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Re = 300 Ω
Re = 400 Ω

0.05

0.10
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0.35

θ 
(°
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Figure 3: Te function of temperature increment with diferent
values of resistance when V � 100V, t � 300 s, t0 � 1.0 s, τT � 20 s,
and τq � 20 s.

0 0.002 0.004 0.006 0.008 0.010
x (m)

0.1

0.2

0.3

0.4
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t0 = 1.0 s
t0 = 1.5 s

Figure 4: Te function of temperature increment with diferent
values of electric shock time when V � 100V, R2 � 300Ω,

t � 300 s, τT � 20 s, and τq � 20 s.
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x (m)
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Figure 5: Te function of temperature increment with diferent
values of lag-time parameters when V � 100V, R2 � 300Ω,

t � 300 s, and t0 � 1.0 s.
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Figure 6: Te function of temperature increment with the
three bioheat models when V � 100V, R2 � 300Ω, t � 300 s,
and t0 � 1.0 s.
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temperature, respectively, and this is explained in Figures 8
and 9.

To study the infuences of time relaxation parameters
on the temperature, we plotted the temperature increment
distribution over time considering three cases: τT < τq, τT �

τq, τT > τq . It is clear from Figure 10 that the temperature
fuctuates from the highest to lowest temperature over time
when τT < τq at a high altitude whereas the temperature
zigzags fast at a high altitude at the beginning and then
declines signifcantly over time as τT ≥ τq. Moreover, the
attitude of the temperature increment in Figure 10 is the
same as in Figures 3 and 7 in Ezzat [26].

Figure 11 compares the behaviour of temperature in-
crement distribution over time between three diferent
models: Pennes, Vernotte−Cattaneo, and Tzou. Among
these models, Tzou seems to illustrate the lowest tempera-
ture increment with the smallest altitude.

20 40 60 80 100 1200
t (s)

0

0.1

0.2

0.3

θ 
(°

C)

V = 100 V
V = 120 V

Figure 7: Te function of temperature increment with diferent
values of voltage when Re � 300Ω, x � 0.001m, t0 � 1.0 s,
τT � 20 s, andτq � 20 s.
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Re = 400 Ω

Figure 8: Te function of temperature increment with diferent
values of resistance when V � 100V, x � 0.001m, t0 � 1.0 s,
τT � 20 s, and τq � 20 s.
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Figure 9: Te function of temperature increment with diferent
values of electric shock time when V � 100V, R2 � 300Ω,

x � 0.001m, τT � 20 s, and τq � 20 s.
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Figure 10: Te function of temperature increment with diferent
values of lag-time parameters when V � 100V, R2 � 300Ω,

x � 0.001m, and t0 � 1.0 s.
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Figure 11: Te function of temperature increment with the three
bioheat models when V � 100V, R2 � 300Ω, x � 0.001m,

and t0 � 1.0 s.
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For validation and to know which model is more close
to the real behaviour of the skin tissue, Figure 12 has been
performed with conditions similar to the experimental
condition in [40] to compare the behaviour of tempera-
ture increment distribution over a long interval of time
between the three diferent models: Pennes, Vernot-
te−Cattaneo, Tzou, and the experimental and cited results
in [40]. Tus, this fgure shows that Tzou is the best model
where the temperature increment based on this model is
closer to the experimental results more than the other
models.

5. Conclusion

Te temperature interaction and the response of the skin
tissue caused by a continuous fow of surface heat caused
by a constant voltage electrical current was the goal of this
study. Te bioheat transfer of the dual-phase-lag (DPL)
model has a precise analytical solution. It is used to
separate the variables into a fnite domain for the gov-
erning equations. Te reactions at the transition tem-
perature have been measured and studied. Figures have
been provided that compare the Pennes, Vernot-
te−Cattaneo, and Tzou models.

Te results concluded the following:

(i) When the value of the voltage increases, the
temperature rises.

(ii) When the value of the resistance decreases, the
temperature rises.

(iii) When the electric shock time increases, the tem-
perature increment distribution also rises.

(iv) When the value of the temperature relaxation time
increases τT more than the value of the gradient
temperature relaxation time τq, the temperature
increment distribution rises.

(v) Te temperature increment based on Penne’s
model is greater than its values based on the
Vernotte–Cattaneo model, Tzou’s model.

(vi) Te current results show that the thermal waves
based on Tzou spread at a fnite speed in the skin
tissue which removes the Vernotte–Cattaneo and
Pennes’s shortcomings.

(vii) Depending on the lag-time parameters of temperature
gradient and heat fux makes the model of Tzou more
successful and more useful than the other models.
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