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Waste from marine fsh processing is an important source of valuable products. Fish collagen is considered a alternative
biomaterial due to its excellent properties, and it is widely used for industrial purposes. Tus, this present study aimed to
characterize acid and pepsin-soluble collagens from the waste of parrotfsh (Scarus sordidus Forsskål, 1775) scales. Te yields
(p> 0.05) of acid-soluble collagen (ASC-PFS) and pepsin-soluble collagen (PSC-PFS) were 1.17 g/100 g and 1.00 g/100 g, re-
spectively. Both collagen samples were categorized as type I owing to the presence of two alpha chain subunits (α1 and α1) after
being confrmed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under the fourier transform
infrared (FTIR) test, the triple helical structure of type I collagens from the ASC-PFS and PSC-PFS was maintained. Moreover, the
study of UV visible spectra and X-ray difraction (XRD) showed the similarity of collagens derived from diferent fsh species, and
the thermostability (Tmax) evaluation of all extracted collagens was in the range of 36.22–37.78°C, and their values were
comparable to previous research on the fsh scale collagens. Te efect of various pH and sodium chloride (NaCl) treatments on
solubility exhibited that the ASC-PFS and PSC-PFS were highly soluble in an acidic condition (pH< 5.0) and low concentration of
sodium chloride (<30 g/L). Taken together, collagens extracted from parrotfsh scale waste can be an alternative source for
industries.

1. Introduction

Collagen is the major structural protein in mammals, rep-
resenting approximately one-third of the total body protein
content. Tis fber protein has a specifc right-handed triple
helical chain containing three parallel polypeptide (left-
handed) chains [1]. Typically, it is assembled by a Glycine-
Xaa-Yaa triplet, where the Xaa and Yaa positions are usually
placed by proline and hydroxyproline [2]. It is ubiquitous in
the extracellular matrix (ECM) of tissues, where it not only

provides strength and structural stability, but also performs
highly specialized regulatory functions, particularly during
development and repair [3]. To date, almost thirty types of
collagen have been investigated, which difer according to
their structure of protein, composition of amino acids and
molecular attributes. Amongst them, type I is extensively
explored and best studied collagen in the felds of medical,
nutraceutical, pharmaceutical, cosmetic, and food applica-
tion due to its biocompatibility, biodegradability and weak
antigenicity [4, 5]. Traditionally, collagen was made from the
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skin and bones of mammals, such as cows and pigs [1].
However, use of mammalian collagens raises anxiety among
consumers, which is related to some infectious diseases, e.g.,
foot and mouth disease, transmissible spongiform enceph-
alopathy, and bovine spongiform encephalopathy. Also,
poultry-based collagens cause fear due to the incidence of
the avian fu virus [6, 7]. In another case, some religious
groups like Islam and Judaism cannot consume porcine and
its derivatives, while bovine is not accepted by Hinduism [8].
In such situations, seafood/fsh by-products (skins, frames,
and scales) are believed to be potential sources of collagen
due to their high availability, low risk of transmittable
disease, and free of religious barriers [9].

For a decade, fsh collagen has received considerable
attention, with the increasing number of studies related to
collagen extraction from the fsh by-products. In addition,
some physicochemical and functional properties of fsh
collagen have also been elucidated. For instances, purple-
spotted bigeye (Priancanthus tayenus) skin [10], bigeye tuna
(Tunnus obesus) skin [11], red stingray (Dasyatis akajei)
skin [12], sturgeon (Huso huso) skin [13], Siberian sturgeon
(Acipenser baerii) cartilage [14], tilapia (Oreochromis mos-
sambicus) bone [15], lizardfsh (Saurida tumbil) bone [7],
Yellowfn tuna (Tunnus albacares) swim bladder [16],
sardinella (Sardinella fmbriata) scale [17], grey mullet
(Mugil cephalus) scale [18], sea bass (Lates calcarifer) [9], and
grass carp (Ctenopharyngodon idellus) scales [19]. Although
a variety of collagens derive from fsh by-products with
diferent species have been documented, other fsh sources
(especially those generated from processing plants) are re-
quired to be investigated in order to give valuable in-
formation related to the use of collagen-based products, and
it can generate new income and also reduce environmental
problems [20, 21].

Parrotfsh, also known as “Ikan Bayan” in Malaysia, is
a tropical fsh species belonging to the family Labridae.
Parrotfsh (Scarus sordidus Forsskål, 1775) is commonly
recognized by its parrot-like beak of fused teeth, a bluntly-
rounded head, and large scales [22]. It is quite popular with
consumers due to its high nutritional content. Parrotfsh
scale is almost discarded during processing, and to tackle
this limitation, transforming it into collagen is a great
strategy. Currently, only the skin part of parrotfsh has been
extracted as collagen, with a high yield obtained [23].
However, other parts (such as the scale) of that fsh are much
less documented. Tis study focused on the collagen ex-
traction derived from the scales of parrotfsh with the ad-
dition of an acid solution and the aid of pepsin enzyme.
Teir physicochemical properties were also evaluated. Fi-
nally, this study could raise the added value of this waste
product from fsh and be friendly to the environment.
Moreover, it may provide some basic information for further
studies.

2. Materials and Methods

2.1. Materials. Te scale wastes of parrotfsh (Scarus sor-
didus Forsskål, 1775) were provided by a fshmonger in the
Kota Kinabalu fsh market (Sabah, Malaysia). All fsh scales

(approximately fve kilograms) were packed in a poly-
ethylene bag containing a 2 :1 (g/g) ratio of ice to scale, and
the packed samples were then transported to the laboratory.
Upon arrival, the scales of parrotfsh were rinsed with
running tap water and dried in an electric cabinet dryer
(WS340, Tsung Hsing, Kaohsiung city, Taiwan). Acetic acid
(100056), Folin–Ciocalteu’s phenol reagent (109001), N, N,
N′,N′-tetramethyl ethylene diamine (TEMED) (110732),
Coomassie Blue R-250 (112553), acrylamide (800830), and
sodium dodecyl sulfate (SDS) (817034) were supplied from
Merck (Darmstadt, Germany). Lowry reagent (L1013),
Trizma® hydrochloride (T3253) and bovine serum albumin
(BSA) (A3733) were obtained from Sigma Chemical Co., (St.
Louis, USA). Precision plus protein dual colour standards
(molecular weight markers) (1610374) were supplied by Bio-
Rad Laboratories (Hercules, CA, USA). Other reagents and
chemicals used in the present study were of analytical grade.

2.2. Extraction of Acid- and Pepsin-Soluble Collagen. All
extraction processes were exhibited in a cool room (4°C).
Temethod used in this work was slightly modifed from the
previous research [24–26], as shown in Figure 1. First, dried
parrotfsh scales (around 50g) were dissolved in 10 volumes
(v/w) of sodium hydroxide (0.1M) and continuously stirred
for 6 h, changing the alkaline solution every 2 h to eliminate
undesirable pigment and noncollagenous matter. Te im-
mersed fsh scales were then rinsed with cooled distilled
water and neutralized at a neutral condition. Next, 10
volumes of ethylenediaminetetraacetic acid disodium salt
(0.5M) were added to the sample and stirred for 24 h
(replacing the solution every 12 h) to demineralize the
sample. Te demineralized collagens were washed three
times with cold distilled water, and then subjected to acid-
assisted extraction. A total of ffteen volumes of 0.5M acetic
acid (glacial) were mixed with the pretreated samples and
stirred at 500 rpm for 2 days using a homogenizer (IKA®RW 20 Digital Over Head Stirrer, Selangor, Malaysia). After
extraction, the suspended collagens were subjected to fl-
tration using a single layer of cheesecloth. Te fltrate was
collected for a further step, while the residue was kept
separately in a freezer for further experimentation (pepsin-
aided extraction). Next, the fltrate (soluble fraction) was
precipitated by adding 0.05M Trizma® hydrochloride and
2.5M NaCl. Te precipitated sample was subsequently
neutralized (pH 7.0) and then centrifuged for 10min at
15,000× g. After centrifugation, two volumes of acetic acid
(0.5M) were dropped on the pellet and mixed thoroughly.
Te liquid extracted collagens were then put into a dialysis
tubing. Twenty volumes of acetic acid (0.1M) and cold
deionized water were prepared and dialyzed for 3 days. Te
dialysate was dried in a Labconco freeze-dryer machine
(Kansas City, USA). Te dried collagen was represented
acid-soluble collagen of parrotfsh scale (ASC-PFS). In terms
of pepsin-assisted extraction, the residue from previous acid
extraction was isolated by adding 15 volumes of acetic acid
(0.5M) and bovine pepsin (Himedia, Maharashtra, India)
(1.5%, w/w) for two days. After the isolation process, further
procedures were similar to the acid extraction process. Te
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freeze-dried sample was known as a pepsin-soluble collagen
of parrotfsh scale (PSC-PFS). Both collagen samples were
then stored in a freezer until experimentation.

2.3. Collagen Analyses

2.3.1. Yield and Colour Analysis. Te yield of parrotfsh scale
collagens was stipulated according to the formula described
by Matmaroh et al. [24]

Yield(%) �
Weight of died collagen(ASC∧PSC)

Weight of initial dry parrotf ish scale
× 100.

(1)

Colour attributes for ASC-PFS and PSC-PFS were
assessed through a colorimeter instrument (ColorFlex
CX2379, HunterLab, Galveston, TX, USA), as described in
a previous study [25]. Te diferences in the color test were
presented in the CIELAB or CIE 1976 L∗a∗b∗ colour space,
where L∗ is the lightness or brightness, a∗ is the redness
(from green to red), and b∗ is the yellowness (from blue to
yellow). For whiteness index (WI), both ASC and PSC from
the parrotfsh scales were determined using a formula stated
by Ishamri et al. [27]

WI � 100 − L
∗
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2.3.2. UV Absorption Spectrum. Ultraviolet absorption
spectra of ASC-PFS and PSC-PFS from the scales of par-
rotfsh (Scarus sordidus Forsskål, 1775) were performed
under a spectrophotometer of the LAMBDA 25 type (Per-
kinElmer, Inc., Waltham, MA, USA). A ffty milligram
sample was immersed in 10mL of AcOH solution (0.5M)
and well mixed. Ten, the mixture was prepared for cen-
trifugation at 8,500× g for 5min, and the solubilized col-
lagens were pipetted out into a quartz cell. Te spectra of the
extracted collagens were designed at wavelengths from
400 nm to 200 nm, and an acetic acid solution with the same
concentration was used for a baseline [28].

2.3.3. Attenuated Total Refectance-Fourier Transform In-
frared Spectroscopy (ATR-FTIR). Te ATR-FTIR spectra of
the isolated samples (ASC-PFC and PSC-PFC) were ana-
lysed using the FTIR spectrometer (Agilent Cary 630, Cary,
NC, USA), and all steps were adopted from the study of
Matmaroh et al. [24]. Te dried parrotfsh collagen (20mg)
was placed on the crystal cell of a spectrometer, and the
spectra were adjusted between 4,000 nm−1 and 800 cm−1. All
data with signifcant peaks were observed using a software
program developed by Agilent Microlab.

2.3.4. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electro-
phoresis (SDS-PAGE). Te Mini-PROTEAN Tetra Cell
(Bio-Rad Laboratories, Hercules, CA, USA) was used to
determine the molecular weight (MW) of the ASC and PSC
from the parrotfsh scales, with the established methods
from Laemmli [29]. A three milligram of each lyophilized

collagen was prepared bymixing with a 5% SDS solution and
then put in a water bath (at 85°C for 60min). Afterwards, the
treated collagens were centrifuged at 8,500× g for 5min to
eliminate insoluble matter. Te supernatant (20 μL) was
pipetted into an appropriate centrifuge tube, and then the
same volume of sample bufer incorporated, with and
without β-mercaptoethanol was added. Te mixed samples
were then heated for 5min at the same temperature and
carefully flled carefully in the prepared acrylamide gel
(stacking gel: 4% and separating gel: 7.5%). A certain voltage
was set at 120 volts for about 1 h. Next, the fxation process
was employed to fx the electrophoresed gel, and it was
further stained for about 10min. After staining, the gel was
transferred into a destaining container. Te protein marker
was used to compare the electrophoretic bands of ASC-PFC
and PSC-PFC.

2.3.5. X-Ray Difraction Analysis (XRD). Analysis of X-ray
difraction from the parrotfsh scale collagen prepared by
adding acetic acid and pepsin was conducted according to
the previous report [30]. Te dried collagen samples were
placed into a sample holder and then scanned using an X-ray
difraction machine. Te scanning range in both ASC-PFS
and PSC-PFS was initiated from 5° to 40° (2θ) with a speed of
0.06° per second, and the current and tube voltage of the
XRD apparatus were adjusted to 50mA and 40 kV,
respectively.

2.3.6. Diferential Scanning Calorimetry (DSC). Te thermal
stability test on parrotfsh scales was carried out with
a Perkin-Elmer diferential scanning calorimeter (Model
DSC7, Norwalk, CA, USA) under a nitrogen atmosphere.
Te procedure used in this work was pointed from the study
of Kittiphattanabawon et al. [31]. Freeze-dried collagens
were prepared for rehydration at a ratio of 1 : 40 (w/v) with
distilled water and then incubated for two days in a re-
frigerator. Afterwards, the prepared samples were accurately
weighed (ranging from 5mg to 10mg) into an aluminum
volatile pan and then tightly sealed with a crimper. Prior to
running the samples, a calibration step was performed with
an indium. Subsequently, a sealed collagen sample and an
empty pan were placed into sample and reference detectors,
respectively, and then scanned from 20°C to 45°C at a rate of
1°C per minute. DSC rates were expressed in the maximum

1 2
3

4 5

ASC-PFS

PSC-PFS

Figure 1: Extraction of parrotfsh collagen from scale wastes: (1)
NaOH pretreatment, (2) EDTA-2Na pretreatment, (3) acetic acid
extraction, (4) residue of acid treatment, and (5) pepsin-assisted
extraction.
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transition temperature (Tmax) and the total denaturation
enthalpy (ΔH).

2.3.7. Solubility Test. Solubility tests at diferent concen-
trations of sodium chloride and at various pH treatments
were observed in both ASC-PFS and PSC-PFS samples,
adopting our previous method [32]. For the sodium chloride
assay, the concentrations employed range between 0 g/L and
60 g/L. A total of 5mL of prepared collagens were pipetted
out into fve millilitres of sodium chloride (NaCl) solution
and then mixed using a stirrer for 60min in a chiller. Next,
the NaCl-treated collagens were subjected to centrifugation
at 10,000× g for 15min to separate insoluble samples.
Following centrifugation, the protein content of each

parrotfsh collagens were analysed based on the established
method [33], and a standard protein used in this analysis was
bovine serum albumin (BSA). In terms of diferent
pH conditions, both collagens were prepared by dissolving
in an 0.5M acetic acid solution and stirred for 4 h in a chiller.
Te dissolved collagens were further adjusted at diferent
pH values (pH 1.0–9.0) with adding 1M NaOH and HCl
solutions. Next, the treated collagens were stirred for 60min
and centrifuged further at 10,000× g for 10min with an
Eppendorf centrifuge (Model 5430R, Hamburg, Germany).
Te protein concentration of each treated sample was also
tested with the Lowry method. Both ASC and PSC from the
scales of parrotfsh were used to determine the percentage of
relative solubility using the following formula:

Relative solubility(%) �
Current concentration of protein at currentNaCl or pH

The highest concentration of protein
× 100. (3)

2.3.8. Statistical Analysis. Te data in this study were pre-
sented as means with SD. Te probability value of <0.05 or
p< 0.05 was defned as a signifcant diference after being
analysed with a one-way ANOVA. To compare the mean
values of each treatment, we used Duncan’s multiple range
tests through SPSS Statistics version 29.0 (IBM Corp.,
Armonk, N.Y., USA).

3. Results and Discussion

3.1. Yield and Colour Attributes of Parrotfsh Collagens.
Table 1 shows the yields of ASC and PSC from the parrotfsh
scale wastes. Although no signifcant diference (p> 0.05) as
observed in both isolated collagen samples, the ASC-PFS
showed a higher yield (based on a dry weight basis) than that
observed in the PSC-PFS. Both collagens were comparable to
the previous study of fsh scale collagens. For instances of
ASC and PSC from the lizardfsh (Saurida tumbil) (0.18%
and 0.60%) [25], Nile tilapia (Oreochromis niloticus) (0.77%
and 0.71%) [34], carp (Cyprinus carpio) (0.97% and 1.37%)
[37], and sea bass (Lates calcarifer) (0.38% and 1.06%) [9]. In
contrast, the highest yield of fsh collagens (either extracted
with the acid solution or aided with the pepsin) was obtained
from the skin portion, as reported by numerous research
studies, such as sturgeon fsh (Huso huso) (9.98% and 9.08%)
[13], sailfsh (Istiophorus platypterus) (5.76% and 2.11%) [38]
and Spanish mackerel (Scomberomorous niphonius) (13.68%
and 3.49%) [39]. A lower yield in the fsh scale collagens
could be due to abundant hydroxyapatite components
(Ca5(PO4)3OH) and many crosslinked areas of fsh scale
collagens [40]. Also, the variations in the yields observed in
the fsh collagens were might be afected by extraction
procedures, tissue composition and structure, and fsh
species with diferent sizes and ages [41].

In the context of colour attributes, collagen is a potential
ingredient supplemented in food, cosmetic, pharmaceutical,
and medical products. Hence, collagen with a brighter
colour is more acceptable because it does not change the

original colour of fnal products [42]. Table 1 shows the
values of L∗, a∗, and b∗, as well as the whiteness index (WI)
in both ASC and PSC derived from the parrotfsh scales
(Figures 2(a) and 2(b)). Te results presented indicated that
the L∗ and WI scores of the PSC-PFS sample were signif-
icantly higher (p< 0.05) compared to those of the ASC-PFS.
Nevertheless, our present study’s lightness rate was lower in
terms of percentage than that found in the lizardfsh
(S. tumbil) scale collagen [25], snakehead (Channa argus)
skin collagen treated with hydrogen peroxide (H2O2) [36],
and also type I collagen from calfskin [7]. Te reason might
be due to the lack of treatment during the decolouration
process by adding H2O2 a solution as prepared in the
previous study for snakehead skin collagen, and the type of
fsh scale used in the experimentation. Typically, parrotfsh
scales have a colourful pattern, including green, purple,
brown, and grey, resulting in the fnal product obtained, as
presented in this study (Figure 2(c)).

3.2. Protein Profle. Both collagens (ASC-PFS and PSC-PFS)
were almost the same in SDS-PAGE patterns (Figure 3) with
presenting two alpha chains (α1 and α2), one β- and
c-chains. However, there was a slight diference in molecular
weight (MW) of α1 and α2. For the PSC-PFS sample, those
chains (α1� 118.1 kDa and α2�107.4 kDa) were lower
compared to those (α1� 123.9 kDa and α2�112.7 kDa) of
the ASC-PFS. Also, the β-chain of the ASC-PFS sample
showed less band intensity than that of the ASC-PFS sample.
Tese evidences could be due to the fact that some parts of
telopeptide regions in terms of crosslinked components were
cleaved by the pepsin during the extraction process, as re-
ported by Khittiphattanabawon et al. [34]. In comparison of
the band intensity, especially α1-chain had a twofold in-
crease over that of α2, suggesting that the parrotfsh scale
collagen was categorized as type I collagen. Tese obtained
data agreed with other fsh collagens, including purple-
spotted bigeye (Priacanthus tayenus) [10], bigeye tuna
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(Tunnus obesus) [11], loach (Misgurnus anguillicaudatus)
[43], and fying fsh (Cypselurus melanurus) [18], the golden
pompano (Trachinotus blochii) [44], and the channel catfsh
(Ictalurus punctatus) [45]. Furthermore, under the treat-
ment of nonreducing (without β-ME) and reducing (with
β-BE), all extracted collagens showed no diference in
electrophoretic patterns, indicating no di-sulfde bond
formation in both ASC- and PSC-PFC.

3.3. UV Absorption Spectrum. In general, the signifcant
absorption spectrum of collagen can be observed at
a wavelength of 210–240 nm [46]. Te obtained results
exhibited that the maximum spectra of ASC and PSC

derived from the parrotfsh scale were detected at wave-
lengths of 230 nm and 232 nm, respectively (Figure 4). Tese
fndings were in accordance with other experiments in fsh
collagen samples, including lizardfsh (S. tumbil) [7], Sibe-
rian sturgeon (Acipenser baerii) [14], and miiuy croaker
(Miichthys miiuy) [47] and pufer fsh (Lagocephalus iner-
mis) [48]. Moreover, the absorption peaks depicted in this
study (both ASC-PFS and PSC-PFS) are related to the
functional groups of collagen molecules, such as carboxyl
(-COOH), carbonyl (C�O), and amides (CONH2). Mean-
while, for another peak detected in the spectra, there was
a low absorption peak at wavelengths of 300−250 nm. Tese
peaks represented tryptophan, phenylalanine and tyrosine
(aromatic amino acids), as confrmed in all abovementioned
references [25, 26].

3.4. Fourier Transform Infrared Spectroscopy (FTIR). Te IR
spectra of ASC-PFS and PSC-PFS (Figure 5), and the an-
notation of each prominent peak in their spectra are also
informed (Table 2). In particular, the amides I−III found in
both collagens would be applied to assess the triple helical
structure of parrotfsh scale collagens. According to Nikoo
et al. [52], using the formula of Δv (vI − vII), where the
diference in wavenumber (cm−1) between amides I and II is
less than 100 cm−1, suggesting that the triple helical structure
of collagen is preserved. After confrmation, both ASC-PFS
and PSC-PFS had the same value of delta v

(∆v � 95.05 cm−1), and it could be argued that the triple

Table 1: Yield and colour parameters of ASC-PFS and PSC-PFS samples.

Sample Yield (%)
Colour parameters

References
L∗ a∗ b∗ WI

ASC-PFS 1.17± 0.19a 61.74± 2.83b 2.61± 0.05a 6.15± 0.04a 61.16± 2.79b Tis study
PSC-PFS 1.00± 0.19a 74.81± 1.95a 1.09± 0.24b 6.14± 0.77a 74.44± 1.99a Tis study
ASC-LFS 0.18± 0.03 79.94± 0.06 1.41± 0.15 3.67± 0.12 79.56± 0.58 [25]
PSC-LFS 0.60± 0.06 81.04± 0.45 0.17± 0.13 11.95± 1.34 77.57± 0.97 [26]
ASC-NTS 0.77 — — — — [34]PSC-NTS 0.71 — — — —
BMSC — 65.41± 0.08 0.14± 0.01 3.16± 0.03 65.27 [35]
SHSC — 89.49± 0.28 −0.30± 0.01 5.60± 0.13 88.09 [36]
CSKC — 78.93± 0.59 −0.07± 0.03 1.42± 0.27 78.88± 0.58 [7]
Values are presented as the mean± SD from triplicate (n� 3). Means provided in the same columnwith diferent notation are signifcantly diferent (p< 0.05).
ASC-PFS: acid-soluble collagen from parrotfsh scale; PSC-PFS: pepsin-soluble collagen from parrotfsh scale; ASC-LFS: acid-soluble collagen from lizardfsh
scale; PSC-LFS: acid-soluble collagen from lizardfsh scale; ASC-NTS: acid-soluble collagen from Nile tilapia scale; PSC-NTS: pepsin-soluble collagen from
nile tilapia scale; BMSC: barramundi skin collagen; SHSC: snakehead fsh skin collagen; CSKC: type I collagen from calfskin.

(a) (b) (c)

Figure 2: (a) ASC-PFS: acid-soluble collagen from parrotfsh scale; (b) PSC-PFS: pepsin-soluble collagen from parrotfsh scale; (c) type of
parrotfsh scales.

kDa
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100

M A1 B1 A2 B2
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γ

Figure 3: SDS-PAGE profle of ASC-PFS and PSC-PFS. M: protein
marker; A1 and A2: ASC-PFS; B1 and B2: PSC-PFS.
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helical structure f the parrotfsh scale collagen was main-
tained. In addition, as proposed by Doyle et al. [49], the
triple helical structure of collagen can be verifed using an
AIII/A1450 ratio, and the result obtained in this study
presented that the triple-helix structure obtained from
ASC-PFS and PSC-PFS was intact during the extraction
process, as also indicated by their absorption ratio values
(∼1.0). Taken together, all the prominent peaks of parrotfsh
collagens are in accordance with the previous reports from
lizardfsh (S. tumbil) scale collagen [25] Nile tilapia
(O. niloticus) scale collagen [34], carp (C. carpio) scale

collagen [37], sea bass (L. calcarifer) scale collagen [9], and
giant grouper (Epinephelus lanceolatus) scale collagen [53].

3.5. X-RayDifractionAnalysis. Te XRD graph of ASC-PFS
and PSC-PFS is illustrated in Figure 6. Generally, fsh col-
lagen has two signifcant difraction peaks, which are sharp
and broad peaks, and these peaks were exhibited in our
present study. In comparison to both samples, the difraction
peaks were somewhat the same, with the frst peak located at
7.65° and 7.59°, and the second peak at 19.71° and 19.37°,
respectively. Tese difraction peaks were typically found in

232 nm

230 nm PSC-PFS
ASC-PFS

Wavelength (nm)
200 240 280 320 360 400

0.3
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so
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Figure 4: UV absorption spectra of ASC and PSC from the scales of parrotfsh.
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Figure 5: Te IR spectra of isolated collagens from the parrotfsh scale. ASC-PFS: acid-soluble collagen from parrotfsh scale; PSC-PFS:
pepsin-soluble collagen from parrotfsh scale.

Table 2: Te prominent peak region and its description for ASC-PFS and PSC-PFS.

Peak area
Peak description References

ASC-PFS (cm−1) PSC-PFS (cm−1)
3286.67 3297.85 Amide A: N-H stretching coupled with hydrogen bond [49]
2427.90 2926.97 Amide B: CH2 asymmetric stretching [50]
1636.34 1636.34 Amide I: C�O stretching/H bond coupled with COO- [51]
1541.29 1541.29 Amide II: N–H bend coupled with C-N stretching [51]
1234.71 1235.64 Amide III: N–H bend coupled with C-H stretching [51]
ASC-PFS: acid-soluble collagen from parrotfsh scale; PSC-PFS: pepsin-soluble collagen from parrotfsh scale.
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many previous reports from other fsh collagens, such as
carp (C. carpio) scale [54], tilapia (O. niloticus) skin [55],
golden pompano (T. blochii) skin and bone [44], and liz-
ardfsh (S. tumbil) skin, bone, and scale [7, 25, 32]. More-
over, to predict the low value of the repetitive spacings,, or
d (Å), Zhang et al. [54] reported that the Bragg formula
could be used in verifying the d (Å) through d (Å)� alpha/
2sin theta in which alpha and theta represent the X-ray
wavelength (1.54 Å) and the Bragg difraction angle, re-
spectively. Te d value of the frst peak was 0.103 Å of
ASC-PFS and 0.101 Å of PSC-PFS. Tis frst peak value
describes the range within the molecular chains of the triple
helical structure in the collagen molecules. For the second
peak, the d values of ASC- and PSC-PFS were 0.260 Å and
0.255 Å, respectively, refecting the spacing of skeletons.
Tese most recent data were consistent with the diameter of
a collagen molecule having a triple helical structure and
a single left-handed helical chain.Terefore, parrotfsh scale-
derived ASC and PSC were considered in their native
conformations.

3.6. Termal Stability Evaluation. Te DSC results for
parrotfsh scale collagens (i.e., ASC-PFS and PSC-PFS) were
expressed in the Tmax and ΔH values, and the obtained
results informed that a higher Tmax (37.78°C) and ΔH (0.35 J/
g) were recorded in the ASC-PFS sample compared to those
of the PSC-PFS (Tmax � 36.22°C and ΔH� 0.02 J/g, re-
spectively) (Figure 7). According to Benjakul et al. [56],
collagen with a greater Tmax value has greater thermal sta-
bility due to the presence of imino acids, especially at
pyrrolidine rings located in proline and hydroxyproline that
were relatively constructed by H bonding via the –OH group
of hydroxyproline, assuming that the imino acids are pos-
sibly higher in the ASC-PFS sample than that of the PSC-PFS
sample. However, the diference in Tmax values in the fsh
scale collagens, such as Nile tilapia (O. niloticus)
(ASC� 36.15°C and PSC� 34.70°C) [34], sea bass
(L. calcarifer) (ASC� 38.17°C and PSC� 39.32°C) [9], giant
grouper (E. lanceolatus) (ASC� 35.18–40.86°C) [53] and
lizardfsh (S. tumbil) (ASC� 31.61°C and PSC� 30.54°C)
[25, 26] might be depending on amino acids’ (particularly
imino acids) composition, extraction method, habitat, body

temperatures, and collagen conformation [31]. In the con-
text of ΔH, PSC-PFS was lower than the ASC-PFS sample,
refecting a lower energy required to uncouple collagen
alpha chains and convert them into random turns. It might
be due to the cleaved telopeptide area by pepsin in the
PSC-PFS sample.

3.7. Solubility Study. Solubility of the ASC-PFS and
PSC-PFS samples was tested at diferent NaCl concentra-
tions and pH treatments, as presented in Figure 8. In both
collagens, a highly soluble (>80%) was observed at the NaCl
concentration of 0–20 g/L, while the relative solubility of
both ASC-PFS and PSC-PFS declined steadily at the con-
centration of 30 g/L to 60 g/L. It could be due to the high
concentration of sodium chloride added during the pre-
cipitation process of the solubilized collagen. In addition to
this, an increase in NaCl concentration would enhance the
interactions of hydrophobic–hydrophobic amino acids
within the polypeptide chains of parrotfsh scale collagen
and at the same time increase competition for water,
resulting in the high protein precipitation [30]. Our fndings
were also supported by other studies on diferent fsh col-
lagens, such as carp (Hypophthalmichthys nobilis) scales
[57], spotted golden goatfsh (P. heptacanthus) scales [24],
and lizardfsh (S. tumbil) scales [25]. When comparing those
two samples used in this study, the PSC-PFS showed more
soluble in almost all NaCl treatments than the ASC-PFS
sample. It suggests that the peptide at the telopeptide area
cleaved by pepsin might contribute to the solubility of
pepsin-soluble collagen from parrotfsh scales. In terms of
pH treatment, both collagens treated at pH 1.0 to pH 5.0
were soluble, with a relative solubility of more than 60%.Te
highest solubility was detected at pH 2.0 and pH 3.0 for
ASC-PFS and PSC-PFS, respectively. In contrast, under
pH 7.0 and pH 9.0 treatments, all collagen samples decreased
sharply, representing below 30% of their relative solubility.
As reported in numerous works, for instances: lizardfsh
(S. tumbil) scale collagen [25], tilapia (O. niloticus) scale
collagen [30], horse mackerel (Trachurus japonicas), scale
collagen and greymullet (Mugil cephalus) scale collagen [18].
It indicates that fsh scale collagens, particularly parrotfsh
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Figure 6: XRD of the parrotfsh scale collagens. ASC-PFS: acid-
soluble collagen from parrotfsh scales; PSC-PFS: pepsin-soluble
collagen from parrotfsh scale.
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scale collagens, are unstable in the neutral and alkaline
conditions. Te reason could be assumed to be that
hydrophobic−hydrophobic interactions occur between the
collagen molecules, causing the overall net charge to become
zero, especially at the isoelectric point, which usually occurs
under neutral conditions [58]. In addition to this, the lowest
solubilisation rate was exhibited at pH 7 treatment of ASC-
PFS, and it was probably due to the isoelectric point. Overall,
the PSC-PFS had higher solubility (particularly under NaCl
treatment) because the cleavage of telopeptide areas might
afect the protonation of charged amino and carboxyl
groups. Tis could infuence the repulsion of molecules
associated with the diferent solubilities [24].

4. Conclusion

Type I collagen from the parrotfsh scales was successfully
extracted by acetic acid (ASC-PFS) and with the aid of
pepsin (PSC-PFS). Both samples had a high thermal stability,
and the yields were relatively higher compared to some
previous studies in the fsh scale collagens. Teir structure of
triple-helix was maintained during the extraction process
upon confrmation by the X-ray difraction and infrared
spectroscopy analyses. Tus, collagens from parrotfsh scales
could be used as an alternative source of collagen for further
application.
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