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Osteoporosis is a chronic multifactorial condition that afects the skeletal system, leading to the deterioration of bone mi-
crostructure and an increased risk of bone fracture. Platelet-derived biomaterials (PDBs), so-called platelet concentrates, such as
platelet-rich plasma (PRP) and platelet-rich fbrin (PRF), have shown potential for improving bone healing by addressing
microstructural impairment. While the administration of platelet concentrates has yielded positive results in bone regeneration,
the optimal method for its administration in the clinical setting is still debatable. Tis comprehensive review aims to explore the
systemic and local use of PRP/PRF for treating various bone defects and acute fractures in patients with osteoporosis. Fur-
thermore, combining PRP/PRF with stem cells or osteoinductive and osteoconductive biomaterials has shown promise in
restoring bone microstructural properties, treating bony defects, and improving implant osseointegration in osteoporotic animal
models. Here, reviewing the results of in vitro and in vivo studies, this comprehensive evaluation provides a detailed mechanism
for how platelet concentrates may support the healing process of osteoporotic bone fractures.

1. Introduction

Osteoporosis is a systemic metabolic disorder causing
a decrease in bone mineral density (BMD) and microstruc-
tural impairment [1]. According to the International Oste-
oporosis Foundation, 1 out of 3 women and 1 out of 5 men
over the age of 50 are sufering from osteoporosis [2].
Moreover, in a meta-analysis by Salari et al., the global
prevalence of osteoporosis is estimated at 18.3% worldwide
[3]. Te current diagnostic criteria for osteoporosis are de-
termined based on BMD which is estimated by a T-score less

than or equal to −2.5 in the total hip, femur neck, and lumbar
spine [4, 5]. Consequently, a decreased BMD in the skeletal
system is associated with a higher incidence of fracture [6];
however, a fraction of bone injuries due to the fragility in
osteoporotic patients are reported with BMD values above the
mentioned threshold [1]. Aside from the decrease in BMD,
many complications are associated with osteoporotic patients.
Figure 1 is also provided to better present the risk factors and
common complications of osteoporosis.

Temechanism of osteoporosis is caused by a disbalance
in the bone remodeling cycle with more resorption which
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results in trabecular bone loss, thinning in the cancellous
bone, reduced cortical thickness, and enhanced porosity [1].
Tese processes stem from a shift from osteogenic difer-
entiation towards adipogenic diferentiation [8–10]; thus,
fewer osteoblasts are produced compared to osteoclasts
which impairs the remodeling balance [11]. Te trans-
diferentiation process from osteogenic to adipogenic dif-
ferentiation is mediated by the activation of adipogenesis
genes, including peroxisome proliferator-activated receptor-
gamma (PPAR-c) [7]. Studies have also indicated a possible
role of PPAR-c in the enhancement of osteoclastic activation
through the receptor activator nuclear factor kappa B ligand
(RANKL) signaling pathway [7, 12]. Tese processes can
result in impaired biomechanical resistance and bone fra-
gility [1, 13–15].

Among the pharmacological treatments approved by the
FDA, bisphosphonates are one of the main choices used to
reduce the risk of spine and hip fracture by approximately
50% [15]. However, considerable adverse efects have also
been reported for bisphosphonates, therapy, including
osteonecrosis of the jaw, difculty in swallowing, esophageal
infammation, stomach pain, and renal dysfunction [15–17].
Moreover, other pharmacologic interventions, despite their
efectiveness in minimizing the efects of osteoporosis on
bone structure, have side efects that should be considered
before beginning their intervention, such as biliary issues,
myocardial infarction, deep vein thrombosis, muscle spasm,
nausea, diarrhea, etc. [15].

Terefore, although the current medications have
exerted satisfactory results, their adverse efects have en-
couraged researchers to seek novel approaches for the
treatment of osteoporosis and its related fractures. Since
osteoporosis management should be based on tissue re-
generation principles [18–20], there is growing evidence that
the application of platelet-derived biomaterials (PDBs), so-
called platelet concentrates, may support a treatment for
osteoporosis-related injury [21–24].

In light of novel therapeutic methods utilized in oste-
oporosis management, the aim of this review article was to
evaluate the current evidence based on existing literature
concerning the therapeutic efect of PDBs on osteoporosis

treatment. Te second goal was to provide new insights to
further enhance the efcacy of these approaches for future
clinical applications, with a main focus on the most recent
advancements, possible challenges, and future prospects.

2. PDBs Used in Clinical Therapies

Nowadays, PDBs are a promising treatment option in re-
generative medicine strategies with primary research fo-
cusing on their development and improvements [25, 26].
Platelet concentrates can easily be obtained by centrifugation
of the patient’s blood collected chairside [27]. Tese prod-
ucts are highly utilized in regenerative dentistry [28–30],
orthopedics [31], dermatology [32], etc. From their cellular
and molecular perspective, the high efectiveness of these
biomaterials is attributed to their high content of growth
factors, cytokines, and regenerative cells collected in
supraphysiological doses following centrifugation [33]. Both
their high bioactive content and their gradual release of
growth factors over time have made them valuable additions
to surgical protocols either when utilized alone or combined
with other biomaterials [33].

PDBs are classifed based on their preparation protocol
and whether or not an anticoagulant is added during their
preparation [29].Te frst generation of platelet concentrates
is termed platelet-rich plasma (PRP) which includes the
addition of an anticoagulant to the blood sample which
prevents clotting during the centrifugation cycle [34]. PRP is
the most widely studied platelet concentrate in regenerative
medicine with many investigations demonstrating its beneft
in cardiac surgery [35], osteoarthritis [36], osteoporosis [37],
dermal rejuvenation [34], and dentistry [38, 39]. It possesses
antimicrobial [40], anti-infammatory [41], and regenerative
properties [42]. A second generation platelet concentrate
was later termed platelet-rich fbrin (PRF) which was de-
veloped with the aim of removing the anticoagulant to favor
better healing (Since clotting is one of the frst steps to
healing) [28, 43, 44]. Unlike PRP which remains liquid in
nature, PRF forms a dense fbrin network with cell and
growth factor entrapment [45–47]. Tis feature aids PRF in
trapping and releasing bioactive agents over a 2-week period
while the fbrin network is more slowly being degraded
[45–47]. Studies have also shown that the release pattern of
growth factors can difer signifcantly between these two
biomaterials [30, 48]. As it is shown, PRP exerts a burst of
release in growth factors during the frst 8 h after preparation
[30]. However, PRF exhibits a gradual release of growth
factors in a 10–28 day period [30, 48]. Tis diference in the
release of growth factors has resulted in the better perfor-
mance of PRF in inducing cell proliferation and minerali-
zation of osteoblasts [48]. PRF is also demonstrated to excel
in neovascularization and wound healing when compared to
PRP [49]. From a clinical standpoint, the solid form of PRF
has made its application feasible in the areas where the liquid
form of PRP cannot be applied [50]. Moreover, some studies
have shown that by squeezing the PRF membrane, a liquid
exudate is obtained which is known as PRF releasate (PRFr)
and has some additional regenerative and antibacterial
properties [51]. Te fabrication process of PRP and PRF is

Postmenopause

Old age

Medications

Endocrine disorders

Hematopoietic disorders

Nutrition disorders

Inflammatory arthropathy

Risk factors

Bone mineral density

Imbalance of bone remodeling
Bone resorption

Risk of fracture

Determine the quality of life
and life expectancy

Osteoporosis

Figure 1: Risk factors for osteoporosis can cause an imbalance in
the remodeling process, leading to osteoporosis. Reproduce from
reference [7]. Copyright 2020, MDPI, licensed under the terms of
the Creative Commons Attribution License (CC BY).
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schematically illustrated in Figure 2 and briefy highlighted
in Table 1.

In 2017, the low-speed centrifugation concept (LSCC)
was introduced [54]. According to this concept, by modi-
fying the speed and time of centrifugation, the fnal PRF
matrix was more highly concentrated in cells and growth
factors. Based on the LSCC concept, a new form of PRF
named injectable-PRF (I-PRF) was further introduced [27].
Following centrifugation, liquid-PRF (which should theo-
retically be known as liquid fbrinogen and thrombin) has
yet to form a stable fbrin clot and can be injective similar to
PRP, yet is more biologically active [27]. Tis biomaterial is
increasingly utilized inmany felds of medicine and dentistry
owing to its numerous advantages [27, 55].

3. Role of PDBs in Osteoporosis

Several studies have demonstrated the efectiveness of
platelet concentrates for the treatment and management of
osteoporosis (Tables 2 and 3) [21–23, 37, 56–64]. All studies
were conducted on ovariectomized (OVX) animal models
including mice [22, 23, 37, 56], rats [21, 57–60, 62, 64], and
rabbits [61, 63]. In these studies, the systemic and localized
application of platelet concentrates (PRP or PRF) alone or in
combination with osteoinductive and osteoconductive
biomaterials has been investigated [21, 37, 57, 58, 60–64].
Furthermore, the additional use of mesenchymal stem cells
(MSCs) has also been studied [22, 23, 56, 59]. Figure 3
represents a schematic illustration in this regard. In the
following sections, the outcome of both systemic
[22, 23, 37, 56] and localized [21, 57–64] administration of
platelet concentrates is discussed (Tables 2 and 3).

3.1. Systemic Administration of PDBs in Osteoporosis. In this
section, our aim is to provide a thorough evaluation of the
outcomes related to the use of PDBs for osteoporosis when
administered throughout the body. In this regard, Sheu et al.
[23] have recently evaluated the efect of intravenous (IV)
injection of PRFr, adipose-derived stem cells (ADSCs), and
a combination of bon on the tibial growth plate of OVX
mice. Te IV injections were performed weekly for four
consecutive weeks, and then the radiographical and histo-
pathological results were obtained in the 8th week after the
frst injection [23].Temicrocomputed tomography (micro-
CT) analysis showed that the sole injection of PRFr, ADSCs,
or the combined application of PRFr +ADSCs signifcantly
enhanced BMD, the bone volume to total volume (BV/TV)
ratio, and the number of trabeculae inside the tibial bone
which is inversely associated with the trabecular separation.
No diference in the trabecular thickness was observed
compared to the control group (untreated OVX mice) [23].
In all three therapeutic interventions, the serum calcium
level of the rats was signifcantly enhanced; however, the
serum phosphate level was only signifcantly enhanced in the
group treated with PRFr +ADSCs. Tus, the authors [23]
concluded that the combined application of ADSCs and
PRFr was the most optimized treatment for the healing of
bone defects in these osteoporotic animals. In another study

byWong et al. [22], PRFr was used in conjunction with bone
marrow stem cells (BMSCs) and intravenously injected ei-
ther once only or once a week for 4 consecutive weeks during
the 8week study period. PRFr alone and BMSCs alone were
utilized as controls. Based on the micro-CT analysis after
8 weeks, the only group which showed signifcant im-
provements in enhancing BMD and decreasing trabecular
separation and spacing was the combined application of
PRFr and BMSCs (Figure 4) [22]. Both the PRFr +BMSCs
and BMSCs alone groups signifcantly improved BV/TV
while PRFr alone did not show any signifcant improvement
which slightly contradicted the outcomes of Wong et al.
[22, 23]. In their study, all groups demonstrated improve-
ments in BV/TV following 4 weekly injections [22]. Al-
though both Sheu et al. [23] and Wong et al. [22] performed
relatively similar studies in terms of their protocols and the
volume of the injection material, intervention time points,
and time of sacrifce, the sole efect of PRFr was deemed
more favorable in the study by Sheu et al. [23]. One noted
diference between the studies was the fact that the prepa-
ration of PRFr was diferent between the studies which may
have afected the results. Interestingly, it was observed that
IV injections of ADSCs yielded better outcomes when
compared to BMSCs for the treatment of osteoporosis
[22, 23]; however, further clinical studies would be required
to appraise these fndings.

Since MSCs therapy for the treatment of osteoporosis is
relatively expensive and more complicated than the utili-
zation of platelet concentrates [37], Liu et al. [37] have
assessed the sole efect of PRP injection in young and old
mice using an osteoporotic model. Although the injection
schedule and the volume of the injected PRP was not re-
ported, the results indicate that the injection of PRP reversed
the decreasing trend of BMD in the spine, knees, and femur
[37]. Moreover, the number of trabeculae and the BV/TV
ratio were signifcantly enhanced after 4months [37].

In addition to the aforementioned studies evaluating the
efcacy of PDBs in the treatment of osteoporosis through IV
injection, one study has utilized the bone marrow trans-
plantation approach to assess the efcacy of PDBs on os-
teoporosis. In this study [56], NIH3T3 embryonic fbroblasts
were treated with PRP to diferentiate into osteoblast-like
cells. In order to assess the efect of PRP on NIH3T3 cells,
four groups of the NIH3T3 cells only, PRP only, the
combination of PRP/NIH3T3 cells, and a negative control
group were prepared and applied for bone marrow trans-
plantation in OVX rat models [56].Te results indicated that
the combined application of PRP/NIH3T3 cells could en-
hance the expression of bone morphogenetic protein 2
(BMP-2) and osteopontin (OPN), resulting in reversing the
bone architecture catastrophe [56]. Te osteoblast-like cells
migrated towards the progressing osteoporotic lesions,
normalizing the bone morphology, BMD level, and tra-
becular architecture [56].

3.2. Local Administration of PDBs in Osteoporosis. In addi-
tion to the systemic administration of PDBs, their local
administration has also been extensively discussed in the
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literature. Te ensuing sections present a comprehensive
evaluation of the outcomes associated with the local ad-
ministration of platelet concentrates.

3.2.1. Bone Regeneration for Bony Defects. Te treatment of
local bony defects and fractures in patients with osteoporosis
can be quite challenging due to the reduced capacity of bone
regeneration and weakened strength of the bone. However,
the local application of PDBs has been shown to have
a positive impact on bone structure, accelerating the healing
process and promoting bone regeneration.

In order to manage the vertebral bone defects in oste-
oporosis, Cho et al. [60] evaluated the combined efect of
PRP and calcium-phosphate cement (CPC) for bone re-
generation in comparison to CPC alone, poly-
methylmethacrylate alone, and the sham group in a cau-
dal vertebral defect. Te combination was prepared by
soaking the CPC in a PRP+ solvent solution in a 10 :1 :1
volume ratio for 5minutes [60]. Based on the micro-CT
results 2weeks postsurgery, it was found that CPC+PRP
signifcantly outperformed other groups in enhancing BV/
TV [60]. It also exhibited signifcant improvements in
trabecular thickness, trabecular separation, BMD, and the
number of trabeculae [60]. Furthermore, based on the
histological results, CPC+PRP exerted the best outcomes in
bone regeneration when compared to all other groups [60].

However, the authors reported that the combination use of
CPC+PRP exhibited a lower modulus when compared to
the CPC group alone which might result in some short-
comings for clinical applications [60]. Correspondingly, in
another study by Sakata et al. [21], the efect of PRP + gelatin/
β-tricalcium phosphate (β-TCP) sponge was compared to
PBS + gelatin/β-TCP sponge and the control group (defects
with no treatment) for the treatment of an osseous defect in
the third lumbar vertebral spine. Te micro-CT results in-
dicated that by the 4th week, bone tissue was observed in
both the PRP+ gelatin/β-TCP sponge and the PBS + gelatin/
β-TCP sponge groups. Nevertheless, there was a signifcant
increase in the bone volume in the group treated with PRP
compared to the group treated with PBS at 8 and 12weeks
postop (P< 0.05) [21]. Tis showed the relative long-term
beneft of addition of platelet concentrates for bone re-
generation when applied locally and administered with other
osteoconductive biomaterials [21]. Moreover, according to
the mechanical tests of the bone specimens 12weeks post-
operatively, it was found that the bone specimens treated
with PRP+ gelatin/β-TCP sponge had signifcantly higher
stifness (P< 0.05) [21]. Te same results were observed
regarding the compressive strength test, although the results
were not statistically signifcant (P> 0.05) [21]. Amid these
facts, in conclusion, the local administration of PRP for the
treatment of vertebral defects resulted in some promising
benefts [21, 60]. Tough not seen in all studies concerning
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Figure 2: A schematic illustration regarding the preparation of 1st and 2nd generations of PDBs (PRP and PRF). Adapted from [52].
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the systemic administration of PRP/PRF [22, 23, 37], future
research is needed.

In another study by Engler-Pinto et al. [57], the appli-
cation of either (1) leukocyte- and platelet-rich fbrin
(L-PRF), (2) xenograft, or (3) L-PRF+ xenograft was com-
pared to the control group (calvaria defect flled with a blood
clot) in osteoporotic rats. Te comparison of L-PRF versus
xenograft in osteoporotic rats indicated that runt-related
transcription factor 2 (RUNX2), osteocalcin (OCN), and
BMP 2/3 genes expression are equally enhanced in both
groups [57]. On the other hand, vascular endothelial growth
factor (VEGF) expression levels were signifcantly upregu-
lated in the group treated with L-PRF [57]. Tis indicates
that one of the main advantages of PDBs is the concomitant
induction of neoangiogenesis along with osteogenesis [27].
Based on the results of the aforementioned study [57], the
highest outcomes taking into consideration bone re-
generation and the expression level of angio/osteogenic
factors were obtained in the L-PRF + xenograft group by
combining the osteoconductive properties of xenografts and
enhanced bioavailability of angiogenic and osteogenic
growth factors by L-PRF.

In addition, a study byWei et al. [59] compared PRP and
BMSCs to treat an osseous tibial defect either alone and
combined over 42 days. Te defects were flled with PBS,
PRP (20 μL), or/and BMSCs (1× 106 cells). Based on the
micro-CT results, the only groups that showed signifcant
improvements between the 42nd and 7th day postoperatively
in trabecular number, trabecular separation, trabecular
connectivity density, and BV/TV ratio were the groups

treated with PRP-alone and PRP+BMSCs (Figure 5) [59].
According to the histological results, it was shown that by
the 42nd day, the thickness of each callus was similar to the
adjacent cortical and lamellar bone in the group treated with
PRP+BMSCs; however, there was still woven bone in the
specimens treated with either PRP or BMSCs [59]. Based on
the reviewed data, these combined fndings demonstrate that
the application of PRP+BMSCs can signifcantly promote
bone regeneration in the defect areas among osteoporotic
animals.

However, it is shown that the combined application of
PDBs and MSCs may not necessarily induce synergistic
efects [58]. In a study by Rocha et al. [58], a hydrolyzed
collagen hemostatic sponge was used as a scafold to deliver
PRP, MSCs, or PRP+MSCs to bone defects in osteoporotic
rabbits. Te results of the radiographic optical densitometry
of the group only treated with MSCs exhibited higher values
60 days after surgery compared to the sole application of
PRP or PRP+MSCs [58]. On the other hand, the application
of PRP was similar to PRP+MSCs in terms of radiographic
optical densitometry [58].

3.2.2. Bone Regeneration for Implant Osseointegration.
Osteoporosis can also afect the bone microarchitecture
which also results in more complex healing of fractures and
osseous defects [66]. Since implants are one of the most
predictable treatment modalities to restore function and
esthetics in hard tissues [67, 68], the efect of osteoporosis on
implant stability and survival rate has also been widely

Platelet-derived
Biomaterials Preparation

Rat/Mouse Or Rabbit

With or Without Mesenchymal
Stem Cells (MSCs)

Or

Osteoinductive/Osteoconductive
Biomaterials

Systemic or Local Administration of Platelet-derived Biomaterials

Osteoporotic Trabecular Bone Normal Trabecular Bone

Decrease Adipogenic Differentiation
Decrease Bone Resorption

Increase Osteogenic Differentiation
Increase Bone Regeneration

Figure 3: Schematic fgure of the preparation method of PDBs and their therapeutic efects on osteoporosis.
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studied [69–74]. Unsurprisingly, osteoporosis is found to be
a signifcant factor afecting peri-implant bone loss [71];
however, the exact mechanism of osteoporosis on implants
requires a thorough investigation.

In this regard, Zhu et al. [64] have investigated the
synergistic efect of dental implants with TiO2 nanoporous
modifcation with PRP on implant stability in an osteopo-
rotic rat model. Prior to implant placement, 0.1mL/leg PRP
was injected into the bone marrow cavity of the tibias of each
rat, and the implants were placed in the medullary canal of
the tibias [64]. Te results indicated that the application of
PRP with a control implant without surface modifcation did
not enhance osseointegration; however, the sole applica-
tion of dental implants with TiO2 nanoporous modifcation
could signifcantly enhance osseointegration (P< 0.05). In
addition, the combined application of PRP and the mod-
ifed implants showed signifcantly better results in most of
the measurements, including bone volume to total volume
ratio, trabecular number, trabecular spacing, and trabec-
ular connectivity density [64]. According to the histological
results, the bone/implant contact ratio was highest for the
group treated with PRP + surface-modifed implants. Tis
group also exhibited the highest volume of mature bone

surrounding the implants [64]. Tese results indicate the
potential benefts of the application of platelet concentrates
during implant placement in patients diagnosed with os-
teoporosis [64]. Arguably, the adjunctive utilization of
PDBs with standard treatment protocols could provide
patients with better results and a more efective healing
process.

Concerning the efcacy of PRP on the osseointegration
of titanium implants, in another study by Qiao et al. [63], the
lateral condyle of the distal femur of OVX rat models was
used to assess the impact of two types of PRP coatings
(freeze-dried and conventional) on the osseointegration of
titanium implants. In in-vivo experiments, it was found that
the addition of both freeze-dried and conventional types of
PRP in comparison to no coating could exert signifcant
outcomes in terms of osteogenic-related gene expression,
newly regenerated BV, trabecular characteristics (thickness,
number, and separation) as well as the histological and
histomorphometrical assessment of the new bone [63].
Interestingly, these outcomes were signifcantly higher in
freeze-dried PRP in comparison to PRP alone when used in
conjunction with porous titanium implants in osteoporosis
models [63].
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Figure 4: (a) Micro-CT images of ovariectomized mice in the untreated control (OVX) or experimental groups which received single/
quadruple injections of either PRFr, BMSCs, or in combination therapy (PRFr + BMSCs). Comparison of a coronal and axial view of
microCT images in diferent groups. (b–e) Te BMD, bone volume versus total tissue volume (BV/TV, %), trabecular number (Tb. N), and
trabecular separation (Tb. Sp) in each group of mice were evaluated 8weeks after injection. Te bars show the mean± SD (n� 6) of each
group. ∗P< 0.05; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001. (f ) 3D reconstructed images of ovariectomized mice in the untreated control (OVX) or
experimental groups which received single/quadruple injections of either PRFr, BMSCs, or PRFr + BMSCs (upper panel). Te red region in
the lower panel represents the 3D scope of the newly formed trabecular bone in the proximal tibial. (g–n) Histological sections of proximal
tibial bony architecture in non-OVX mice (g) and OVX mice (h) stained by hematoxylin and eosin (H & E). (i–n) Proximal tibial sections
from mice received single/quadruple injections of either PRFr, BMSCs, or PRFr + BMSCs. Te black arrows indicate newly formed bony
trabeculae. Scale bar: 2.5mm. Reproduced from [22]. Copyright 2020, Springer Nature, licensed under the terms of the Creative Commons
Attribution License (CC BY).
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Reproduced from [59]. Copyright 2016, Hindawi, licensed under the terms of the Creative Commons Attribution License (CC BY).
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Moreover, Sun et al. [62] evaluated the efect of calcium
phosphate and PRP on the titanium implant osseointegra-
tion and bone regeneration of rat tibia defects. Te results of
BV, trabecular number, trabecular separation, and histo-
logical outcomes have indicated that the sole application of
PRP accompanied with titanium has better results when
compared with titanium alone (P< 0.05) [62]. However, the
sole application of calcium phosphate-modifed titanium has
shown better outcomes than the sole application of PRP
(P< 0.05) [62]. Te highest outcomes in terms of BV, tra-
becular number, trabecular separation, and histological were
obtained when PRP was used adjunctively with calcium-
phosphate modifed titanium implants [62]. Te results
indicate that the surface modifcation of titanium implants
with calcium-phosphate may be more impactful compared
to the adjunctive application of PRP in terms of bone re-
generation [62, 64]. Tis may be attributed to the longer
efect of calcium phosphate compared to the fast degradation
rate of PRP [29, 62, 64].

Among the aforementioned studies assessing the impact
of PDBs on osseointegration [62–64], no study has assessed
PRF [62]. In this context, Omar et al. [61] have assessed the
combined efect of local administration of PRF and the
systemic administration of calcitonin on the osseointegra-
tion of tibia implants. Tis study consisted of three groups:
implant alone, implant combined with calcitonin, and im-
plant with the combined application of calcitonin and PRF
in the tibia defect of osteoporotic rabbit models [61]. Twelve
weeks after insertion of implants, the animals were eutha-
nized, and the specimens were evaluated in terms of the
width of the gap between bone and the implant threads as
well as the percentage of the implant area covered with bone
[61]. Te results indicated that the group containing both
calcitonin and PRF (0.63± 0.005 μm) had signifcantly less
gap width compared to the sole application of calcitonin
with implants (1.85± 0.52 μm) and the group of implants
alone (5.98± 0.74 μm) (P< 0.001). Moreover, upon assess-
ment of the percentage of implant surface area covered with
bone, it was similarly demonstrated that the group con-
taining both calcitonin and PRF (95.68± 2.7%) had signif-
icantly higher values compared to the sole application of
calcitonin with implants (54.26± 4.1%) and the group of
implants alone (21.76± 4.8%) (P< 0.001). Te authors have
concluded that the combined application of the local PRF
and systemic calcitonin can be an efective technique to
accelerate and enhance bone regeneration and osseointe-
gration around bone implants [61].Te variables assessed by
the study conducted by Omar et al. [61] were more clinically
practical to assess the level of implant surface osseointe-
gration compared to the previous studies [62–64].

4. Rationale for Selection between Systemic or
Local Administration of PDBs

As mentioned previously, numerous studies have explored
the use of systemic and local administration of PDBs
[21–23, 37, 56–64]. However, what are the considerations
and rationales guiding the choice between systemic or local
utilization of these biomaterials?

Te systemic administration of platelet concentrates has
demonstrated potential for enhancing bone microstructure
in a generalized manner, leading to improved bone healing
and regeneration throughout the skeletal system. Consid-
eration may be given to systemic administration as a sup-
plementary therapy to promote overall skeletal health. On
the other hand, local administration of platelet concentrates
has shown notable benefts for osteoporotic bone structures.
It promotes bone regeneration and osseointegration in
proximity to bone implants, while also stimulating osteo-
genic diferentiation and counteracting the propensity to-
ward adipogenic diferentiation within the bone structure.
Te utilization of local administration can be contemplated
as an adjunct treatment option for targeted enhancement of
bone regeneration and osseointegration.

Given the extent of the disease and patient-specifc
factors, the choice between local and systemic administra-
tion of PDBs should be carefully considered. Further in-
vestigation is needed to better understand the nuances
associated with each approach, to assess the magnitude of
their efects, and to achieve more conclusive results.

5. Molecular Mechanism
of PDBs in Osteoporosis

Bone hemostasis or remodeling is a continuous process in
which new bone tissue is formed by osteoblasts through
bone formation, and mature bone tissue is broken down by
osteoclasts through bone resorption [75] (Figure 6). Os-
teoblasts, which are responsible for bone formation,
originate from MSCs. Te transcription factor RUNX2 is
crucial for osteoblast diferentiation, and its expression
stimulates MSCs to become osteoblasts. RUNX2 is regu-
lated by signals such as BMPs and the Wnt/β-catenin
pathway. BMPs activate RUNX2 through phosphorylation
of SMAD1/5/8, while Wnt proteins increase RUNX2 levels
via β-catenin stabilization or protein kinase Cδ [76]. On the
other hand, osteoclasts, which are responsible for bone
resorption, diferentiate from hematopoietic stem cells in
response to monocyte/macrophage colony-stimulating
factor (M-CSF) and RANKL stimulation [76]. RANKL,
produced by osteoblasts and osteocytes, binds to RANK on
osteoclast precursor cells, leading to their diferentiation
into osteoclasts. Osteoprotegerin (OPG) which is also
produced by osteoblasts prevents RANKL binding to
RANK and infuences the regulation of osteoclast activity.
Te interaction between RANKL, RANK, and OPG is es-
sential for maintaining bone homeostasis by regulating
osteoclast function [76].

In contrast to bone hemostasis, osteoporosis is caused by
an imbalance in the bone remodeling process. Osteoporosis
leads to a decrease in the secretion of OPG by osteoblasts and
an increase in the expression and secretion of RANKL,
interleukin 1(IL-1), IL-6, IL-11, and tumor necrosis factor α
(TNF-α). Tese compounds directly stimulate greater for-
mation and activity of osteoclasts.Te reduced levels of OPG
also allow for stronger binding of RANKL to RANK, further
facilitating increased osteoclastogenesis and bone resorption
[77]. In addition, in osteoporotic patients, BMSCs have
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a reduced ability to diferentiate into osteoblasts and an
increased tendency to diferentiate into adipocytes.Tis dual
efect contributes to a further decrease in bone formation
and an increase in the accumulation of fat within the bone
marrow. In this process, PPAR-c plays a crucial role by
promoting adipogenic diferentiation of BMSCs by regu-
lating the expression of adipogenic genes [78].

According to the existing evidence, PDBs seem to reverse
osteoporosis by enhancing the number of osteoblast-like
cells and inducing osteogenic diferentiation while inhibiting
adipogenic diferentiation [37]. Te trans-diferentiation of
adipocytes to osteoblasts by platelet concentrates is per-
formed by gene knockout of PPAR-c and leptin which are
indicators of adipogenic diferentiation. On the other hand,
the transcriptional and translational markers of osteogenic
diferentiation (RUNX2, OPN, and OCN) enhance due to
the presence of platelet concentrates [37]. In addition,
RANKL, an osteoclast bone resorption factor, seems to have
decreased in the presence of platelet concentrates [37]. PDBs
also encompass a wide variety of growth factors [79], in-
cluding platelet-derived growth factor (PDGF), vascular
endothelial growth factor (VEGF), insulin-like growth factor
(IGF), and transforming growth factor-β (TGF-β). It has
been demonstrated that PDGF can induce osteoblast pro-
liferation and diferentiation [37, 80]. Moreover, VEGF can
enhance neoangiogenesis and its ability to activate BMP
signaling pathways that can further enhance osteogenic
diferentiation [81]. Furthermore, TGF-β1 has been shown
to have inhibitory efects on adipogenic diferentiation while
also exhibiting positive efects on osteogenic diferentiation
[37, 82–84]. IGF seems to be an important compound in the

synthesis of bone matrix and the elimination of fat tissue
[37, 85]. In a study conducted by Liu et al. [37], 3T3-L1 cells
(mouse preadipocytes) were treated with PRP to see whether
their phenotypes would be modifed towards osteogenic
diferentiation. Tey found that the presence of PRP en-
hanced the dynamic expression of BMP-2 and its receptor
(BMPR) [37]. On the other hand, another isoform of
BMPR-IB is BMPR-IA which is a receptor for BMP-2 for
adipogenic diferentiation and is deactivated by BMP-2 [37].
Tis process explains why platelet concentrates have the
potential to simultaneously enhance osteoblastic diferen-
tiation and inhibit adipogenic diferentiation [37].

Te potential therapeutic efects of platelet concentrates
specifcally in osteoporotic patients can also be explained by
the fact that platelets’ function and morphology tend to
exhibit deviations from normal function in the population of
people with osteoporosis [86]. Te evaluation of serum
platelets in osteoporotic patients has shown interesting re-
sults [86]. Concerning the function and morphology of
serum platelets mean platelet volume (MPV) [87, 88] and
platelet distribution width (PDW) [87] in osteoporotic
patients, it was shown that the aforementioned factors are
associated with BMD and tend to decrease in patients with
osteoporosis. It has also been demonstrated that the platelet-
to-lymphocyte ratio is associated with low BMD, especially
in the femoral and lumbar parts which are key areas in
determining and measuring BMD during osteoporosis di-
agnosis [89, 90]. What is more, platelet-activating factor
(PAF) may afect platelet function, leading to an increased
risk of osteoporosis. Te assessment of the serum concen-
tration of PAF in osteoporotic women has demonstrated
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that a low PAF serum level is associated with an increased
presence of vertebral fractures and lower BMD [91].

Based on the evidence concerning the importance of
platelet function and morphology in patients with osteo-
porosis [86], it can be postulated that these platelets alter-
ations associated with the aging process can yield gradual
deterioration in osteoporotic patients.

6. Comparison of PDBs to Standard
Treatments in Osteoporosis

To evaluate the suitability of PDBs for treating osteoporosis,
it is important to compare their efcacy, safety, and adverse
efects with the established pharmacological treatment ap-
proaches currently used. Since bisphosphonates are widely
used as the standard treatment options for osteoporosis in
clinical practice [92], we have selected them for such
a comparison. Tis assessment will provide insights into the
applicability of PDBs and aid in determining their potential
benefts and limitations for osteoporosis treatment.

Regardless of their safety and adverse efects, bisphosph-
onates have been extensively studied and proven to efectively
reduce the risk of bone fractures. However, their efcacy can
vary depending on various factors such as bone density, age,
and other individual risk factors [93]. On the other hand,
numerous studies have demonstrated the positive efectiveness
of PDBs in promoting bone tissue regeneration [94]. PDBs
contain high levels of growth factors and regenerative cells,
enabling them to stimulate osteogenic diferentiation and in-
hibit adipogenic diferentiation [37, 95]. However, there is still
limited research specifcally investigating the efects of PDBs on
osteoporosis. Additionally, there is a lack of studies directly
comparing the efcacy of PDBs with bisphosphonates or other
treatment options for osteoporosis. As a result, it is challenging
to make a direct comparison regarding their efectiveness.

In terms of safety and adverse efects, PDBs are generally
considered safe and have a low risk of adverse efects. Tis is
primarily due to their autologous nature, which reduces the
chances of immune reactions [26, 47]. However, since the
procedure for obtaining PDBs involves a blood draw, patients
should make sure they are well hydrated and have eaten be-
forehand to prevent feeling lightheaded. It’s also crucial to
consider the potential side efects associated with the admin-
istration of PDBs.Tese may include minor complications like
bleeding, tissue damage, infection, and nerve injury. Unlike
PDBs administration, it’s important to note that there can be
some severe complications associated with bisphosphonate
treatment due to their chemical nature. Tese potential
complications may include gastrointestinal side efects, acute
phase response, renal failure, osteonecrosis of the jaw, atypical
femoral fractures, atrial fbrillation and cardiovascular risk,
musculoskeletal pain, ocular pain, and cutaneous manifesta-
tions [96]. It should also be noted that these adverse efectsmay
vary depending on whether the medication is taken orally as
tablets or given intravenously through infusion [97].

 . Limitations and Future Prospects

Until now, no study has comprehensively reviewed platelet
concentrates and their efect on osteoporotic defects.
Undoubtedly, outcomes from these studies decisively
suggest the benefcial efects of platelet concentrates to
minimize the detrimental impact of osteoporosis and also
improve the healing process of bone [21–23, 37, 56–64].
However, this paper heavily relies on in vitro and in vivo
experiments to support the efcacy of PDBs in osteoporosis
treatment. While these studies provide valuable insights,
the absence of substantial clinical evidence involving hu-
man subjects is a major concern, and the extrapolation of
animal results to human applications needs to be addressed
with caution. Terefore, it is essential to conduct future
randomized controlled trials (RCTs) to evaluate the ef-
cacy, safety, and cost-efectiveness of platelet concentrates
in comparison to conventional treatment options for pa-
tients diagnosed with osteoporosis, especially those with
comorbidities. Tese RCTs should also take into consid-
eration risk factors such as age and polypharmacy. By
conducting such studies, we can obtain more substantial
evidence to determine the potential benefts and drawbacks
of platelet concentrates in clinical applications for osteo-
porosis treatment.

In addition, outcomes from the administration of the
new generation of liquid platelet concentrates called I-PRF
have shown promising outcomes in regenerative medicine,
especially bone tissue regeneration [22, 23, 37]. In this
regard, the authors postulate that the application of I-PRF
would further enhance the benefcial efects of platelet
concentrates when compared to PRP or PRFr since I-PRF is
a richer source of growth factors [29, 55]. Moreover, since
the duration of growth factors released from platelet con-
centrates is dependent upon their degradation time, new
attempts have been made to prolong their degradation time
[98, 99]. In this regard, crosslinking with carbodiimide [98]
or utilization of a new generation PRF named albumin gel-
PRF (Alb-PRF) [99] has provided new opportunities for
these biomaterials to be utilized over extended periods.
Terefore, future studies can focus on the administration of
I-PRF and Alb-PRF for the treatment of osteoporosis in
in vitro and in vivo environments.

Furthermore, this review article showed that many
more studies were conducted on the local administration
of PDBs in comparison to their systemic administration.
Even though the local administration of platelet con-
centrates has shown positive results in all the studies
[21, 57–64], it is important to note that such efects were
merely limited to the defect area, while their systemic
administration may have potential general benefts within
the skeletal system [22, 23, 37, 56]. Hence, further studies
are required to be conducted on the systemic application
of PDBs to prove whether they are truly benefcial for the
skeletal system.
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8. Conclusion

Considering the limitations of this review, it can be con-
cluded that both the local and systemic administration of
platelet concentrates can have a benefcial efect on osteo-
porotic bone structures. However, the magnitude of such an
efect and the choice of systemic versus local administration
of platelet concentrates are dependent upon the vastness of
the disease. Based on the molecular and cellular mechanisms
regarding the efects of platelet concentrates on osteoporosis,
arguably, PDBs can reverse adipogenic diferentiation to-
wards osteogenic diferentiation. Although the results of the
existing studies seem promising, it must be emphasized that
all studies to date were conducted using in vitro and non-
human in vivo models. Terefore, further future clinical
studies are needed to ensure the clinical efcacy of platelet
concentrates in patients diagnosed with osteoporosis.
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