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In this work we investigated the inhibiting effect of sodium citrate, an environmentally safe corrosion inhibitor, on low-alloy steel
09G2S in a neutral environment using electrochemical methods. Potentiodynamic studies showed that sodium citrate reduces
corrosion currents of 09G2S steel in a 0.1% NaCl solution and reaches its maximum efficiency at a concentration of 2.5 g/l.
Electrochemical impedance spectroscopy results indicate the adsorption of citrate ions and the formation of a protective film,
which probably consists of Fe-citrate complexes. The formation of a protective film on the steel surface in sodium citrate-
inhibited solutions was confirmed by the results of scanning electron microscopy and EDX analysis. Hence, our research shows
that sodium citrate has satisfactory anticorrosion properties and can be used as a basic component during the development of
environmentally safe inhibitor compositions for the protection of low-alloyed carbon steels in neutral environments of
recirculating water supply systems in petroleum refineries, petrochemical plants, and other industries.

1. Introduction

Corrosion inhibitors are one of the most practical and cost-
effective methods of anticorrosion protection. They are
widely used to protect metals and alloys from the effects of
corrosive environments. Corrosion inhibitors can be organic
or inorganic in nature [1–7] and are classified depending on
the method of use and the specificity of the inhibitory effect.
However, a significant part of them can pose a danger to the
environment and people. Therefore, there is a need to min-
imize the use of such harmful substances and to replace
them with environmentally safe alternatives. Great examples
of alternative inhibitors are substances based on natural
products, e.g., plant extracts [8–13]. In addition to being
environmentally friendly, such inhibitors have high solubil-
ity and effectiveness. Besides, they are readily available on
the market and are cost-efficient, which altogether makes
them very attractive for industrial use [14, 15].

Carboxylic acid salts are used as corrosion inhibitors or
as components of synergistic anticorrosion compositions,
which are environmentally safe and effective against corro-

sion in a number of metals and alloys in various environ-
ments [16–18]. A typical inhibitor for steel, zinc, copper,
and aluminum alloys is sodium benzoate (C6H5COO-
Na)—the sodium salt of benzoic acid [19, 20]. Sodium
potassium tartrate is an effective cosynergist in inhibiting
composition for the protection of aluminum alloys in 0.5%
NaCl solution [21]. Furthermore, the inhibition efficiency
of sodium potassium tartrate in combination with propargyl
alcohol was shown for aluminum alloy AA3003 in a 0.5%
NaCl solution [22]. The components of the mixture demon-
strated satisfactory efficiency at concentrations of 1–1.5mm
when used separately. But when they were combined, a syn-
ergistic effect was observed resulting in overall higher inhibi-
tion efficiency. The optimum ratio of tartrate to alcohol in
the mixture was 5 : 2.

Numerous papers report the inhibitory efficiency of the
sodium salt of citric acid Na3C6H5O7 [23, 24]. The inhibi-
tion of steel corrosion by sodium citrate in an environment
simulating a corrosive solution in the pores of concrete, in
the presence and absence of chloride anions, was investi-
gated in the work of [25]. 200 ppm sodium citrate was
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shown to provide 98% corrosion inhibition efficiency in the
absence of chloride anions. In another work [26], the protec-
tive anticorrosion effect of phosphonic acid was enhanced by
sodium citrate to inhibit the corrosion of low-carbon steel in
a neutral chloride environment. The maximal effectiveness
of the corrosion inhibition was achieved at 25 ppm of
sodium citrate. Based on these findings, it was hypothesized
that corrosion inhibition occurs due to the formation of a
protective layer consisting of “Fe2+-sodium citrate” complex
compounds on the metal surface.

Thus, the research of anticorrosion properties of carbox-
ylic acid salts, both as individual substances and components
of inhibitory compositions, is highly relevant for the devel-
opment of environmentally safe industrial inhibitors.

Low-alloy silicon-manganese steel 09G2S is widely used
to manufacture recirculating water supply systems in petro-
leum refineries, petrochemical plants, and oil production
equipment [27, 28]. The low-carbon content in this steel is
combined with a ferrite/lamellar pearlite structure. Until
now, the effect of citrates on the corrosion of silicon-
manganese steels has not been sufficiently studied.

Therefore, the purpose of this work is to investigate the
inhibitory effect of sodium citrate (sodium salt of citric acid)
to increase the corrosion resistance of low-alloy structural
steel 09G2S in neutral environments.

2. Materials and Methods

Sodium citrate (Na3C6H5O7) in the form of a white crystal-
line powder was added to the corrosive medium. The
sodium salt of citric acid is a water-soluble environmentally
safe substance; citric acid is a part of the metabolic cycle of
living organisms. It is widely used in the food industry
mainly as a flavour additive or preservative. Its structural
formula is depicted in Figure 1.

In this study, samples of the low-alloy low-carbon steel
09G2S were used. The steel composition is provided in
Table 1.

2.1. Potentiodynamic Studies. The corrosion resistance of
09G2S steel was investigated by the method of potentiody-
namic polarization in a 0.1% NaCl solution with the addi-
tion of sodium citrate at different concentrations (0.5–
3.0 g/l), using an MTech COR-500 potentiostat, an Ag/AgCl
reference electrode, and an auxiliary platinum electrode. The
potential scanning rate during the experiments was 2mV/s.
The working area of the steel sample was 1 cm2.

2.2. Electrochemical Impedance Spectroscopy. The corrosion
resistance of 09G2S steel was also investigated by the
method of electrochemical impedance spectroscopy (EIS).
For this, a three-electrode cell was used, which consisted of
a saturated silver/silver chloride reference electrode, a plati-
num auxiliary electrode, and a working electrode—the test
sample. Impedance measurements were carried out at open
circuit potential using a VersaSTAT 3 potentiostat-
frequency response analyzer in the frequency range of
10000–0.01Hz. The amplitude of the applied signal was
10mV. An equivalent electrical circuit, which included solu-

tion resistance Rs, charge transfer resistance Rct, and double
layer capacitance as constant phase element (CPE), was used
to calculate the components of the impedance (Figure 2).

2.3. Scanning Electron Microscopy. The surface morphology
and elemental composition of the 09G2S steel upon expo-
sure to the studied solutions were investigated on a Zeiss
EVO-40XVP scanning electron microscope (SEM) with an
INCA Energy 350 EDS X-ray microanalysis system. A ZEISS
Stemi 2000-C optical metallographic microscope with a
Sigeta video camera and appropriate image processing soft-
ware was used to study the microtopography of the surface
of the samples.

2.4. Gravimetric Studies. Gravimetric tests were performed
on 09G2S steel samples of rectangular shape 20 × 15mm in
size and 2.5mm thick. Before the test, the surface of the sam-
ples was cleaned and polished on grinding wheels with fine
abrasive paper. The samples were degreased with acetone,
dried, and kept in a desiccator for 2 h. After exposure to
the corrosion solution, the samples were dried, mechanically
cleaned from corrosion products with a white eraser, washed
in acetone, dried again, and weighed.

The corrosion rate Km (g/cm2∙h) was determined after
sample exposure to corrosion solution. The calculation was
done according to the formula:

Km = Δm
Sτ

, ð1Þ

where Δm is the change in sample weight after exposure to a
corrosive environment and removal of corrosion products,
g; S is the sample area, cm2; and τ is its exposure time, h.

The degree of protection in the environment with
sodium citrate was determined according to the following
formula:

Z = Kuninh − K inh
Kuninh

100%, ð2Þ

where Kuninh, K inh is the steel corrosion rate in uninhibited
and inhibited environments, respectively.

3. Results and Discussion

The polarization curves of 09G2S steel after 3 and 24 h of
exposure to a 0.1% NaCl solution with different concentra-
tions of sodium citrate are shown in Figure 3. The corrosion
potential (Ecor) and density of corrosion current (Icor) were
determined from the polarization data. After 3 h of exposure,
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Figure 1: Structural formula of sodium citrate.
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the electrochemical characteristics of steel indicate an
increase in its corrosion resistance in inhibited solutions, as
evidenced by a decrease in corrosion currents. The maxi-
mum protective effect is observed at an inhibitor concentra-
tion of 2.5 g/l and it persists for 24h, probably due to the
adsorption of citrate ions on the steel surface. The subse-

quent increase in concentration to 3.0 g/l does not result in
further increase of the inhibitory effect of sodium citrate
(Table 2). The polarization dependencies show that the cit-
rate inhibitor slows down the metal oxidation and oxygen
reduction reactions that occur at the anode and cathode,
respectively. In the presence of sodium citrate in the

Table 1: Chemical composition of steel 09G2S.

Material
Content of elements (mass%)

C Si Mn Ni Cr Cu S P Fe

Steel 09G2S ≤0.12 0.5-0.8 1.3-1.7 ≤0.3 ≤0.25 ≤0.3 ≤0.04 ≤0.03 Balance

CPE

Rs

Rct

Figure 2: The equivalent electrical circuit for fitting EIS spectra.
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Figure 3: Polarization curves of 09G2S steel after 3 hours (a) and 24 hours (b) of exposure to a 0.1% NaCl solution with sodium citrate
concentration of (1) 0 g/l, (2) 0.5 g/l, (3) 1.0 g/l, (4) 1.5 g/l, (5) 2.0 g/l, (6) 2.5 g/l, and (7) 3.0 g/l.

Table 2: Electrochemical characteristics of steel 09G2S after exposure to 0.1% NaCl solution with different concentrations of sodium citrate.

C (g/l)
Exposure time

3 hours 24 hours
Есor (V) icor (mA/cm2) Есor (V) icor (mA/cm2)

0 -0.55 7:0 · 10−3 -0.67 7:0 · 10−3

0.5 -0.51 6:8 · 10−3 -0.64 6:1 · 10−3

1.0 -0.53 6:4 · 10−3 -0.63 6:0 · 10−3

1.5 -0.43 4:5 · 10−3 -0.65 5:8 · 10−3

2 -0.43 4:0 · 10−3 -0.62 5:6 · 10−3

2.5 -0.50 3:4 · 10−3 -0.56 5:6 · 10−3

3.0 -0.53 5:6 · 10−3 -0.66 6:2 · 10−3
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corrosive environment, the cathodic and anodic currents of
steel decrease approximately equally, and the shift in the
corrosion potential is insignificant, which indicates mixed
control of metal corrosion by this inhibitor. The inhibitor
protective effect can probably be associated with the forma-
tion of an adsorption monolayer of citrate ions with com-
plete saturation of the adsorption bonds on the surface.

Samples of 09G2S steel were investigated upon exposure
to solutions with different sodium citrate content using the

method of electrochemical impedance spectroscopy (EIS).
It should be noted that the results of polarization measure-
ments are consistent with EIS studies.

It was discovered that the value of the charge transfer
resistance of the steel sample increases with increasing con-
tent of sodium citrate in the solution, and at a concentration
of 2.5 g/l, the resistance value is 3 times higher compared to
an uninhibited solution of 0.1% NaCl (Figure 4, Table 3).
This result can be attributed to the adsorption of sodium
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Figure 4: Frequency dependencies of impedance modulus of 09G2S steel after 3 hours (a) and 24 hours (b) of exposure to a 0.1% NaCl
solution with a concentration of sodium citrate of (1) 0 g/l, (2) 1.0 g/l, (3) 1.5 g/l, (4) 2.0 g/l, and (5) 2.5 g/l.

Table 3: Impedance characteristics of 09G2S steel after exposure to 0.1% NaCl solution with different concentrations of sodium citrate.

C (g/l)
Rs (ohms⋅cm2) Rct (ohms⋅cm2) СРЕ (sn/ohms⋅cm2) n

3 hours 24 hours 3 hours 24 hours 3 hours 24 hours 3 hours 24 hours

0 206 192 866 836 1:79 · 10−3 2:06 · 10−3 0.71 0.66

1.0 155 164 1540 1257 0:25 · 10−3 1:61 · 10−3 0.73 0.55

1.5 122 133 2323 1313 0:18 · 10−3 1:70 · 10−3 0.79 0.64

2.0 114 116 2269 1694 0:29 · 10−3 1:25 · 10−3 0.74 0.60

2.5 99 110 2677 1859 0:39 · 10−3 1:20 · 10−3 0.73 0.65
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Figure 5: Frequency dependencies of phase angle of 09G2S steel after 3 hours (a) and 24 hours (b) of exposure to a 0.1% NaCl solution with
a concentration of sodium citrate of (1) 0 g/l, (2) 1.0 g/l, (3) 1.5 g/l, (4) 2.0 g/l, and (5) 2.5 g/l.
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citrate on the steel surface due to its hydroxyl and carboxyl
functional groups. The introduction of sodium citrate as a
corrosion inhibitor into the corrosive solution contributes
to the decrease of the CPE, which corresponds to the

double-layer capacitance of steel. The parameter n of CPE
characterizes the degree of geometric and energy heteroge-
neity of the metal surface [29]. A decrease in the value of n
due to an increase in the duration of exposure to 24h
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Figure 6: The surface of 09G2S steel samples after 24 hours of exposure to a 0.1% NaCl solution inhibited by sodium citrate with a
concentration of (a) 0.5 g/l, (b) 1.0 g/l, (c) 1.5 g/l, (d) 2.0 g/l, and (e) 2.5 g/l.
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indicates a change in surface heterogeneity, which can prob-
ably be associated with the formation of both a protective
film and a partial accumulation of corrosion products on
the steel surface (Table 3).

An increase in the maximum of frequency dependence
of the steel phase angle and its shift towards higher frequen-
cies of alternating current in the inhibited corrosive solution
also indicate the formation of a protective film with
improved barrier properties on the electrode surface
(Figure 5).

After 24h of exposure to a 0.1% NaCl solution with the
addition of sodium citrate, the surface of the 09G2S steel
was examined by scanning electron microscopy, and its
chemical composition was determined using EDX analysis
(Figure 6, Table 4). Upon exposure to the environment
inhibited by sodium citrate with a concentration of 0.5 g/l,
the surface of 09G2S steel is developed and covered with cor-
rosion products, namely, iron oxides/hydroxides. Also, Cl
content was found on the surface of the studied material,
which is obviously related to the formation of iron chlorides
on steel after 24 hours of exposure according to the reaction:
Fe2++2Cl−→FeCl2 [30]. It was previously shown that corro-
sion products of steel in a chloride-containing environment
may contain akagenite FeO(OH,Cl) [31, 32]. Also iron
hydroxychloride b–Fe2(OH)3Cl can be present in corrosion
layers on steel [33]. In addition, it should be noted that the
Na content on the metal surface is probably related to the
accumulation of sodium chloride in corrosion products.

The number of corrosion damages and corrosion prod-
ucts gradually decreases on the steel surface with an increas-
ing concentration of sodium citrate in the corrosive solution
(Figure 6). At a sodium citrate concentration of 2.5 g/l, a
homogeneous protective film is observed, which blocks the
penetration of the corrosion solution to the metal surface.
The increased carbon content on the steel surface at low
concentrations of sodium citrate (Table 4) is probably
related to the adsorption of the inhibitor on a relatively thick

layer of corrosion products. At concentrations of 2 g/l and
2.5 g/l of sodium citrate in a corrosive environment, the
amount of carbon on the metal surface decreases to 2.65
and 3.3 mass%, respectively, and the Fe content increases
to over 90 mass%. At an inhibitor content level of 2.5 g/l, a
dense adsorption film (Figure 6(e)) with high protective
properties is formed on the steel surface. At the same time,
metal corrosion is practically not observed anymore.

The protective film on steel detected by electron micros-
copy (Figure 6, Table 4) is formed in an inhibited corrosive
solution in two ways [34]: (1) acid residues of citric acid
are adsorbed on the natural oxide film of steel due to the
presence of carboxyl functional groups (−СООН), enhanc-
ing its protective effect; (2) they form sparingly soluble com-
plexes with iron cations that cover pores and defects in this
film, slowing down the anodic process. The formation of
Fe-citrate complexes can occur according to the following
reactions [35]:

Na3C6H5O7 ↔ C6H5O7 solð Þ
3− + 3Na+

C6H5O7 solð Þ
3− ↔ C6H5O7 adsð Þ

3−

Fe2+ + C6H5O7 adsð Þ
3− ↔ Fe2 C6H5O7ð Þ2

� �−
adsð Þ

Fe3+ + Fe2 C6H5O7ð Þ2
� �−

adsð Þ ↔ Fe3 C6H5O7ð Þ2
� �

adsð Þ
ð3Þ

The corrosion resistance of 09G2S steel in a 0.1% NaCl
solution with the addition of sodium citrate as a corrosion
inhibitor was also assessed by the gravimetric method
(Table 5). Gravimetric studies were carried out at concen-
trations of 2 and 2.5 g/l; because in electrochemical studies,
sodium citrate showed the highest anticorrosion effect at
these concentrations. After 6 h of exposure, the corrosion
rate Km was 1:04 · 10−4 g/cm2∙h in an uninhibited 0.1%

Table 4: Chemical composition (in mass%) of the 09G2S surface after 24 hours of exposure to a 0.1% NaCl solution with different
concentrations of sodium citrate.

C (g/l)
Element

С О Na Si Mn Fe Сl

0.5 8.95 21.61 5.51 0.38 0.85 60.36 2.34

1.0 8.11 22.74 — 0.79 1.72 64.80 1.84

1.5 7.74 9.98 — 0.44 0.95 73.20 1.13

2 2.65 2.52 0.86 0.74 1.00 92.06 0.17

2.5 3.30 3.04 1.28 0.56 1.16 90.36 0.29

Table 5: Corrosion rate (Km, g/cm
2∙h) and degree of protection (Z, %) of 09G2S steel in 0.1% NaCl solution.

Environment
Km Z Km Z

Exposure time
24 hours 96 hours

0.1% NaCl solution 2:14 · 10−5 — 1:48 · 10−5 —

0.1% NaCl solution+2.0 g/l Na3C6H5O7 8:84 · 10−6 58.7 7:57 · 10−6 48.9

0.1% NaCl solution+2.5 g/l Na3C6H5O7 7:33 · 10−6 65.7 7:52 · 10−6 49.2
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NaCl solution, and no mass loss was detected when add-
ing 2 and 2.5 g/l sodium citrate. When the exposure was
increased to 24h, the degree of steel protection by sodium
citrate reached 65.7%, which indicates the satisfactory
effectiveness of the selected inhibitor as a possible compo-
nent of the inhibitory composition.

In the future, the search for synergistic compounds to
enhance the protective effect of sodium citrate is needed.
The use of 10-methylacridinium iodide for this purpose is
already known in the literature [36]. After 96 hours of corro-
sion tests in an uninhibited environment, the corrosion rate
slows down somewhat, which is apparently due to the
shielding of the metal surface by corrosion products. On
the other hand, the rate of steel corrosion in 0.1% NaCl solu-
tion with 2.5 g/l sodium citrate after 96 hours of exposure is
reduced by ~2 times, which indicates the essential inhibiting
effect of the sodium salt of citric acid.

Analysis of the surface of 09G2S steel based on the
results of optical microscopy (Figure 7) after 24 hours of
exposure to a sodium chloride solution inhibited by sodium
citrate at concentrations of 2 and 2.5 g/l revealed that the

samples retained a light grey colour with a characteristic
metallic luster, unlike the control sample, the surface of
which contained corrosion products and was affected by
uneven corrosion.

4. Conclusions

We found that sodium citrate inhibits the corrosion of low-
alloy steel 09G2S in a 0.1% NaCl solution. Its maximum
effectiveness is observed at a concentration of 2.5 g/l. Due
to the presence of carboxyl functional groups, citrate ions
are adsorbed on the natural oxide film of steel, enhancing
its protective effect, and form sparingly soluble complexes
with iron cations that cover pores and defects in this film,
slowing down the anodic process. Hence, sodium citrate
has satisfactory anticorrosion properties and can be used as
a basic component during the development of environmen-
tally safe inhibitor compositions for the protection of low-
alloyed carbon steels in neutral environments of recirculat-
ing water supply systems in petroleum refineries, petro-
chemical plants, and in other industries.

2 mm

(a)

2 mm

(b)

2 mm

(c)

Figure 7: The optical image of 09G2S steel surface after 24 hours of exposure to 0.1% NaCl solution: (a) uninhibited, (b) inhibited by
sodium citrate at a concentration of 2 g/l, and (c) inhibited by sodium citrate at a concentration of 2.5 g/l.
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