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The study of pipeline corrosion is crucial to prevent economic losses, environmental degradation, and worker safety. In this study,
several machine learning methods such as recursive feature elimination (RFE), principal component analysis (PCA), gradient
boosting method (GBM), support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), and multilayer
perceptron (MLP) were used to estimate the thickness loss of a slurry pipeline subjected to erosion corrosion. These different
machine learning models were applied to the raw data (the set of variables), to the variables selected by RFE, and to the
variables selected by PCA (principal components), and a comparative analysis was carried out to find out the influence of the
selection and transformation of the data on the performance of the models. The results show that the models perform better
on the variables selected by RFE and that the best models are RF, SVM, and GBM with an average RMSE of 0.017. By
modifying the hyperparameters, the SVM model becomes the best model with an RMSE of 0.011 and an R-squared of 0.83.

1. Introduction

Slurry pumping technology is a well-established and favored
method for transporting mineral concentrates through pipe-
lines. These pipelines can be made from a variety of mate-
rials, including carbon steel, alloy steel, hardened steel,
stainless steel, abrasion-resistant lined pipes, nonferrous
pipes, and HDPE, with the choice depending on the applica-
tion, material being transported, and cost [1]. Despite the
excellent safety record and favorable economics of long-
distance slurry pipeline systems compared to traditional
bulk transport systems, pipe abrasion and erosion loss
remain a significant concern. While nonferrous pipelines
can extend the life of the transport system for mineral con-
centrates, carbon steel pipes are prone to internal corrosion,
especially when dealing with abrasive or corrosive slurries.
The pipeline structure and materials are continually being
improved for various industries. For example, HDPE is
extensively used for applications such as mine tailings due
to its ultrahigh molecular weight and resistance to abrasive-
ness, making it more durable than carbon steel pipes. In

addition, nonferrous materials are used to line the inside of
steel pipes to protect against erosion and corrosion, and
low wear resistance nonferrous pipes such as polyurethane,
polybutylene, PVC, PP, ABS, and fiberglass pipe with inter-
nal ceramic chips are also available for slurry transport.

Despite the use of carbon steel pipes, the high wear con-
ditions caused by the large quantities and abrasive nature of
slurry can result in leaks or ruptures, leading to significant
maintenance costs in the mining industry due to erosion
corrosion, especially in long pipelines spanning hundreds
of kilometers. Other industries, such as the oil and gas sec-
tor, have also reported erosion corrosion as one of the top
five forms of damage mechanisms, posing challenges to
machinery and equipment with short lifecycles [2, 3]. There-
fore, to mitigate these risks, it is crucial to implement pipe-
line integrity detection and monitoring, including an
understanding of defect progression, condition-based main-
tenance, and lifecycle management [4].

Over the years, several nondestructive testing methods
have emerged for inspecting pipelines while in use, including
ultrasonic inspection (UT), which uses high-frequency
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sound waves to identify defects on materials or their sur-
faces. UT is effective at detecting cracks, crevices, metal
losses, and other discontinuities at varying depths within
samples due to the reflection, diffraction, and transmission
characteristics of ultrasonic sound [4, 5]. A bulk wave ultra-
sonic thickness measurement technique for corrosion mon-
itoring can be used by temporarily or permanently
coupling a transducer to the outer surface of a pipe, and
the wall thickness of the pipe can be determined based on
the time difference between transducer excitation and recep-
tion of the reflected wave from the back-wall surface. Tradi-
tional inspection and maintenance practices based solely on
experience are no longer sufficient, and pipeline operators
now require quantitatively risk-based methodologies. To
reduce the economic impact of failures and minimize their
impact on the environment, health, and safety, analytical
tools have been developed over the years [6].

After the emergence of big data techniques, machine
learning (ML) has demonstrated significant benefits in
modeling and data mining [7]. ML has been utilized in var-
ious corrosion-related issues, such as the modeling of CO2
corrosion [8], automated image analysis to detect corrosion
[9], modeling of corrosion defect growth in pipelines [10],
material inspection [11], predicting corrosion rates in
marine environments [12], determining the initiation time
of embedded steel corrosion in reinforced concrete [13],
and predicting electrochemical impedance spectra [14]. In
exploring the predictability of corrosion rates in reinforced
concrete, Ji and Ye conducted a comprehensive study
employing various machine learning algorithms. The study
revealed that electrical resistivity emerged as the most signif-
icant factor influencing the corrosion rate. Among the algo-
rithms tested, support vector regression showed the highest
predictability for estimating corrosion rates [15]. The study
by Fang et al. addresses the critical gap in publicly available
corrosion data for pipelines. Utilizing the OLI Studio Corro-
sion Analyzer, a tool grounded in rigorous first principles,
the research simulated thousands of corrosion scenarios for
both crude oil and natural gas pipelines. This simulation
produced a vast dataset, which was then analyzed using
two machine learning algorithms: random forest (RF) and
CatBoost [16]. A variety of machine learning techniques
have been employed to predict the rate of corrosion or iden-
tify the areas most affected by corrosion [17, 18]. According
to Zhang et al., they trained six machine learning models on
ultrasonic testing data to forecast the degree of corrosion
based on ultrasonic characteristics [19]. The findings suggest
that, except for the linear model, machine learning models
can accurately and robustly forecast the corrosion degree
despite the interference of outlier amplitude and training
set size. In their study, Velázquez et al. examine various sta-
tistical and probabilistic methods that have been utilized in
the literature to investigate corrosion issues and their practi-
cal applications [20]. Meanwhile, Wei et al. utilize an artifi-
cial neural network to establish a relationship model
between the corrosion potential of low alloy steel in Sanya
seawater and its influencing factors, allowing them to visual-
ize the impact of different alloy elements on corrosion
potential [21]. To estimate the corrosion defect depth

growth of aged pipelines, Ossai adopts a data-driven
machine learning approach, relying on techniques such as
principal component analysis (PCA), particle swarm optimi-
zation (PSO), feed-forward artificial neural network
(FFANN), gradient boosting machine (GBM), random for-
est (RF), and deep neural network (DNN), to estimate the
growth of corrosion defect depth in aged pipelines [10].
Roy et al. use the gradient boosting regressor to predict cor-
rosion resistance in alloys with multiple principal elements
[22], while Zhao et al. suggest using rough set and decision
tree methods to analyze pipeline soil corrosion [23]. To
model experimental data of time-varying corrosion rates in
mild steel specimens when corrosion inhibitors are added
to the system at varying concentrations and dose schedules,
Aghaaminiha et al. perform regression with several ML algo-
rithms, ultimately finding random forest to be the best
option [24]. Peng et al. propose a new hybrid intelligent
algorithm that combines SVR, PCA, and CPSO to predict
the corrosion rate of multiphase flow pipelines, utilizing
PCA to reduce data dimensionality and CPSO to optimize
hyperfine parameters in SVR [25]. Cicceri et al. have made
significant contributions to wastewater treatment in two
key studies. The first study focuses on the challenges of man-
aging wastewater in urban and industrial areas, especially
fluctuating water flows. It proposes a smart system for effi-
cient water purification, featuring real-time monitoring of
water quality and flow rates using a cyberphysical system
approach and data from an environmental Internet of
Things platform, tested in Briatico, Italy [26]. The second
study introduces the Smart Wastewater Intelligent Manage-
ment System (SWIMS), which advances intelligent wastewa-
ter management. SWIMS monitors and controls water flows
and quality, using deep learning for anomaly detection and
decision-making. This enhances wastewater treatment effi-
ciency and was also implemented in Briatico, Italy, demon-
strating the effectiveness of advanced technology in
wastewater management. These studies highlight the role
of intelligent systems in sustainable water management
[27]. In the field of indoor and environmental air quality
monitoring, two significant contributions stand out. Cicceri
et al. developed the Smart and Healthy Intelligent Room Sys-
tem (SHIRS), a low-cost system for indoor air quality (IAQ)
monitoring using edge computing. SHIRS uses machine
learning (ML) to analyze environmental data for human
presence detection. The effectiveness of this approach has
been proven experimentally, supporting the use of Cloud-
IoT frameworks in smart environments [28].

The literature review above highlights the increasing use
of machine learning methods in the field of corrosion, which
is attributed to the emergence of software solutions that
reduce the need for extensive mathematical and statistical
knowledge. However, the risk of obtaining false-positive
results in a “black box” automated process cannot be
ignored. The purpose of this paper is not to present a com-
plete machine learning model for predicting corrosion ero-
sion degradation in a slurry pipeline but rather to describe
the methodology in detail to provide a corrosion assessment
using machine learning as a starting point for the corrosion
community. Full research papers often struggle to explain
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the essential aspects of machine learning tools suitable for a
specific dataset, as much emphasis is placed on results and
discussion. Therefore, this paper is aimed at explaining every
step and parameter needed to draw robust and trustworthy
predictive models, including the effect of feature engineering
methods like recursive feature elimination and principal
component analysis, as well as data transformation. The data
used in this publication was obtained from the periodic non-
destructive evaluation of a pipeline, and five machine learn-
ing models were applied and compared, including RF, KNN,
SVM, MLP, and GBM, on both unprocessed and feature-
engineered data. Hyperparameter optimization using the
grid search method improved the model’s results and made
it more robust.

2. Materials and Methods

2.1. Ultrasonic Monitoring. The issue of erosion corrosion in
pipelines is significant in slurry pumping systems. To pre-
vent risks and monitor structural health, corrosion models
are constructed by quantitatively estimating the degradation.
Conventionally, this involves placing coupons made of the
same pipe material inside the pipe and measuring the result-
ing weight loss after exposure to the environment for a spec-
ified period [29]. However, this method is intrusive, costly,
and time-consuming due to manual intervention. Alterna-
tively, ultrasonic technology offers a nonintrusive way to
monitor corrosion. An array of eight ultrasonic transducers
with a diameter of 10mm and a frequency of 5MHz, smart-
PIMS distributed by Procon Systems, Canada, was used to
monitor a section of a 12″ diameter and 24″ length pipeline
in pulse-echo mode, as shown in Figure 1, for long-term
monitoring since 2021.

2.2. Data Collection. Data for this study were obtained from
Agnico Eagle Mine Goldex. These data are physical mea-
surements from a pipeline that is used to transport residue
(pulp/slurry) from the concentrator to the Manitou Residue
Park site owned by the MERN (Ministère de l’Énergie et des
Ressources Naturelles) in Val-d’Or, Quebec. The data for
our study was collected using ultrasonic transducers (smart-
PIMS). These sensors were strategically placed at eight
different positions along the pipeline to ensure comprehen-
sive coverage and accuracy in data acquisition. The sensors
were used to measure various parameters indicative of pipe-
line integrity, including wall thickness, and process parame-
ters such as pulp temperature, pH, and pressure. While
thickness measurements were taken on a daily basis, process
variables were collected every five minutes. Once collected,
the data from the sensors underwent a series of preprocess-
ing steps to make it suitable for analysis. Initial cleaning was
conducted to remove any outliers or noise that could poten-
tially skew our results. This included filtering out any read-
ings that fell outside the expected range for the given
pipeline conditions. The data was then normalized to ensure
that all input features contributed equally to the analysis.
This step is crucial for the effective training of machine
learning models. Table 1 lists the different variables and their
descriptive statistics.

2.3. Feature Selection. In this study, the process of feature
selection involved choosing important features that contrib-
ute significantly to thickness loss. To achieve this, we
employed the recursive feature elimination (RFE) technique
which involves building a model on the entire set of predic-
tors and assigning an importance score to each predictor.
Less important predictors are then eliminated, and the
model is rebuilt with the remaining predictors, and impor-
tance scores are computed again [30]. RFE is particularly
useful for certain models like the random forest [31]. By
eliminating redundant or less informative features, RFE
helps in reducing the complexity of the model, thereby min-
imizing the risk of overfitting. RFE focuses the model’s
learning on the most relevant features for thickness loss pre-
diction, potentially enhancing its accuracy and predictive
power. With fewer variables, the model becomes more inter-
pretable, making it easier to understand and explain the fac-
tors most critical to pipeline corrosion. Along with RFE, we
also used principal component analysis (PCA) as a dimen-
sionality reduction method to extract important information
from the data and represent it as a set of new orthogonal var-
iables called principal components [32]. These components
are derived in such a way that the first few retain most of
the variation present in the original dataset. Although PCA
is not a variable selection method, it can be used to enhance
model performance. By transforming the data, PCA can
reveal underlying structures that might not be apparent in
the original feature space. PCA helps in dealing with multi-
collinearity among features, which can be a challenge in
machine learning models. We identified principal compo-
nents that explained a significant proportion of the variance
in the dataset and used them as explanatory variables to
compare models with the initial data.

2.4. Machine Learning Models

2.4.1. K-Nearest Neighbors (KNN). The K-nearest neighbor
method is a distance-based supervised learning method
[33]. It is a method easily scalable and has few hyperpara-
meters. It is used for classification and regression problems.
The classification or prediction of a new value is based on
the values of the nearest neighbors that are determined using
a distance between those values. The k value represents the
number of neighbors; if it is equal to 1, for a classification
problem, the predicted class is the class of the nearest
neighbor and for a regression problem, the predicted value
is the value of the nearest neighbor. If k is greater than 1,
the predicted value is the average of the values of k neigh-
bors for a regression problem. One of the most important
steps of the KNN algorithm is the determination of the
neighbors which is done through a distance calculation.
One of the most used distances which is used in this paper
is the Euclidean distance. Given two samples X = x1, x2,
⋯⋯ , xn and Y = y1, y2,⋯⋯ , the Euclidean distance
is calculated as follows:

D X, Y = 〠
n

i=1
xi − yi

2 1
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Determining the value of k is very important since a
poor choice of k can lead to overfitting or underfitting.
High deviations with low bias are often characterized by
lower k values.

2.4.2. Random Forest (RF). Random forest is an ensemble
learning method that consists of multiple decision trees. It
was proposed by Ho in 1995 [34], and an extension was pro-
posed by Breiman in 2001 [35]. It is an algorithm that can be
used for both classification and regression problems and has
been rapidly adopted because of its flexibility. For a classifi-
cation problem, the predicted class is the class predicted by
most trees. For a regression problem, the predicted value,
represented in the following equation, is the average of the
values predicted by the different trees.

h x = 1
T
〠
T

t=1
h x, θt 2

The learning process of the random forest model starts
with bagging by sampling a training dataset with replace-
ment, also called bootstrap sampling, and k predictors for
each tree. Then, a decision tree is trained on each sample.
Finally, the prediction of the random forest model is the
average of the values predicted by each tree.

2.4.3. Gradient Boosting Machine (GBM). Gradient boosting
is a popular machine learning technique applied to classifi-
cation tasks, known for its robustness and high performance
compared to decision trees and random forest algorithms in
certain cases. The method improves the accuracy of predic-
tions by iteratively combining multiple “weak learners,”
which are simple models, to produce a “strong learner” with
superior performance. On the other hand, the gradient
boosting machine, developed by Friedman, was inspired by
gradient boosting and is utilized for regression prob-
lems [36].

Let be a training sample xi, yi i = 1,⋯⋯ n. We make
the assumption that we have a set of base learners B and

In-line pipeline wall thickness inspection
using smartPIMS sensors
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direction
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Figure 1: Ultrasonic transducers fixed at the pipe for continuous wall thickness monitoring.

Table 1: List of features.

Minimum Maximum Mean SD

Tonnage sag (t) 8.78 404.39 342.65 65.15

Flotation pulp temperature (°C) 13.92 34.92 23.07 4.68

Flotation pH 7.47 9.33 9.03 0.27

Residue flow (m3/h) 18.54 495.97 437.59 90.22

% solid residue 0.02 46.13 23.54 10.17

TPH-calculated residue 0.02 301.95 141.31 68.20

Pressure at km 0 (Psi) 624.61 3439.54 2209.96 618.89

T° at km 0 (°C) 3.76 30.86 16.25 5.70

Flow rate (m3/h) (Thompson River) 30.00 381.19 207.72 110.66

T° (Thompson River) (°C) 0.99 20.45 13.42 6.04

Flow rate (m3/h) (sedimentation basin) 26.88 122.30 68.82 16.17

T° (sedimentation basin) (°C) 2.71 21.55 9.58 5.71

Flow rate (m3/h) (South Park) 0.04 369.80 168.89 95.23

T° (South Park) (°C) 0.73 16.23 5.21 4.53

Pipe wall thickness (mm) 5.75 6.01 5.84 0.03
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our objective function can be expressed as a linear combina-
tion of these base learners, which is denoted Lin B . The set
of learners, B, is defined as B = bτ x ∈ℝ , where τ ∈ Τ
represents the parameters of the learners. To predict the out-
put for a given feature vector, x, we use an additive model
represented by the following equation [37]:

f x ≔ 〠
M

m=1
βmbτm x ∈ lin B , 3

where bτm x ∈B is a weak learner and βm is its correspond-
ing additive coefficient.

The objective of GBM is to derive an accurate approxi-
mation of the function f that can effectively reduce the
empirical loss [37]:

L⋆ = min
f ∈lin B

L f ≔ 〠
n

i=1
ℓ yi, f xi , 4

where ℓ yi, f xi is a measure of the data fidelity for the i-th
sample for the loss function ℓ.

The objective of the GBM method, as a numerical opti-
mization algorithm, is to minimize the loss function by find-
ing an additive model. The algorithm (as shown in
Algorithm 1) initializes the model with a first estimation,
typically a decision tree, and is aimed at minimizing the loss
function. With each iteration, the algorithm calculates a
model that best fits the residuals and adds it to the previous
model to update the residuals. The algorithm stops after
reaching the maximum number of iterations specified by
the user.

2.4.4. Support Vector Machine. Support vector machine
(SVM) is a supervised machine learning model used for
regression and classification problems. It was first developed
by Cortes and Vapnik [38, 39]. For regression problems, the
name changes to support vector regression (SVR). The prin-
ciple is almost the same as for classification problems except
that for regression problems, the continuous variable must
be predicted. The goal of the SVR algorithm is to find a
hyperplane in an n-dimensional space that best fits the data.
The hyperplane is the line that will help us predict the con-
tinuous value or the target value. The continuous function to
be approximated can be written as in the following equation:

y =w · x + b 5

(1) SVR Linear. SVR formulates this function approximation
problem as an optimization problem as presented in the fol-
lowing equations:

min 1
2 w2 + c〠

n

i=1
ξi + ξ∗i , 6

subject to

zi − w · x + b ≤ε + ξi,
w · x + b − zi ≤ε + ξ∗i ,
ξiξ

∗
i ≥0,

y = 〠
N

i=1
αi − α∗i · xi, x + b,

7

where w2 indicates the size of the normal vector corre-
sponding to the surface being approximated and the vari-
ables ξi and ξ∗i are responsible for determining the
allowable number of points outside the tube, while C acts
as a regularization parameter that can be adjusted to give
greater importance to minimizing either the error or the flat-
ness of the solution in this problem involving multiple objec-
tives. This information is cited from reference [40].

(2) Nonlinear SVR. In the nonlinear case (Figure 2), kernel
functions are used to transform the data to allow for linear
separation as in the following equations.

min 1
2 w2 + c〠

n

i=1
ξi + ξ∗i , 8

subject to

yi −wTφ xi ≤ ε + ξ∗i i = 1,⋯,N ,

wTφ xi − yi ≤ ε + ξii = 1,⋯,N ,

ξi, ξ∗i ≥ 0i = 1,⋯,N ,

w = 〠
NSV

i=1
α∗i − αi φ xi ,

y = 〠
N

i=1
αi − α∗i · φ xi , φ x + b,

y = 〠
N

i=1
αi − α∗i · K xi, x + b,

9

where K xi, x is the kernel function.

2.4.5. Multilayer Perceptron. The MLP, a form of artificial
neural network, is structured with multiple layers and oper-
ates through direct propagation from the input to output
layer. The number of neurons in each layer varies, with the
last layer being designated as the output layer. In the multi-
layer backpropagation perceptron, adjacent layers are inter-
connected, with the strength of these connections being
determined by a coefficient that influences the destination
neuron’s response. The backpropagation algorithm is used
to calculate these coefficients, which are essential to the net-
work’s functionality. Figure 3 shows a multilayer network.
Each neuron i receives a series of signals from neurons j
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located at the previous layers. The operation of the illus-
trated network is governed by the following equation [41].

Zi = 〠
nj

j=1
WijXj + bi, 10

where nj is the number of input neurons and Xj is the value
of the signal transmitted by neuron j of the previous layer.
The Wij represent the respective weights of the connections

between the neurons j of the previous layers and the neuron
i of the current layer. The parameters bi are bias values
allowing a nonzero transfer function at the origin. The
inputs Xj are weighted by the weights Wij. Once the input
is provided, neuron i transforms it and produces an output.
In this case, Zi and the output Oi, of a given neuron, are
related by a transfer function of hyperbolic tangent form.

Oi = f Zi = 1 − e−2Zi

1 + e−2Zi
11
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Figure 2: Nonlinear SVR.
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Figure 3: Multilayer perceptron [41].

Initialization: Initialize with f 0 x = 0
For m = 0,⋯,M − 1 do:
Perform Updates:
(1) Compute pseudo residual: rm = − ∂ℓ y1, f m xi /∂f m xi i=1,⋯,n.

(2) Find the parameters of the best weak-learner: τm = arg minτϵT∑n
i=1 rmi − bτ xi

2.
(3) Choose the step-size ηm by line-search: ηm = arg minη∑n

i=1ℓ yi, f m xi + ηbτm xi .

(4) Update the model f m+1 x = f m x + ηmbτm x .
Output. f M x .

Algorithm 1: Algorithm gradient boosting machine (GBM) [37].
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The error made by the network at the output is calcu-
lated and then minimized. This is referred to as the error
backpropagation method. The weights of the network Wij

are corrected to reduce the overall error E . The gradient
descent method is used to minimize the global error. It is
represented by the following equation:

E = 1
2〠

nk

k=1
Sk −Ok

2, 12

where Sk represents the estimated value, Ok is the observed
value, and E is the overall error.

The steps of the error backpropagation algorithm are the
following:

(1) Presentation of a training pattern to the network

(2) Comparison of the network output with the target
output

(3) Compute the output error of each neuron in the
network

(4) Compute, for each neuron, the output value that
would have been correct

(5) Definition of the increase or decrease necessary to
obtain this value (local error)

(6) Adjustment of the weight of each connection
towards the lowest local error

(7) Assigning a blame to all previous neurons

(8) Repeat from step 4, on the previous neurons using
the blame as error

3. Results and Discussion

3.1. Models with All Features. The prediction of thickness
loss has been studied several times in the literature using dif-
ferent types of features and models. The features most often
found in the literature are the chemical characteristics of the
pipeline such as CO2 partial pressure, corrosion inhibitor
type [24], sulfate ion concentration, and chloride ion con-
centration [10]. In this study, other types of variables
directly related to the pipeline (pH, residue flow, pressure,
and calculated residual TPH) and variables external to the
pipeline such as flow rate and temperature of the rivers
and sedimentation basin that feed the pipeline were col-
lected. Different set of models with all the variables were per-
formed on the training data. Both the coefficient of
determination (R2) and root-mean-square error (RMSE)
were employed for the model’s predictive performance eval-
uation. They were defined by the following equations [7]:

R2 = 1 − ∑n
i=1 yi − yi

2

∑n
i=1 yi − yi

2 ,

RMSE = 1
n
〠
n

i=1
yi − yi

2,

13

where yi, yi , and yi represent the measured value, the pre-
dicted value, and the average value of the corrosion rate,
respectively. During the training process, a cross-validation
technique (i.e., 5-fold repeated cross-validation method)
was utilized to avoid random errors as much as possible
[42]. The models were trained on 80% of the data, and the
rest (20%) was used for validation. We utilized the R pro-
gramming language for our machine learning implementa-
tions. Within R, we employed the “caret” package, which
was instrumental in developing and tuning our gradient
boosting machine (GBM), random forest (RF), support vec-
tor machine (SVM), and K-nearest neighbors (KNN)
models. For the multilayer perceptron (MLP) model, we
used the “neuralnet” package. These tools were chosen for
their robustness and versatility in handling various machine
learning tasks.

The results presented in Table 2 show slight differences
in RMSE for the RF (0.017), GBM (0.018), and SVM
(0.018) models. The KNN and MLP models perform less
well with an RMSE of 0.02. The R2 of the MLP model is
low compared to the other models; i.e., the explanatory var-
iables explain less the variation of the thickness loss. Table 3
shows pairwise statistical significance scores. The table’s
lower diagonal displays p values for the null hypothesis, indi-
cating that the distributions are the same. Conversely, the
upper diagonal shows the estimated difference between the
distributions. It is evident from the table that there is no dis-
cernible difference between RF and GBM, and the differ-
ences between the distributions for RF, SVM, and KNN
are minimal. The above results are those obtained with the
training data. We will apply the validation data at the end
when we have found the best model.

3.2. Models with Feature Selection. To enhance the model’s
performance, feature engineering is a crucial stage in model-
ing that involves selecting the most significant variables
using various methods. According to [7] research, the gradi-
ent boosting decision tree (GBDT) method and Kendall cor-
relation analysis were employed as feature engineering
approaches.

During the second stage of thickness loss data modeling,
we employed the recursive feature elimination technique to
enhance the model’s effectiveness. This approach involves
fitting a model and removing the weakest feature or features
until the designated number of features is achieved. The
model implemented in this process is RF, which has a reli-
able built-in feature importance calculation mechanism.
The purpose of this method is to eliminate any dependencies
and collinearity that could potentially exist in the model.
Figure 4 illustrates the change in RMSE concerning the
number of selected variables in our model. The optimal
number of variables is 10: tonnage sag, pulp temperature
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flotation, % solid residue, TPH-calculated residue, pressure
at km 0, T° at km 0, T° (Thompson River), Flow rate (sedi-
mentation basin), T° (sedimentation basin), flow rate (South
Park), and T° (South Park) with an RMSE of 0.017. These 10
variables were used to study the other models. The results
(Table 4) show little variation in the performance metrics.
The results of the significance test for the RF, SVM, and
GBM models show that there is no difference between these
models. This result is consistent with the findings of [16],

who also reported the effectiveness of RF in similar contexts.
However, these models are better than KNN and MLP. MLP
work better in situations where the sample size is very large
which is not the case for our study.

3.3. Models With Feature Selection by PCA. Principal com-
ponent analysis (PCA) is sometimes used as a method of fea-
ture engineering using explanatory variables as the principal
components that explain the greatest variation. It is a
method that sometimes gives excellent results [10]. We per-
formed PCA on our training data and selected the 8 princi-
pal components (PC) (Figures 5 and 6) that account for
more than 95% of the variation in the data. These 8 principal
components are then used as explanatory variables in our
different models. The results (Table 5) vary slightly from
those found previously. However, the KNN model performs
better with the PCA transformation of the data.

3.4. Tuning Hyperparameters. Hyperparameter optimization
[43, 44] or tuning involves selecting an optimal set of hyper-
parameters for a learning algorithm that maximizes the
model’s performance and minimizes a predefined loss func-
tion to produce accurate results with fewer errors. Grid
search, also known as parameter sweep, has traditionally
been the preferred method for hyperparameter optimization,
which involves an exhaustive search through a manually
specified subset of the algorithm’s hyperparameter space.
Grid search is guided by a performance metric, which is typ-
ically measured by cross-validation on the training set [44,
45]. For the SVM model, we aim to identify the optimal
values for C and gamma. C represents the cost of constraint

Table 3: Pairwise statistical significance scores.

SVM KNN RF GBM

SVM -0.003 0.001 0.001

KNN 0.02 0.004 0.004

RF 0.02 0.00 0.00

GBM 1.00 0.01 1.00
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Figure 4: Recursive feature elimination.

Table 4: Result models with feature selection.

Models
Training set

RMSE R2

SVM 0.016 0.735

GBM 0.017 0.707

RF 0.017 0.725

KNN 0.027 0.274

MLP 0.027 0.074

Table 2: Result of the models with all variables.

Models
Training set

RMSE R2

SVM 0.018 0.667

GBM 0.018 0.672

RF 0.017 0.715

KNN 0.021 0.504

MLP 0.026 0.182
Eigenvalue = 1
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Figure 5: Screenplot of 14 PCs.
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Figure 6: Cumulative variance plot.

8 International Journal of Corrosion



violation and is the regularization term constant in the
Lagrange formulation. A low value may cause the model to
incorrectly classify some training data, while a high value
may lead to overfitting, which results in an analysis that is
too specific for the current dataset and may not be suitable
for future data. Gamma is the inverse of the influence radius
of data samples chosen as support vectors. High values indi-
cate a small radius of influence and small decision bound-
aries that do not consider relatively close data samples,
leading to overfitting. Low values indicate a significant
impact of distant data samples, causing the model to fail to
capture the correct decision boundaries from the dataset.
For the RF model, we aim to find the optimal values of
max_features and n_estimators. Max_features represents
the maximum number of features that random forest can
attempt in an individual tree, while n_estimators refers to
the number of trees built before taking the maximum voting
or averages of predictions. The best hyperparameters for the
RF model are max features = 2 and n estimators = 2500,
resulting in an RMSE of 0.016 and an R2 of 0.73. Figure 7
illustrates the variation of RMSE as a function of max_fea-
tures with n estimators = 2500.

Hyperparameter optimization of the SVM model pro-
duces more interesting results. Figure 8 shows the variation
of the RMSE according to the hyperparameters. We can
clearly see that the smallest RMSE (better performing
model) is at the point cost = 5 and sigma = 0 05. With these
hyperparameters, the RMSE is estimated at 0.015 and the R2

at 0.76. These estimates are made on the training data.
The SVM model appears to be the best model with a

lower RMSE than found in most of the review. To investi-
gate the performance of the model in new data, we use the
validation data (20% of the dataset) to predict thickness

losses and estimate the RMSE. Table 6 shows the estimation
results of the SVM model on the validation data. The model
predicts the thickness loss well with a low RMSE evaluated at
0.011 and R2 of 0.83. We can see in Figure 9 the small differ-
ence between the observed and predicted values of the thick-
ness measurements by running the model on new data
(validation data) with the best model (SVM) and the optimal
hyperparameters C = 5 and sigma = 0 05.

Our results indicated that models such as RF, SVM, and
GBM outperformed others, showing lower RMSE values,
particularly after the application of RFE. The superior per-
formance of these models can be attributed to several fac-
tors. Both RF and GBM are known for their ability to
handle nonlinear relationships within data. Given the com-
plex nature of erosion corrosion processes in pipelines,
which often involve nonlinear interactions between various

Table 5: Result models with feature selection by PCA.

Models
Training set

RMSE R2

SVM 0.018 0.66

GBM 0.02 0.51

RF 0.019 0.61

KNN 0.019 0.55
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Figure 7: Hyperparameter tuning—random forest.
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Figure 8: Hyperparameter tuning—SVM.

Table 6: Result on validation set.

Model
Validation set

RMSE R2

SVM 0.011 0.83
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Figure 9: Pipeline wall thickness values: observed vs. predicted.
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factors, these models could capture these complexities more
effectively than linear models. The application of RFE signifi-
cantly improved model performance. This is likely because
RFEhelped in removing redundant or less significant features,
allowing the models to focus on the most relevant predictors
of thickness loss in the pipeline. SVM, after hyperparameter
tuning, emerged as the best model. This improvement is likely
due to SVM’s flexibility in defining the margin of separation
and its ability to handle high-dimensional spaces effectively,
especially after feature selection.

While our study specifically addresses erosion corrosion
in sewage pipelines, the application of machine learning
models like SVM, RF, and GBM may yield different out-
comes when considering other types of pipelines, such as
oil, gas, or water supply lines. These differences can arise
due to several factors as material composition, operational
conditions, corrosive agents, and environmental factors.
Given these variations, our machine learning models may
require adjustments or retraining with relevant data from
the specific pipeline type and corrosion conditions under
study.

4. Conclusions

In the current situation, the majority of the internal pipeline
wall is deteriorating due to both slurry erosion and corro-
sion, which result in the gradual removal of material from
the surface due to the impact of solid particles suspended
in the liquid phase. As stated earlier, the intent of this paper
was not to present the full machine learning model for pre-
dicting corrosion erosion degradation in a slurry pipeline,
which will be done in a subsequent publication, but rather
to take a unique opportunity to describe the methodology
in detail as a walk-through corrosion assessment of slurry
pipeline using machine learning. Explaining the essential
aspects of machine learning tools suitable for a specific data-
set is often difficult in a full research paper as much focus
needs to be on results and discussion. While the study com-
bined several machine learning techniques to achieve better
results, it was found that the SVM, RF, and GBM models
perform better on the initial data. On the other hand, the
KNN model performs better on the principal component
data. The change in hyperparameters was important in this
analysis, as the SVM model went from an RMSE of 0.016
to 0.011, remaining the best model for predicting pipeline
thickness loss. These results are pivotal for professionals in
pipeline corrosion management, offering actionable insights
for planning risk-based inspection and corrosion mitigation
strategies. However, we acknowledge a limitation in our
research concerning the volume of data used. Future studies
will aim to address this by collecting extensive datasets from
various pipeline locations, thereby enabling more precise
predictions across different scenarios.
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