
Hindawi Publishing Corporation
International Journal of Cell Biology
Volume 2012, Article ID 684684, 15 pages
doi:10.1155/2012/684684

Research Article

Casein Kinase Iγ2 Impairs Fibroblasts Actin Stress Fibers
Formation and Delays Cell Cycle Progression in G1

Mathieu Latreille, Afnan Abu-Thuraia, Rossella Oliva, Dongmei Zuo, and Louise Larose

Polypeptide Laboratory, Department of Medicine, McGill University, Montreal, QC, Canada H3A 2B2

Correspondence should be addressed to Louise Larose, louise.larose@mcgill.ca

Received 6 September 2011; Revised 1 December 2011; Accepted 5 December 2011

Academic Editor: Liza Pon

Copyright © 2012 Mathieu Latreille et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Actin cytoskeleton remodeling is under the regulation of multiple proteins with various activities. Here, we demonstrate that the
γ2 isoform of Casein Kinase I (CKIγ2) is part of a novel molecular path regulating the formation of actin stress fibers. We show that
overexpression of CKIγ2 in fibroblasts alters cell morphology by impairing actin stress fibers formation. We demonstrate that this
is concomitant with increased phosphorylation of the CDK inhibitor p27Kip and lower levels of activated RhoA, and is dependent
on CKIγ2 catalytic activity. Moreover, we report that roscovitine, a potent inhibitor of cyclin-dependent kinases, including Cdk5,
decreases p27Kip protein levels and restores actin stress fibers formation in CKIγ2 overexpressing cells, suggesting the existence of a
CKIγ2-Cdk5-p27Kip-RhoA pathway in regulating actin remodeling. On the other hand, we also show that in a manner independent
of its catalytic activity, CKIγ2 delays cell cycle progression through G1. Collectively our findings reveal that CKIγ2 is a novel player
in the control of actin cytoskeleton dynamics and cell proliferation.

1. Introduction

The Rho family of GTPases comprising RhoA, Rac1, and
Cdc42 regulates the organization of the cytoskeleton in
eukaryotic cells [1]. These proteins cycle between an active
GTP-bound and inactive GDP-bound state through the
action of GTPase exchange factors (GEFs) and GTPase acti-
vating proteins (GAPs) [2]. Once activated, RhoA regulates
actin stress fibers formation [3], while Rac1 triggers the
assembly of actin in lamellipodia and membrane ruffles [4]
and Cdc42 induces filopodial extensions [5] at the leading
edge of the cell. Over the years, Rho GTPases were found to
be crucial regulators of actin remodeling involved in a great
deal of normal cellular functions, including cell migration
and adhesion, cell cycle progression, and membrane traffick-
ing [6]. In addition, Rho GTPases contribute to pathological
conditions, particularly to cancer initiation and metastasis
by controlling cell proliferation, migration, and adhesion
during oncogenic transformation [7–9].

Accumulating evidence suggests that Rho GTPases are
regulated at least in part by the cyclin-dependent kinase
inhibitors (CDKIs) p21Waf/Cip, p27Kip1, and p57Kip2 through
different mechanisms. As example, p27Kip1, which depends

on its abundance and nuclear localization to inhibit the
cyclin-dependent kinases (CDKs), inhibits RhoA activation
in a cell-cycle independent manner, thereby modulates actin
dynamics [10]. In fact, p27Kip1 phosphorylation at Ser10
increases its stability and cytoplasmic localization [11, 12],
where it binds to and inhibits RhoA by interfering with
the interaction between RhoA and its activating GEFs
[10]. Among protein kinases that regulate p27Kip1, cyclin-
dependent kinase 5 (Cdk5), also known as a regulator
of actin dynamics, was found to stabilize p27Kip1 through
phosphorylation of p27Kip1 at Ser10 in cortical neurons
[13]. However, whether Cdk5 possesses similar activity in
nonneuronal cells remains to be determined.

Casein kinase I (CKI) encompass a large family of
Ser/Thr protein kinases encoded by separate genes and
several splice variants. The 7 mammalian CKI isoforms
identified so far, namely, α, β, γ1–3, δ, and ε, share high
degree of identity within their kinase domain, but differ
significantly in the length and amino acid composition of
their N- and C-termini [14]. Overall, CKIs are conserved
throughout evolution and involved in diverse cellular func-
tions [15]. CKIα, δ, and ε involved in vesicular trafficking
[16–18] are also implicated in canonical Wnt signaling, but
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with distinct role [19]. CKIδ transduces specific centrosome
functions [20], but, like CKIε, it also contributes to the
regulation of the circadian rhythm [21, 22], apoptosis
[23], and neuronal neurite outgrowth [24]. Interestingly,
among the CKI family, the closely related CKIγ proteins
(CKIγ1, 2, and 3) are unique in carrying C-terminal lipid
modification motif that is believed to anchor them at
the plasma membrane [25, 26]. In agreement with CKIγ
plasma membrane localization, expression of the Xenopus
tropicalis CKIγ in vertebrates and Drosophila cells has been
implicated in transducing early signaling events of LRP6, a
cell surface membrane receptor involved in Wnt signaling
[25]. However, very little is known regarding the function
of individual mammalian CKIγ isoforms. Previously, we
reported that the Src homology (SH) domain-containing
adaptor protein Nck directly interacts with CKIγ2 through
two of its SH3 domains [27], while we determined that
a proline rich motif (P343DVPSQPR352) unique to the C-
terminal noncatalytic tail of CKIγ2 is mediating binding of
Nck (unpublished data). Given that Nck transduces signals
from membrane receptor protein tyrosine kinases to effectors
regulating crucial biological cellular responses such as actin
cytoskeletal reorganization and cell proliferation, we further
investigated CKIγ2 function in mammalian cells.

In this study, we provide evidence that the kinase activity
is required for CKIγ2 to regulate actin cytoskeleton remodel-
ing through its ability to downregulate RhoA proteins and
signaling via the activation of the Cdk5-p27Kip1 pathway.
In addition, our findings also reveal that in a manner
independent of its catalytic activity, CKIγ2 also regulates cell
proliferation.

2. Materials and Methods

2.1. CKIγ Constructs. The mouse CKIγ1, 2, and 3 full
length cDNAs were subcloned downstream of a Kozak
sequence and in frame with a HA epitope sequence into
the mammalian expression vector pZeoSV2 (Invitrogen). A
kinase deficient (KD) CKIγ2 full length cDNA was generated
by introducing a point mutation (K75R) in the ATP-binding
site. A cDNA (1–1020 nts) encompassing the kinase domain,
but lacking the C-terminal extension of CKIγ2 (Δ C-term),
was generated by PCR using appropriate specific primers
and further subcloned into pZeoSV2 as reported above. All
constructs were fully sequenced to confirm their identity and
to ensure that no unwanted mutation had been introduced
during their creation.

2.2. Stable Cell Lines of Fibroblast Overexpressing CKIγ2. Rat-
2 fibroblasts were cultured in DMEM (Dulbecco’s modified
Eagle’s medium; Life Technologies, Inc) supplemented with
2 mM L-glutamine, 45 mM sodium bicarbonate, and 10%
FBS at 37◦C, in a humidified atmosphere of 95% air and
5% CO2. Using calcium phosphate precipitation, fibroblasts
were transfected with indicated expression plasmids. Upon
selection in medium containing high concentration of zeocin
(500 μg/mL) or G418 (400 μg/mL) for cells transfected,
respectively, with pZeoSV2 or pcDNA 3.1, individual clones

were isolated, grown, and analyzed for expected proteins
expression. Positive clones were propagated under the same
conditions, except that 50 μg/mL zeocin or 40 μg/mL G418
was added to the culture medium. For fibroblasts transfected
with the empty pZeoSV2 plasmid, instead of individual
clones following zeocin selection procedure, a pool of
resistant cells was propagated and used as control.

2.3. Cell Culture and Transient Transfection. Rat-2 and
HaCaT cells were grown in DMEM and HepG2 cells in Mini-
mum Essential Medium Alpha Medium (MEM) (Invitrogen)
supplemented with antibiotic/antimycotic (Invitrogen) and
10% heat-inactivated fetal bovine serum (FBS) (Invitrogen)
at 37◦C in 5% CO2/95% O2. For CKIγ1, 2, and 3 transient
expression into Rat-2 cells, cells plated at 80% confluency
in 60 mm dishes were transiently transfected with indi-
cated expression plasmids using Lipofectamine-Plus reagent
(Invitrogen) according to the manufacturer’s instructions.

2.4. SiRNA Transfection. Human CK1γ2 siRNAs targeting
two independent coding regions (R1 and R2) were
purchased from Integrated DNA technologies (IDT)
R1(5′-GCACCUGGAGUACCGGUUC-3′) and R2(5′-
GCGCUACAUGAGCAUCAAC-3′). Scrambled siRNA
obtained also from IDT was used as control. HepG2 and
HaCaT cells were transiently transfected with indicated
siRNA using Lipofectamine RNAiMAX reagent (Invitrogen)
according to the manufacturer’s instructions. Briefly,
300 μmol of siRNA was added to 500 μL of Opti-MEM I
Medium without serum (Invitrogen) in 6-well plates and
mixed gently. 5 μL of Lipofectamine RNAiMAX reagent
was added to each well containing diluted siRNAs, mixed
gently, and incubated at room temperature for 20 min. In
the meantime, cells were harvested, counted, and diluted at
200 000 cells/mL in MEM media without antibiotics. Then,
2.5 mL of cells suspension (i.e., 500 000 cells/well) were
added to each well and mixed gently, making the final siRNA
concentration at 100 nM. The cells were further incubated at
37◦C for 48–72 hours.

2.5. Antibodies, Immunoprecipitation, and Western Blots. To
immunoprecipitate HA-tagged CKIγ2, we used the commer-
cial HA F-7 antibody (Santa Cruz). For western blot analysis,
the following antibodies were used: HA Y-11 (Santa Cruz);
p53 FL-393 (Santa Cruz), Nck 1794 (in house [27]), p21Cip1

C-10 (Santa Cruz); p27Waf1 C-19 (Santa Cruz) and RhoA F-
1 (Santa Cruz). To detect CKIγ2, we generated a rabbit poly-
clonal antibody using a KHL-coupled CKIγ2 peptide encom-
passing aa 331–354 as antigen. In general, cells were lysed
in lysis buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 10%
Glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA,
10 mM sodium pyrophosphate, 10 mM sodium fluoride)
supplemented with 2 μg/mL leupeptin and aprotinin as well
as with 1 mM phenyl-methylsulfonyl fluoride (PMSF) and
200 μM activated sodium orthovanadate. Clarified cell lysates
were normalized to equal protein concentrations with the
lysis buffer and protein immunoprecipitations performed
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using appropriate antibodies. Immune complexes were sub-
sequently collected with Protein A-Agarose (SantaCruz),
and, after several washes with the lysis buffer, proteins were
eluted in Laemmli buffer [28], boiled, and subjected to SDS-
PAGE. Western Blots were performed as previously described
[29] using chemiluminescence (ECL Plus, GE Healthcare,
UK). When mentioned, equal amounts of total cell proteins
were subjected to SDS-PAGE and subjected to Western Blot
analysis following the same protocol.

2.6. In Vitro Kinase Assays. Immunoprecipitated proteins
immobilized on Protein A beads or recombinant GST fusion
proteins were washed five times with lysis buffer and three
times with the kinase buffer before being divided in two
aliquots, which were, respectively, subjected to in vitro kinase
assay and immunoblot. For CKI activity, the kinase buffer
was composed of 20 mM Hepes, pH 7.5, 1 mM dithiothreitol
(DTT), 5 mM MgCl2, 10 mM β-glycerophosphate, and 5 μg
of α-casein as exogenous substrate. For all assays, following a
preincubation at 30◦C for 5 min, the reactions were initiated
by adding [γ-32P]-ATP (50 μM, 5–10 μCi) (DuPont, NEN)
and further incubated for 20 min at 30◦C. The reactions
were stopped by adding Laemmli buffer, boiled, subjected to
SDS-PAGE and then to autoradiography. Phosphorylation of
exogenous substrates was analyzed by densitometry (Imag-
ing Densitometer, Model GS-800, BioRad). To assess whether
CKIγ2 phosphorylates RhoA in vitro, 200 ng of purified
recombinant GSTCKIγ2 full length (FL) or truncated of its
C-terminal (Δ C-term) were incubated with 1 μg of purified
recombinant RhoA as reported above.

2.7. Cell Proliferation. Proliferation of stable fibroblast cell
lines was evaluated by counting the number of cells, different
times after plating. Cells were seeded at 5 × 103 cells/60 mm
plate, in triplicate for each time points and cell lines. On
days 3, 5, and 7 after plating, the cells were trypsinized and
counted using a hemocytometer.

2.8. 3H-Thymidine Incorporation. Cells were plated at
2 × 104 cells/well in 24 wells plates and grown for 24 hours
in DMEM containing 10% FBS. The next day, the cells were
starved for 36 hours in DMEM supplemented with 0.1%
BSA. At the end of the starvation period, the medium was
replaced by fresh starving medium with or without FBS at
2.5% or PDGF at 25 ng/mL and the cells incubated for an
additional 24 hours. During the last 8 hours of stimulation,
0.5 μCi of 3H-Thymidine was added. Thymidine incorpo-
ration was stopped by replacing the medium by cold TCA
(10%) and further incubation at 4◦C. Precipitated material
was then solubilized in 0.3 N NaOH and incorporated 3H-
Thymidine counted by liquid scintillation using a LKB 1219
Rack Beta Liquid scintillation Counter.

2.9. DNA Laddering. Following washes with PBS, serum
growing cells in culture dishes were directly lyzed in 0.5 mL
of DNAzol genomic isolation reagent (Molecular Research
Center, Inc., Cincinnati, OH). The resulting lysates were
subjected to repeated pipetting and DNA precipitation

performed by adding 0.25 mL of 100% ethanol. Samples
were mixed by inverting the tubes 5–8 times and kept at
room temperature for 3 min. Precipitated DNA was then
spooled using a pipette tip, washed twice in 70% ethanol,
and dissolved in water. Samples of total DNA were separated
on 1.8% agarose gel and stained with ethidium bromide.
As positive control, primary rat thymocytes maintained in
culture in DMEM supplemented with 10% FBS were treated
with 10 μg/mL of anisomycin for 24 hours. Thymocytes were
collected by centrifugation, washed with PBS and genomic
DNA prepared as described above.

2.10. Cell Cycle Analysis. For flow cytometry analysis (FACS),
1 × 106 of serum growing cells were collected, fixed in 70%
ethanol following incubation for 15 min on ice and storage
for at least 1 hour at −20◦C. Fixed cells were washed in cold
PBS, and stained with propidium iodide (PI, Sigma) using a
solution containing 50 μg/mL of PI and 10 μg/mL of RNAse
in PBS at 37◦C for 30 min. Quantification of cell populations
in different phases of the cell cycle was determined using the
Cell Quest software (Becton Dickinson, CA).

2.11. Cell Morphology and Actin Staining. Cells plated on
coverslips were rinsed with PBS before being fixed for 10 min
at room temperature in 4% formaldehyde/PBS. Following
fixation, coverslips were rinsed with PBS and the cells
permeabilized in 0.2% Triton X-100/PBS for 5 min at room
temperature. For filamentous actin staining, cells were incu-
bated with rhodamine-conjugated phalloidin (0.1 μg/mL;
Sigma, Oakville, ON. Canada) or phalloidin-coupled to
Alexa Fluor 488Fluor for 30–60 min at room temperature.
For HA-staining, we used the commercially available anti-
HA 12CA5 (Roche Apllied Science). Coverslips were washed
with PBS and water prior to being mounted with Mowiol
and examined on a Zeiss Axiovert 200 microscope at 40X
or 63X using Zeiss oil immersion. Fluorescence images were
subsequently captured using a digital camera (DVC) and
analyzed with Northern Eclipse software (Empix Imaging
Inc.). Images were transferred to Adobe Photoshop and
assembled with PowerPoint.

2.12. Rho Activation Assays. Essentially, levels of activated
RhoA (RhoA-GTP) were assessed using the Rho activation
kit purchased from Millipore (cat. no. 17–294). Briefly,
serum growing fibroblasts (R2Zeo and Z23), about 70% con-
fluent, were transiently transfected with a vector-encoding
Myc-tagged RhoA (100 ng) using Lipofectamine Plus (Invit-
rogen). Cells lysates prepared 16 hours after transfection
were mixed with 60 μg of recombinant GST-Rhotekin Rho
binding domain previously isolated on beads. Following
45 min at 4◦C, beads were washed three times, boiled in
Laemmli sample buffer, and bound proteins separated on a
12% SDS-polyacrylamide gel. Levels of Myc-tagged RhoA
proteins bound to the fusion protein or present in the
whole cell lysates were evaluated by western blotting with
a rabbit polyclonal anti-Rho antibody (RhoA, B, and C)
provided with the kit and ECL Plus detection as reported
above.
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Figure 1: CKIγ2 overexpression in fibroblasts alters cell morphology and actin stress fibers formation. (a) Isolated clones of fibroblasts stably
transfected with a plasmid encoding HA-tagged-CKIγ2 (A20, Z6, and Z23) or pool of stable cells transfected with an empty plasmid (R2Zeo)
were analyzed for HA-CKIγ2 expression by Western Blot (WB) on HA immunoprecipitates (IP). (b) CKIγ2 activity determined on HA
immunoprecipitates in in vitro kinase assays using phosphorylation of exogenous α-casein. (c) Indicated serum growing cells were analyzed
for cell morphology by phase contrast microscopy (40X) and (d) actin organization using rhodamine-conjugated phalloidin staining (63X).
R2Zeo: control; A20, Z6, and Z23: clones overexpressing increasing levels of CKIγ2.

2.13. Cells Stimulation. Cells (6 × 104) were plated on
coverslips 24 hours prior to be serum starved for 24 hours in
DMEM/0.1% BSA and subsequently treated with 50 ng/mL
of lysophosphatidic acid (LPA, Sigma) for 30 min at 37◦C or
overnight. For roscovitine experiments, we treated the cells
overnight with 25 μM roscovitine (Sigma). Control cells were
exposed to equivalent volume of vehicle. Cells were then
washed, stained for filamentous actin using phalloidin and
mounted for immunofluorescence microscopy or processed
for western blot analysis as previously described.

3. Results

3.1. CKIγ2 Overexpression in Fibroblasts Alters Cell Mor-
phology and Inhibits Actin Stress Fibers Formation in a
Kinase-Dependent Manner. To investigate the role of CKIγ2

in mammalian cells, we generated fibroblasts that stably
overexpress CKIγ2 by transfecting a plasmid encoding
N-terminal HA-tagged wild-type CKIγ2 [29]. Fibroblasts
transfected with an empty plasmid are considered as control.
We selected a pool of empty plasmid transfected cells
(R2Zeo) as control and three independent clones expressing
different levels of the 50–55 kda HACKIγ2 protein (A20 <
Z6 < Z23) to further study (Figure 1(a)). We demonstrated
the activity of HA-CKIγ2 by performing in vitro kinase
assays on HA immunoprecipitates (IP) using α-casein as
exogenous substrate (Figure 1(b)). Visual examination of
these cells foremost revealed that fibroblasts overexpressing
higher levels of CKIγ2 (Z6 and Z23) presented marked
change of morphology when compared with fibroblasts
overexpressing lower levels of CKIγ2 (A20) or mock-
transfected fibroblasts (R2Zeo) (Figure 1(c)). We observed
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Figure 2: CKIγ2 overexpression in fibroblasts impairs cell motility.
Migration of serum starved control (R2Zeo) and HA-CKIγ2
overexpressing fibroblasts (Z23) were evaluated in wound healing
assays. Pictures (10X) from the same area were taken at time 0 and
16 hours after the wound.

that cells harboring higher levels of CKIγ2 (Z6 and Z23) lost
their fibroblastic elongated shape to acquire a more rounded
morphology. Actin staining with phalloidin demonstrated
that the rounded shrunken morphology of these cells (Z6
and Z23) is associated with a drastic decrease in actin stress
fibers (Figure 1(d)).

To assess whether loss of actin stress fibers in fibroblasts
overexpressing CKIγ2 affects cell motility, we compared
the migratory activity of fibroblasts overexpressing CKIγ2
(Z23) with control fibroblasts (R2Zeo) using in vitro wound
healing assays. To ensure that cells in the wounded area result
from cell motility, rather than proliferation, fibroblasts were
deprived from serum for 24 hours prior to performing the
wound. As shown in Figure 2, fibroblasts that overexpress
CKIγ2 did not migrate and fill the wounded area at a rate
comparable to control fibroblasts. Altogether, these obser-
vations indicate that overexpression of CKIγ2 in fibroblasts
induces dissolution of actin stress fibers and impairs cell
motility in vitro.

We next investigate whether the kinase activity is required
for CKIγ2 to inhibit the formation of actin stress fibers.

For this, we generated two independent clones of fibroblasts
stably overexpressing a kinase deficient form of CKIγ2 (KD1,
KD30) at levels almost comparable to wild-type CKIγ2 levels
detected in the Z23 cell line (Figure 3(a), upper panel). As
expected, CKIγ2 KD (K75R) is devoid of catalytic activity
as shown by the absence of α-casein phosphorylation in
HA-immunoprecipitated CKIγ2 KD in in vitro kinase assays
(Figure 3(a), lower panel). However, we observed similar
to control cells (R2Zeo) morphology and levels of actin
stress fibers organization in fibroblasts overexpressing kinase
deficient CKIγ2 (KD) (Figure 3(b)). This demonstrates that
the kinase activity of CKIγ2 is required for the inhibition of
actin stress fibers formation.

To demonstrate that the regulation of actin stress fiber
formation by CKIγ2 occurs not only in overexpressing
conditions, we assessed actin stress fibers in HaCaT human
keratinocytes transiently transfected with two siRNAs (R1,
R2) derived from short hairpin-type RNA constructs tar-
geting independent coding regions of hCKIγ2 that have
been reported to effectively downregulate CKIγ2 in these
cells [30]. As shown in Figure 4, HaCaT cells treated with
CKIγ2 siRNAs substantially present increased formation of
stress fibers, supporting a physiological role for CKIγ2 in
regulating actin cytoskeleton reorganization.

3.2. CKIγ2 Overexpression in Fibroblasts Decreases RhoA
Protein and RhoA-GTP Levels. Formation of actin stress
fibers is under the control of the small GTPases Rho [3];
therefore, we first compared the levels of RhoA protein
in fibroblasts overexpressing CKIγ2 with control fibroblasts
(Figure 5(a)). Interestingly, we found that overexpression
of CKIγ2 results in decreased levels of the RhoA proteins,
suggesting that dissolution of actin stress fibers in CKIγ2
overexpressing fibroblasts might be due to low levels of RhoA
proteins that yield to nonefficient RhoA signaling activity.
To further investigate this point, we expressed Myc-RhoA in
fibroblasts overexpressing or not CKIγ2 and determined the
levels of active Myc-RhoA-GTP by measuring the amount
of Myc-RhoA proteins bound by a GST fusion protein
encoding the Rho-binding domain of Rhotekin. Consistent
with decreased actin stress fibers and lower RhoA protein
levels in fibroblasts overexpressing CKIγ2, we found lower
levels of activated RhoA (Myc-RhoA-GTP) as well as total
Myc-RhoA in cells overexpressing higher levels of CKIγ2
(Figure 5(b)). To further support that increased expression
of CKIγ2 downregulates RhoA protein levels, we transiently
transfected Rat-2 fibroblast with increasing amounts of
plasmid encoding HA-CKIγ2 and assessed expression levels
of HA-CKIγ2 and RhoA in total cell lysates by western
blotting. In agreement with decreased levels of RhoA protein
in fibroblasts overexpressing high levels of CKIγ2 (Z23),
transient expression of high levels of CKIγ2 leads to lower
levels of RhoA protein (Figure 5(c)). Altogether, these data
suggest that CKIγ2 contributes to lowering the expression or
enhancing the degradation of RhoA and this could result in
attenuated RhoA signaling.

To determine whether fibroblasts overexpressing CKIγ2
can still be challenged by external stimuli to build up actin
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Figure 3: The catalytic activity of CKIγ2 is required to induce change in cell morphology and actin stress fibers in fibroblasts. (a) Isolated
clones of fibroblasts stably transfected with a plasmid encoding HA-tagged wild-type CKIγ2 (Z23), HA-tagged kinase deficient CKIγ2 (KD1
and KD30), or pool of stable fibroblasts transfected with an empty plasmid (R2Zeo) were analyzed for HA-CKIγ2 expression by HA Western
Blot (WB) on HA immunoprecipitates (IP) and CKIγ2 activity as determined on HA immunoprecipitates from equal amounts of protein
normalized cell lysates and in vitro kinase assays using α-casein as substrate. KD1 and KD30: clones that overexpress kinase deficient CKIγ2 at
the same levels as cells stably overexpressing wild-type CKIγ2 (Z23). (b) Morphology of serum growing cells was visualized by phase contrast
microscopy (40X) (upper panels) and actin organization by actin staining with rhodamine-conjugated phalloidin (63X) (lower panels).

siRNA control siRNA CKIγ2 R2siRNA CKIγ2 R1

Figure 4: Increased actin stress fibers in HaCaT cells transiently transfected with hCKIγ2 siRNAs. HaCaT cells transiently transfected with
siRNA control or siRNAs targeting two independent coding regions of hCKIγ2 (R1, R2) were subjected to actin staining using phalloidin-
coupled to AlexaFluor 488. Pictures were taken at 63X.
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Figure 5: Overexpression of CKIγ2 in fibroblasts reduces the levels of RhoA protein and RhoA activation. (a) Fibroblasts stably
overexpressing CKIγ2 (Z23) and control fibroblasts (R2Zeo) were analyzed for RhoA protein expression levels by Western Blot using
equivalent amount of total cell lysate proteins. (b) Levels of activated Myc-RhoA (Myc-RhoA-GTP) were assessed following transient
expression of MycRhoA in serum growing fibroblasts control (R2Zeo) or overexpressing CKIγ2 (Z23) using pull down of equivalent amount
of total cell lysate proteins with a GST fusion protein encoding the Rho-binding domain of Rhotekin. (c) Total cell lysates from fibroblasts
transiently transfected with increasing amount of plasmid encoding HA-CKIγ2 were subjected to Western Blot analysis with indicated
antibodies.

stress fibers, we treated these cells with the serum-borne
phospholipid lysophosphatidic acid (LPA), a G-protein-
coupled receptor agonist which regulates the assembly of
actin stress fibers through the activation of RhoA [31]. Actin
staining of fibroblasts expressing high levels of HA-CKIγ2
in response to LPA stimulation at 50 ng/mL for 10–30 min
revealed that, in all conditions, LPA treatment results in
formation of actin stress fibers (Figure 6(a)). Finally, actin
stress fibers could be rescued by expressing a constitutively
active RhoA (RhoAL63) in fibroblasts overexpressing CKIγ2.
Altogether, these data suggest that signaling downstream of
RhoA is intact in fibroblasts overexpressing CKIγ2 and it
also could be efficiently challenged to lead to the formation
of actin stress fibers (Figure 6(b)). Overall, our observations
provide strong evidence supporting that CKIγ2-mediated
inhibition of RhoA-dependent formation of actin stress
fibers is reversible and could result from impaired expression
and activation of the GTPases Rho.

3.3. RhoA Is Not Phosphorylated by CKIγ2 In Vitro. As serine
phosphorylation of Rho proteins negatively regulates their
activity, we determined whether CKIγ2 could directly phos-
phorylate RhoA in vitro. For this, we incubated GST fusion
protein encoding CKIγ2 full length (FL) or truncated with

its noncatalytic C-terminal domain deleted (Δ C-term), with
recombinant RhoA in presence of [γ-32P] ATP and assessed
32P labeling of RhoA upon SDS-PAGE and autoradiography.
As shown in Figure 7, CKIγ2 full length and CKIγ2 deleted of
its C-terminal domain autophosphorylate in vitro, suggesting
that these are active protein kinases. In contrast, RhoA
was not phosphorylated by either GST-CKIγ2 constructs,
suggesting that in vivo CKγ2 does not induce actin stress
fibers disassembly by directly phosphorylating and inhibiting
RhoA.

3.4. CKIγ2 Overexpression in Fibroblasts Inhibits Cell Prolif-
eration and Delays Cell Cycle Progression in G1. In addition
to the effect of overexpressing CKIγ2 on cell morphology,
we found that fibroblasts overexpressing CKIγ2 proliferate
at a significant slower rate compared with control fibroblasts
(Figure 8(a)). In addition, decreased proliferation appears to
correlate with the extent of CKIγ2 overexpression. Dimin-
ished proliferation in cells overexpressing CKIγ2 was further
confirmed by decreased incorporation of 3H-thymidine into
DNA in response to PDGF, a potent mitogenic factor for
fibroblast [32], or serum over a 24-hour period of stimula-
tion (Figure 8(b)). For an unknown reason, incorporation
of 3H-thymidine in response to PDGF or serum stimulation
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Figure 6: LPA stimulation and activated RhoA rescue actin stress fibers formation in fibroblasts overexpressing CKIγ2. (a) Actin staining
following LPA stimulation (50 ng/mL, 10–30 minutes, and 37◦C) in serum-starved fibroblasts control (R2Zeo) or stably overexpressing
CKIγ2 (Z6 and Z23). Pictures were taken at 63X. (b) Myc, Actin, and DAPI staining of CKIγ2 overexpressing fibroblasts (Z23) transiently
transfected with a cDNA encoding a constitutively activate form of RhoA (Myc-RhoA L63). Pictures were taken at 40X.

in fibroblasts overexpressing higher levels of CKIγ2 (Z6
and Z23) is often decreased compared with their respective
unstimulated basal levels (Z6: Bas 5, 300 ± 196, PDGF
3, 205± 103, FBS 4, 098± 110; Z23: Bas 8, 071± 192, PDGF
3, 672 ± 212, FBS 6, 853 ± 327 cpm). Therefore, to exclude
cell death as an important factor contributing to decreased
proliferation, all cell lines were subjected to DNA laddering
assay (Figure 8(c)) and DAPI staining (data not shown).
As a positive control for DNA laddering, we used primary
cultured rat thymocytes treated for 24 hours with anisomycin
(10 ug/mL). Using both approaches, we established that

apoptosis is not responsible for the apparent decrease in
proliferation of cells overexpressing CKIγ2. In agreement,
significant increase in doubling time calculated from growth
curves for all aforementioned cell lines overexpressing CKIγ2
compared with control fibroblasts suggests that overexpres-
sion of CKIγ2 increases cell cycle duration (Table 1). To test
this hypothesis, we performed FACS analysis to determine
the distribution of actively serum growing asynchronized
cells stably overexpressing CKIγ2 throughout the different
phases of the cell cycle. As reported in Table 2, 50% of
control fibroblasts mock-transfected were detected in G1 and
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Table 1: Calculated doubling time from cell proliferation assays.

Clones Doubling time (hours)

Control R2Zeo 17.3 (0.3)

HA-CKI-γ2-Wild Type

A20 18.8 (0.4)∗

Z6 23.1 (0.5)∗

Z23 27.1 (0.3)∗

Values are the means (SEM) of assays.∗P at least ≤ 0.005 compared to
control.

the remaining cell population was evenly distributed into
S and G2 phases (approximately 23%, resp.). In contrast,
fibroblasts overexpressing CKIγ2 presented a significant
larger population of cells in G1 (63–70%) and a reduced
percentage of cells in S and G2 phases (12–17%). Collectively,
these results indicate that CKIγ2 inhibits cell proliferation by
modulating cell cycle progression through G1.

3.5. Overexpression of CKIγ2 in Fibroblasts Increases Expres-
sion of the CDK Inhibitors p21Cip1 and p27Kip1 and the Tumor
Suppressor p53. Consistent with a larger population of cells
in G1 and reduced thymidine incorporation into DNA
during the S phase of the cell cycle, earlier G1 phase cell
cycle events could account for the antiproliferative effect of
CKIγ2. To address this, we then compared the expression
of the CDKIs p21Cip1 and p27Kip1 and the tumor suppres-
sor p53 in fibroblasts overexpressing CKIγ2 with control
fibroblasts. Our investigation revealed that inhibition of cell

Table 2: Cell distribution in different phases of cell cycle deter-
mined by FACS analysis.

Clones
% fluorescence at cell cycle phase

G1 S G2

Control R2Zeo 50.3 (0.2) 23.6 (0.2) 23.8 (0.1)

HA-CKI-γ2-Wild Type

Z6 67.6 (0.4)∗ 12.3 (0.4)∗ 15.3 (0.6)∗

Z23 70.2 (0.3)∗ 17.0 (0.2)∗ 12.1 (0.4)∗

Cells were fixed with 70% ethanol, stained with propidium iodide, and
subjected to flow cytometry analysis. Values are mean (SEM) of 4 assays. ∗P
at least ≤ 0.00001 compared to control.

proliferation and delay in cell cycle progression in fibroblasts
overexpressing CKIγ2 correlate with increased expression
of p21Cip1, p27Kip1, and p53 (Figure 9(a)). Surprisingly, the
effects of CKIγ2 on cell cycle regulators are independent of
its catalytic activity as shown in fibroblasts overexpressing
CKIγ2 kinase dead (KD1 and 30) (Figure 3) that still shows
increased expression of p21Cip1, p27Kip1 and p53 proteins.
This is in contrast with the effects of CKIγ2 on actin
reorganization that require the catalytic activity of CKIγ2
(Figure 3). Interestingly, increased expression of p21Cip1 and
p27Kip1 appear, to be CKIγ2 dosage independent compared
to increased expression of p53 which correlates with the
levels of CKIγ2 overexpressed (Figures 9(a) and 9(b)).
Overall, these findings demonstrate that CKIγ2 impairs cell
proliferation by delaying cells in the G1 phase of the cell cycle.
Likewise, the fact that fibroblasts overexpressing CKIγ2 are
still evenly distributed in S and G2 phases of the cell cycle
suggests that these steps proceed normally and that the effects
of CKIγ2 on cell proliferation are restricted to the G1 phase
of the cell cycle.

To further demonstrate a role for CKIγ2 on expression
levels of CDK inhibitors, we compared p27Kip1 protein
expression levels between HepG2 cells transfected with
CKIγ2 specific siRNAs and scramble siRNA (Figure 10).
Using this approach, we found that efficient downregulation
of CKIγ2 in HepG2 cells leads to decreased expression of
p27Kip1 proteins.

CKIγ2 is closely related to CKIγ1 and 3, and, like CKI γ2,
CKIγ1 and 3 are believed to also be membrane associated due
to a putative palmitoylation site present in their C-terminus
[25]. In attempt to determine to what extend the effects of
CKIγ2 on p27Kip1 and actin stress fiber are isoform specific,
we failed to establish stable fibroblast cell lines overexpressing
CKIγ1 or 3, most likely due to toxicity as reported by others
[33]. This was also the case for transient overexpression
of CKIγ1 in fibroblasts, while transient overexpression of
CKIγ2 or γ3 was possible. Therefore, we carried out transient
transfection of fibroblasts with an empty plasmid as control,
or plasmid encoding either HA-tagged CKIγ2 or γ3 and
monitored p27Kip1 levels and actin organization using these
cells (Figure 11). As reported above, expression of HA-tagged
CKIγ2 or γ3 was detected using total cell lysates in Western
Blot with anti-HA antibody (Figure 11(a)). Interestingly, as
observed in stable cell lines overexpressing CKIγ2, transient
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Figure 10: Downregulation of CKIγ2 in HepG2 cells decreases
expression of p27Kip1. HepG2 cells were transiently transfected
with control or hCKIγ2 (R1, R2) siRNA. Forth eight hours
after transfection, cell lysates normalized for protein content were
subjected to Western Blot analysis with indicated antibodies.

overexpression of CKIγ2 increases p27Kip1 protein levels.
However, this is also observed in fibroblasts overexpressing
CKIγ3 (Figure 11(a)). More importantly, transient overex-
pression of either CKIγ2 or CKIγ3 negatively impacts actin
stress fibers formation (Figure 11(b)). These results suggest
that, like CKI2, CKIγ3 could also regulate the expression
of CDK inhibitors and actin cytoskeleton reorganization, at
least when overexpressed.

3.6. Inhibition of Roscovitine-Sensitive Cyclin-Dependent
Kinases Reduces the Level of p27Kip1 and Rescues Actin
Stress Fibers Formation in Fibroblasts Overexpressing CKIγ2.
Since phosphorylation of p27Kip1 at Ser10 increases its
stability and cytoplasmic accumulation [11, 12] where it can
bind and inhibit RhoA [10], we first determined whether
p27Kip1 phosphorylation at Ser10 was increased in fibroblasts
overexpressing CKIγ2. Indeed, we found that the level
of p27Kip1 phosphorylated at Ser10 was higher in CKIγ2

overexpressing than in control fibroblasts (Figure 12(a)). In
addition, we found that roscovitine, a potent inhibitor of
cyclin-dependent kinases with good selectivity toward Cdk1,
Cck2, Cdk5, Cdk7, and Cdk9 [34], not only strongly reduced
the levels of p27Kip1 proteins (Figure 12(b)), but also rescued
actin stress fibers formation in fibroblasts overexpressing
CKIγ2 (Figure 12(c)). Interestingly, we observed that Cdk5,
a roscovitine sensitive cyclin-dependent kinase that is phos-
phorylated and activated by CKI [35–37] and known to affect
actin dynamics by interacting and phosphorylating p27Kip1 at
Ser10 [13], is equally expressed in fibroblasts independently
of CKIγ2 expression levels (Figure 12(a)). Collectively our
findings indicate an important role for CKIγ2 in modulating
actin dynamics through a Cdks- p27Kip1 pathway, potentially
implicating Cdk5.

4. Discussion

In this study, we provide evidence that the isoform γ2
of CKI prevents the formation of actin stress fibers and
delays cell cycle progression in G1. We showed that CKIγ2
induces phosphorylation and accumulation of p27Kip1 and
decreases expression levels of RhoA, which could result in
inadequate levels of activated RhoA to sustain actin stress
fibers formation in fibroblasts expressing higher levels of
CKIγ2. Moreover, we demonstrate that the effects of CKIγ2
on p27Kip1 and actin stress fibers are dependent on a subset
of Cdks. The findings that CKI regulates Cdk5 activity
[35–37] and that Cdk5 is expressed in fibroblasts suggest
that the effects of CKIγ2 on actin dynamics in fibroblasts
overexpressing CKIγ2 potentially implicate activation of
Cdk5. Several studies indicated that Cdk5 affects actin
remodeling in neuronal cells [13, 38–41]. In addition, recent
evidence point to a critical role of Cdk5 in the regulation
of p27Kip1 stability and cytoplasmic retention by directly
phosphorylating p27Kip1 on Ser10 [13]. Interestingly, a role
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Figure 11: Overexpression of either CKIγ2 or CKIγ3 in fibroblasts increases expression of p27Kip1 and inhibits formation of actin stress
fibers. (a) Fibroblasts transiently transfected with plasmids encoding either HA-CKIγ2 or HA-CKIγ3 were analyzed for HA-tagged proteins
and p27Kip1 protein expression levels by Western Blot. The arrow represents HA-CKIγ2 or HA-CKIγ3, while nonspecific bands are indicated
by asterisks. Actin was used as loading control. (b) Similar fibroblasts were stained for HA or actin organization using phalloidin coupled to
AlexaFluor 488. Arrows indicate HA-positive cells, while arrow heads point nontransfected cells. Pictures were taken at 63X.

for p27Kip1 in the regulation of RhoA activation [10] has
been reported. Indeed, p27Kip1 directly interacts with RhoA,
inhibiting RhoA activation by interfering with RhoGEFs.
Therefore, these findings are consistent with our model
suggesting that CKIγ2 regulates actin remodeling through a
Cdk5-p27Kip1-RhoA pathway (Figure 13).

The yeast homologs of the mammalian CKIγ isoforms
(Yck1/2, Cki1+/2+) [26] have been implicated in various
biological functions. In S. cerevisiae, independent loss of

function of the YCK1 and YCK2 genes did not alter growth,
but simultaneous loss of function of both genes resulted
in lethality [42]. This established the YCK genes as an
essential genes pair. In contrast, in S. pombe, gene disruption
experiments showed that neither cki1+ nor cki2+ is essential
for cell viability [43]. However, overexpression of cki2+,
but not cki1+, resulted in growth inhibition accompanied
by aberrant morphology. This suggests that, despite overall
similarity in structure, high homology in amino acids
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sequence and probable overlap in substrate specificity, close
related isoforms might have non overlapping functions and
play distinct role in cells.

In this study, we showed that CKIγ2 stably overexpressed
in fibroblast, alters cell morphology and formation of actin
stress fibers concomitant with lower levels of activated RhoA,
a small GTPase that regulates actin stress fibers formation
in response to growth factors [3]. Interestingly, actin stress
fibers were restored by directly activating RhoA signaling
following LPA treatment or expression of a constitutively
active RhoA, suggesting that CKIγ2 regulates upstream
events leading to RhoA expression and activation. Mean-
while, we also found that CKIγ2 increases expression of the
tumor suppressor p53 and the CDK inhibitors p21Cip1 and

p27Kip1 and negatively regulates cell proliferation by delaying
cell progression through G1. To explain poor proliferation
of CKIγ2 overexpressing fibroblasts, we propose that level
of RhoA activity in these cells is too low to efficiently
counteract the induction of the CDK inhibitors and promote
adequate timing of expression of the cyclin D1, both
processes normally under the control of RhoA [44–46].
Interestingly, Cdk5 activation in neuronal cells occurs only
in postmitotic neurons [47], suggesting that, in fibroblasts
overexpressing CKIγ2, modulation of the cell cycle resulting
in decreased mitotic activity may precede and be required
for the activation of Cdk5 by CKIγ2. Although additional
experiments are required to investigate this point, here we
propose a model in which CKIγ2 induces the activation of
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Figure 13: Model describing how CKIγ2 prevents the formation
of actin stress fibers and regulates cell proliferation. Overexpression
of CKIγ2 activates Cdk5, which contributes to p27Kip1 stabiliza-
tion and cytoplasmic accumulation following phosphorylation of
p27Kip1 at Ser10. Increased cytoplasmic level of p27Kip1 correlates
with decreased cellular levels of RhoA. p27Kip1 also inhibits RhoA
activation by directly binding to RhoA and competing RhoA
interaction with RhoGEFs. Reduced RhoA signaling then results
in decreased formation of stress fibers. Roscovitine rescues RhoA
activation and signaling by inhibiting CKIγ2-induced activation
of Cdk5 therefore prevents p27Kip1 phosphorylation at Ser10

and promotes p27Kip1 degradation. (1) indicates CKIγ2 kinase-
independent, while (2) represents CKIγ2 kinase-dependent.

Cdk5 in a kinase-dependent manner to promote cytoplasmic
accumulation of the CDK inhibitor p27Kip1 that prevents
RhoA activation and leads to inhibition of actin stress fibers
formation (Figure 13). In summary, this study contributes to
improve our knowledge of molecular mechanisms regulating
the activity of critical proteins governing actin cytoskeleton
dynamics.
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