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Cancer is one of the diseases with the highest mortality rate today, with breast cancer being the second most common type among
the Brazilian population. Due to its etiological complexity and inefficiency of treatments, studies have focused on new forms of
treatment. Among these forms of treatment, hormonal therapy seems to be an excellent auxiliary mechanism in tumoricidal
activity, and melatonin has great potential as a modulator of the immune system. Thus, the present study is aimed at
evaluating the effect of the hormone melatonin on the coculture of colostrum polymorphonuclear cells and MCF-7 cancer cells
and evaluates the effect of this hormone using a modified transport system. A feasibility analysis was performed by
fluorescence microscopy at three cell incubation times, 2 hours, 24 hours, and 72 hours. The measurement of cytokines in the
cell supernatant occurred in 24 hours, and the apoptosis assay was performed in 72 hours using flow cytometry. The results
showed higher levels of cell viability in groups treated with melatonin and less viability in groups containing a coculture of
polymorphonuclear cells and MCF-7 after 72 hours of incubation. Furthermore, the apoptosis and necrosis rates were higher
in coculture polymorphonuclear and MCF-7 cells, especially in groups containing microemulsion as a modified release agent.
These data suggest that melatonin, especially if associated with a modified release system, has immunomodulatory effects on
human colostrum polymorphonuclear cells. These cells can play a crucial role in the resolution of the tumor through their
mediation and inflammatory action.

1. Introduction

Cancer development is a multifactorial process that involves
genetic and environmental regulations. In addition, cancer
cells have several unique characteristics that give resistance
to the human immune system and cancer treatment. As a
result, cancer treatment remains associated with several
challenges [1, 2].

Breast cancer has the highest incidence in women and is
diagnosed globally by physical examination, breast imaging,
and tissue biopsies [3]. The most aggressive breast cancer is
triple-negative because there are no receptors for estrogen
(ER), progesterone (PR), and human epidermal growth
factor receptor 2 (HER2), also called ER/PR- and HER2-.

It is estimated that 70% of breast cancers are positive
for hormone receptors, and both can be treated with
complementary therapies but with different degrees of
responsiveness [4–6].

Cancer treatment options include radiotherapy, chemo-
therapy, biological agent immunotherapy, and hormone
therapy [5, 7]. In addition, the hormone melatonin has been
identified as a possible agent for alternative immunothera-
peutic treatment of cancer due to antimitotic activity [8, 9]
and the modulatory capacity of the immune system [10–12].

Due to its systemic circulation, the melatonin hormone is
identified in secretions [13]. In colostrum, we can find high
melatonin levels at night and lower levels during the day,
indicating a time-dependent bioavailability and fluctuation
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in the production of milk components [14, 15]. In addition,
the modulatory activity in cells reduces the viability of cancer
cells when in the presence of melatonin, especially when opti-
mized with the use of biotechnology in modified systems,
which suggests being a possible tool for alternative therapies
for the treatment of cancer patients [12, 16–19].

Studies have pointed out fluctuations in serum melato-
nin concentrations depending on the stage of cancer.
However, these differences are more related to biochemical
changes than as a way of controlling neoplastic growth [20].

In addition to hormones, soluble bioactive components,
and anti-infectious factors, human colostrum contains large
amounts of viable leukocytes (109 cells/ml in the first days of
lactation), especially macrophages and neutrophils [21, 22].
Traditionally, researchers think of neutrophils only as agents
in the acute stages of inflammation, and that they function
only as exterminators of pathogens. However, recent find-
ings have shown that neutrophil functions expand beyond
roles in infection [23].

Some modified-release systems have been used in ther-
apy for better delivery of melatonin due to their high metab-
olism and the ability of these therapies to guarantee their
bioavailability, optimizing biological processes influenced
by the neurohormone. Melatonin secretion occurs for 8 to
10 hours a day, with a maximum peak at approximately
3-4 hours in the morning. However, it exhibits a short
half-life in the blood, with 80% excreted exclusively in
the urine as 6-sulfatoxymelatonin in the first hour [24].

Thus, the modified release can be used as strategies for
stimulating and/or inhibitory agents in various physiological
processes, facilitating current treatments, reducing costs,
side effects, increasing antitumor activities, and potentially
could serve as a basis for future treatments.

Considering that milk, through cells, interacts with
breast tissue and considering that melatonin, through the
use of modified drug releasers, increases the functional activ-
ity of cells, it is possible that interactions between polymor-
phonuclear colostrum and the modified release melatonin
have effects on breast tumor cells. Thus, the present study
is aimed at evaluating the effect of the hormone melatonin
on the coculture of colostrum polymorphonuclear cells and
MCF-7 cancer cells and evaluates the effect of this hormone
using a modified transport system.

2. Materials and Methods

One hundred twenty-four colostrum samples were collected
from healthy mothers aged 18 and 40. After signing the free
and informed consent form (attached), approximately 8ml
was collected by hand milking during the day during the first
48 to 72 hours postpartum, with an interval between two
feedings. This work was approved by the Human Research
Ethics Committee of the Araguaia under number 1,064,829.

2.1. Cell Separation. The samples were stored in a sterile
plastic tube and centrifuged for 10 minutes at 160G under
refrigeration at 4°C, separating the colostrum into three
distinct phases, cellular “button,” intermediate aqueous
phase, and lipid supernatant, according to Honorio-França

[21]. Next, the cell button was resuspended in 199 culture
medium (Gibco) and separated in a density gradient with
Ficoll-Paque (Pharmacia) for 40 minutes at 160 × g at a
temperature of 4°C. Then, the cells were adjusted to a final
concentration of 2 × 106 cells/ml by light microscopy.

2.2. Tumor Cell Culture. MCF-7 human breast cancer cells
were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA), frozen in liquid nitrogen for
storage, thawed, and later grown in 75 cm2 plastic culture
flasks in the middle Roswell Park Memorial Institute (RPMI)
1640 supplemented with 10% fetal bovine serum (Sigma-
Aldrich Co., St Louis, MO, USA), penicillin (20U/ml), and
streptomycin (20μg/ml) (Sigma-Aldrich Co.) at 37°C in a
humid atmosphere containing 5% CO2 until the formation
of a cell monolayer. Then, trypsin was used to remove cell
adhesion to the walls of the flasks. Finally, the cells were
washed in phosphate buffer (PBS) and adjusted to a final
concentration of 2 × 106 cells/ml using optical microscopy.

2.3. Preparation of Microemulsion. The microemulsion was
formulated with distilled water, caprylic/capric triglyceride-
Polymol 812®, HLB = 10:8 (Emfal®, Betim, Brazil), oiled
sorbitan-Span 80® (SP), HLB = 4:3, (Emfal®, Betim, Brazil),
polysorbate 80-Tween 80® (TW)-HLB = 15:0, (Vetec®, Rio
de Janeiro, Brazil), and 1-butanol (BT), (Vetec®, Rio de
Janeiro, Brazil), according to Ribeiro et al. [25], and as a
chemical reference substance, melatonin was used at a
100 ng/ml concentration.

2.4. Cell Viability. The cells were incubated at 37°C in culture
medium 199 (Gibco) for 2, 24, and 72 hours, subsequently
washed with PBS to remove the medium, and stained with
the acridine orange vital dye. The percentages of viable cells
and cells in the death process were determined using fluores-
cence microscopy.

To evaluate the cellular proliferation index in coculture
(PMN and MCF-7 cells), it was incubated with propidium
iodide (PI), and subsequent fluorescence detection allowed
for assessment of the number of nonvital cells (first mea-
surement). Thus, the cells were treated with melatonin
incorporated or not to microemulsion and put in 24-well
culture plates. The cells were maintained in culture for 72
hours, stained with PI, and had access to total DNA, leading
to total cell population counts (second measurement). The
fluorescence of the cells was analyzed by flow cytometry
(FACSCalibur system; BD, San Jose, USA). The difference
between these two measurements calculated the number of
viable cells. The cellular proliferation index was calculated
using the number of viable cells treated/number of viable
cells not treated × 100 [26].

2.5. Cytokine Determination. Colostrum supernatant was
collected and stored at -80°C before analysis. Then, the sam-
ples were thawed and incubated at 37°C in 199 medium for
72 hours, and the cytokines IL-6 and TNF-α were measured
by Cytometric Bead Array (CBA, BD Biosciences, USA)
according to the manufacturer’s procedures. A flow cyt-
ometer was used for these analyses (FACSCalibur, BD/
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Biosciences, USA); cytometric plots were generated using
CellQuest software (BD Biosciences, USA).

2.6. Apoptosis and Necrosis Assay. The sample groups were
previously incubated at 37°C for 72 hours in the presence
of 199 medium. According to the manufacturer’s recommen-
dations, the analysis of apoptosis and necrosis was performed
using FITC Annexin V and propidium iodide (Sigma, St.
Louis, USA). The cells were incubated for 10min at room
temperature. After that period, the cells were analyzed by
flow cytometry (FACSCalibur, BD Biosciences, USA); cyto-
metric plots were generated using CellQuest software (BD
Biosciences, USA). The apoptotic cells were positive for
Annexin V and negative for propidium iodide. The cells con-
sidered to be necrotic were positive for propidium iodide and
negative for Annexin.

2.7. Statistical Analysis. The data are expressed as the mean
± standard deviation. Significant differences were evaluated
using variance analysis (ANOVA one criterion) for viability,
proliferation cells, and cytokines. They were compared at the
level of significance at p < 0:05 by Bioestat v5.3 software.
Another test (Tukey) was applied to determine the differ-
ences between treatments when the results showed statisti-
cally significant differences. Factorial ANOVA (a × b) test
was used to determine the interaction between time treat-
ments. For apoptosis and necrosis, the Kruskal-Wallis non-
parametric test was used when statistical significance was
found (p < 0:05). Finally, the Student-Newman-Keuls test
was applied to determine the differences between treatments.

3. Results

3.1. Cell Viability. The viability index was determined in
three stages: 2 hours, 24 hours, and 72 hours of incubation,
and the results are shown in Figure 1 and Table 1. The via-
bility index decreased in colostrum PMN cells after 72 hours
of incubation. Conversely, the treatment of cells with mela-
tonin incorporated or not to microemulsion increased the
viability index after 2 and 72 hours of incubation (Figure 1).

After 2 hours, the viability index showed a significant
difference between the MCF-7 cells and the PMN cells.
Regardless of treatment and incubation time, there were no
significant differences in cell viability after 24 hours of incu-
bation (p > 0:05). After 72 hours of incubation, the PMN
cells treated with melatonin and coculture of PMN and
MCF-7-cells treated with melatonin incorporated with
microemulsion showed increased viability. In contrast, the
coculture of PMN MCF-7 cells showed decreased viability
(Table 1).

The lower cell proliferation index was observed in cocul-
ture of colostrum PMN cells incubated with melatonin
incorporated or not to microemulsions (Table 2).

3.2. Cytokines. The cytokine levels are shown in Table 3. It
was observed that independent of treatment, no differences
in IL-6 concentrations in the supernatant of the PMNs
cocultured or not cocultured with MCF-7 cells were
observed. However, the TNF-α concentrations were lower
in the supernatant of PMN cells cocultured or not with
MCF-7 and incubated with melatonin (Table 3).
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Figure 1: Time-dependent correlation of viability of PMN cells stimulated with melatonin (a). F = 9:26; p = 0:0018 (time of incubation),
F = 14:4991; p = 0:0003 (treatment). The results represent the median of the standard deviation. PMN: polymorphonuclear cells;
MLT: melatonin; LME: liquid microemulsion. The polymorphonuclear phagocytes were incubated with melatonin after 72 hours of
incubation (a). Orange-stained cells (dead) and green-stained cells (alive). Experiments were repeated five times, and the results were
comparable. p < 0:05. ∗Differences between PMN with treated PMN (MLT or MLT+LME), considering the same incubation times.
†Differences between times of incubation, considering the same treatment.
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3.3. Apoptosis and Necrosis. In this work, it was also possible
to compare the evaluation of cell death processes. The rates
of apoptosis and necrosis in groups treated with melatonin
and with the use of the modified system are available in
Figure 2. The PMN cells treated with melatonin incorpo-
rated into the microemulsion had a lower apoptosis rate;
similarly, coculture PMN and MCF-7 cells with and without
MLT treatment had lower apoptosis rates, while the PMN

treated with melatonin had lower rates of necrosis, as shown
in Figure 3.

The MCF-7 cells in the presence of the modified system
release showed significant apoptosis rates compared to the
untreated MCF-7 cells; however, when MCF-7 cells were
treated with melatonin, there was a decrease in apoptosis
rates and an increase in the necrosis index of these cells, as
shown in Figure 4.

In addition, a higher rate of apoptosis was observed in
the coculture group in the presence of the modified system
release; however, when treated with melatonin and associ-
ated with the use of a modified system release, an increase
in the rate of necrosis was observed, as shown in Figure 2.

4. Discussion

Phagocytes are the target of studies due to their ability to
acquire different functionalities depending on the exposed
stimuli. Some of these studies evaluated its phagocytic and
apoptotic potential in the most various modulatory sub-
stances, where melatonin appears to be one of the main
agents [17, 19, 25]. However, the hormone melatonin’s
immunostimulatory effects seem to be lower due to its anti-
oxidative potential [27]. This study shows that colostrum
PMN cells in the coculture of MCF-7 cells present increased
apoptosis and necrosis rates, especially when treated with
melatonin incorporated into the microemulsion.

The role of melatonin with and without nanoparticle-
based delivery methods in promoting apoptosis in human
breast cancer cells was related in other studies [28–31]. Still,
none of them verified the interaction between colostrum
neutrophils and breast cancer cells. Our experimental model
employed colostral PMN cells and breast cancer cells to
reproduce physiopathological conditions since the colos-
trum cells provide a good cancer research model [32], espe-
cially for breast cancer [33]. Colostrum cells are constituted
by mononuclear (MN) and polymorphonuclear (PMN)
cells; among them, neutrophils are cells whose effects are
poorly studied [21, 34]. Previous studies confirm that the
high concentration of phagocytes in the colostrum is

Table 1: Viability index of colostrum polymorphonuclear cells (PMNs) and MCF-7 cells treated or not with melatonin at different
incubation times.

Time in hours
2 24 72

PMN 95:6 ± 1:7 90:4 ± 2:6 83:2 ± 4:2#

MCF-7 91:6 ± 2:6∗ 91:2 ± 4:1 80:8 ± 3:3#

PMN+MCF-7 96:0 ± 3:2 92:0 ± 2:0 74:8 ± 11:5∗#

PMN+MLT 94:0 ± 3:2 93:2 ± 1:8 92:0 ± 2:5∗

MCF-7 +MLT 94:0 ± 4:0 90:0 ± 2:8 79:6 ± 10:0
PMN+MCF-7 +MLT 94:8 ± 2:3 88:4 ± 4:6 80:0 ± 8:8#

PMN+MCF-7 +MLT+MEL 95:6 ± 3:7 92:2 ± 4:1 94:8 ± 2:1∗

Notes: the results represent the median of the standard deviation of 10 experiments with different cells. PMN: polymorphonuclear cells; MCF-7: human breast
cancer cells; MLT: melatonin; MEL: microemulsion. ∗p < 0:05: comparing treated and nontreated cells (RPMI 1640 medium), considering the same
incubation time; #p < 0:05 comparing the incubation time, considering the same treatment.

Table 2: Cellular proliferation index of MCF-7 cells and cocutlure
(PMN cells + MCF-7 cells).

MCF-7 cells (%) Coculture (%)

Medium 95:20 ± 2:8 96:1 ± 2:7
Melatonin 52:7 ± 2:81∗ 33:4 ± 4:2∗#

MLT+MEL 43:6 ± 7:6∗ 29:7 ± 1:3∗#

Note: PMN colostral polymorphonuclear cells; MCF-7: human breast
cancer cells; MLT: melatonin; MEL: microemulsion. The results represent
median of the standard and of five experiments with different cells. ∗p <
0:05, comparing treated and untreated cells. #p < 0:05, comparing MCF-7
cells and coculture (MN and MCF-7 cells).

Table 3: IL-6 and TNF-α concentrations (pg/ml) in the culture
supernatant of colostrum PMN cells cocultured or not with MCF-
7 cells after 72 hours of incubation.

Cells IL-6 TNF-α

PMN 4:13 ± 0:71 6:69 ± 1:42
MCF-7 4:31 ± 0:94 6:82 ± 1:18
PMN+MCF-7 3:80 ± 0:45 5:88 ± 1:01
PMN+MLT 4:27 ± 0:96 5:59 ± 0:42∗

MCF-7 +MLT 3:90 ± 0:45 5:58 ± 0:47∗

PMN+MCF-7 +MLT 3:89 ± 0:55 5:59 ± 0:56∗

PMN+MCF-7 +MLT+MLT 4:21 ± 0:26 5:01 ± 1:01∗

Notes: the results represent the median of the standard deviation of 10
experiments with different cells. PMN: polymorphonuclear cells; MCF-7:
human breast cancer cells; MLT: melatonin. ∗p < 0:05: comparing treated
and nontreated cells (RPMI 1640 medium).
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probably responsible for initiating different killing mecha-
nisms [32] and inducing apoptosis in tumor cells [35].

Melatonin acts as an immunomodulatory agent in PMN
phagocytes, and variations in serum melatonin levels can
influence how phagocytes respond to the stimulus. It was also
observed that both cell types, mononuclear (MN) and poly-

morphonuclear, had increased phagocytosis in the presence
of the hormone, both in daytime and nighttime samples;
however, PMN had a lower bactericidal rate in night-time
samples in the presence of melatonin, that showed the stim-
ulating effect of melatonin on phagocytes and that melatonin
stimulates the oxidative metabolism of phagocytic cells,
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Figure 2: Apoptosis and necrosis in coculture of PMN cells and MCF-7 cells after 72 hours of incubation. PMN: polymorphonuclear cells;
MCF-7: human breast cancer cells; MLT: melatonin; MEL: microemulsion. Cells were stained with Annexin V/PI and analyzed by flow
cytometry. In the dot plot, the lower-left (Q1) quadrant corresponds to a viable cell; the lower-right (Q2) and upper-right (Q3)
quadrants represent the percentage of apoptosis, and the upper-left (Q4) quadrant is the percentage of necrosis. p < 0:05. ∗Compared to
apoptosis index of PMNs untreated with PMNs treated; #compared to necrosis index of PMNs treated with PMNs.
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against EPEC [19]. In this study, we observed that cell viabil-
ity in culture evaluated by acridine orange is time-dependent,
and that melatonin improved PMN cell viability at all incu-
bation times. The acridine orange is a vital metachromatic
fluorochrome dye that binds to cellular DNA or RNA [36].
When examined under an ultraviolet microscope, it emits

a green, orthochromatic color in contact with double-
stranded DNA. When in contact with denatured or depo-
larized DNA, or single-stranded RNA, it emits an orange
or red color in the metachromatic form [37].

Studies have demonstrated the role of melatonin in pre-
venting the death of human leukocytes [38]. Here, despite
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Figure 3: Apoptosis and necrosis in colostrum PMN cells. PMN: polymorphonuclear cells; MLT: melatonin; MEL: microemulsion after 72
hours of incubation. Cells were stained with Annexin V/PI and analyzed by flow cytometry. In the dot plot, the lower-left (Q1) quadrant
corresponds to a viable cell; the lower-right (Q2) and upper-right (Q3) quadrants represent the percentage of apoptosis, and the upper-
left (Q4) quadrant is the percentage of necrosis. p < 0:05. ∗Compared to apoptosis index of PMNs untreated with PMNs treated;
#compared to necrosis index of PMNs treated with PMNs.
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the incubation time, melatonin maintained viable colostrum
cells. Furthermore, the melatonin effects are dose-depen-
dent, wherein at lower concentrations, this hormone pre-
sents effects of cellular activation, whereas in higher doses,
the melatonin show cellular inhibitory effects [19, 39–41].

The capacity of phagocytes to act on cancer cells remains
unresolved. Nevertheless, there is evidence that PMNs effec-
tively prevent cancer and are associated with cancer control
[28]. Additionally, various immunostimulatory molecules
have been associated with antitumor effectors, such as
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Figure 4: Apoptosis and necrosis indexes in MCF-7 cells. MCF-7: human breast cancer cells; MLT: melatonin; MEL: microemulsion after
72 hours of incubation. Cells were stained with Annexin V/PI and analyzed by flow cytometry. In the dot plot, the lower-left (Q1)
quadrant corresponds to a viable cell; the lower-right (Q2) and upper-right (Q3) quadrants represent the percentage of apoptosis, and
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cytokines. Evidence indicates that serum levels of IL-6 and
TNF-α may be elevated in several cancers [27, 42, 43], and
both proinflammatory cytokines present dichotomous since
they have function that maintains the body’s homeostasis.
Still, at the same time, they may take on a protumoral role
[43]. In this work, we have demonstrated that the culture
supernatant of colostrum PMN cells and MCF-7 cells, in
the presence of melatonin, decreased TNF-α levels.

The role of TNF-α in the promotion and inhibition of
tumors still seems uncertain; however, it seems certain that
melatonin can inhibit the expression of this cytokine present
in the inflammatory process. The present research also made
it possible to compare the evaluation of cell death processes
through apoptosis and necrosis, which are essential for the
development and homeostasis of tissues, participating in
the immune response, and, in general, in all pathophysiolo-
gical processes [44].

Studies have related the role of melatonin in apoptosis in
numerous types of cells; among these studies, it is possible to
highlight the death of cancer cells, including human hepato-
carcinoma of the HEPG2 lineage and tumor line MCF-7 of
mammary adenocarcinoma [12, 45–47], however, in some
studies, melatonin also has antioxidative potential for onco-
tic cells [27].

Apoptosis, unlike necrosis, in most cases, does not trig-
ger an inflammatory response, which makes the process
more attractive to studies looking for alternative treatments
for tumor cell death [44].

Studies have shown that various environmental stimuli
can initiate or inhibit physiological and pathological apopto-
sis [48]. Thus, cell death occurs for every organism due to
the most varied physiological processes, which could justify
high apoptosis rates in groups of PMN cells.

However, it is natural that they survive in circulation for
approximately 7-10 h. Still, when inflammatory substances
or chemicals stimulate cells, they can remain active for 48
hours [23]. This fact would explain the high apoptosis rates
in the control groups of polymorphonuclear cells found in
this work.

The neutrophil is a key effector cell at the forefront of
immune defense and is effective in most cases due to its
versatility. Neutrophils prove to be effective phagocytes
because, when performing this task, they are programmed
to die with an immediate, silent, and importantly contained
apoptotic death [23].

Apoptosis occurs spontaneously in untreated malignan-
cies and participates in at least some types of therapy-
induced tumor regression. In addition, it is involved in
physiological involution and atrophy of various tissues and
organs [49].

Some of these studies suggest that apoptosis and
necrosis continue the same cell death process. Their impli-
cations and forms for neighboring tissues would be
decided by the availability of ATP and probably by addi-
tional factors in the dying and eliminator cells [49]. Two
distinct apoptotic processes are triggered by melatonin in
MCF-7 cells: one form is apoptosis independent of caspase
associated with an increase in the p53/MDM2 protein
ratio (responsible for cell growth/apoptosis induction),

increased release of apoptotic induced factor (AIF), and
no change in caspase or cleaved activity; the second is a
late apoptotic process, dependent on TGF1 [50, 51].

Considering that the induction of macrophage apoptosis
by pathogenic agents can negatively affect the host’s immune
response to infection, the acceleration of the apoptotic pro-
cess of neutrophils after phagocytic interaction with bacteria
seems essential for the resolution of the infection. This idea
is supported by discovering that some bacterial pathogens
alter neutrophil apoptosis induced by normal phagocytosis
to survive and cause disease. However, although progress
has been made toward understanding apoptosis in neutro-
phils, very little is known about the transcriptional regula-
tion of this process during bacterial infection [52, 53].

Apoptotic PMNs cannot remain that way forever, and if
phagocytes do not eliminate them, they will undergo necrosis
if all good work is undone. Large-scale recruitment of PMNs
must necessarily be followed by apoptosis and subsequent
removal by macrophages to resolve inflammation [54, 55].

Although the term “programmed cell death” has been
commonly associated with apoptosis, recent studies have
proposed that, under specific conditions, necrosis represents
a regulated and well-orchestrated process [56]. However,
necrosis has always been considered almost “accidental” cell
death, a random and uncontrolled process [57–59]. In addi-
tion, it was also possible to observe an increase in necrosis
rates in the coculture of PMN cells and MCF-7 cells, with
its highest rates in the presence of melatonin incorporated
in the microemulsion.

Programmed necrosis is cell death independent of cas-
pase and is always triggered as a backup mechanism for
apoptosis when caspases are inactivated. In addition, pro-
grammed necrosis is accompanied by autophagy, but the
specific relationship remains an enigma [60].

Animal studies in maintaining mammary gland homeo-
stasis and cell death, specifically of the PMN, are of great
importance. Despite being essential as the first line of cellu-
lar defense against mastitis pathogens [61], PMNs have great
potential to destroy glandular tissue, either by the secretion
of inflammatory mediators or by cytoplasmic leakage result-
ing from necrosis. In addition, there is an increase in the
percentage of this cell type by up to 90% [62].

Another phenomenon also described is the necrosis of
apoptotic bodies that took time to be phagocytosed by mac-
rophages and removed from the inflamed site [63]. This
event may contribute to the increase in necrosis observed
in the present study.

In this study, a higher rate of necrosis and apoptosis was
observed in cells cocultured in the presence of melatonin,
and an additional anticancer effect was demonstrated when
melatonin was incorporated into the microemulsion. In addi-
tion, studies indicate that melatonin adsorbed on PEG micro-
spheres has antitumor effects on MCF-7 human breast cancer
cells [12]. However, these effects are not restricted to MCF-7
cells. For example, a study with lung tumors showed that
MEs exhibited an effect, decreasing cytotoxicity, inducing apo-
ptosis, and inhibiting tumor growth and survival time [64].

Melatonin acts through a receptor, activating signaling
pathways involving second messengers cAMP, diacylglycerol,
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inositol triphosphate (IP-3), and intracellular Ca2+ [42, 43].
The release of large amounts of intracellular Ca2+ has been
associated with the induction of apoptosis in human cells
when in the presence of tumor cells [47, 65].

Also, studies have associated microemulsion as a carrier
system capable of altering the intracellular influx of Ca2+ in
human cells, which can lead to cellular damage that culmi-
nates in the activation of cell death pathways, such as apo-
ptosis, which may explain in this study the high levels of
apoptosis when in the presence of microemulsion and
depending on the dose can increase or reduce necrosis [66].

It should be considered that breast tissue is in constant
and direct contact with milk’s soluble and cellular immuno-
logical components, among these high concentrations of
melatonin and PMN phagocytes. Therefore, the interactions
of these components through modified delivery systems,
increasing the stability of melatonin, can probably be an
alternative for tumor immunotherapy [66].

5. Conclusions

The data suggest that melatonin has time-dependent immu-
nomodulatory effects on colostrum polymorphonuclear
cells, increasing the viability of cells. In addition, melatonin
demonstrated the ability to decrease the TNF-α level in the
supernatant of PMN and MCF-7 cell cultures, proving to
be a potent anti-inflammatory agent. Melatonin also, in the
culture of PMNs and cells, was able to increase cell death
by necrosis, and the use of microemulsion enhanced this
effect. In this way, the findings of this research allowed us
to verify that the therapies that use melatonin can be consid-
ered a viable alternative to explore new studies that charac-
terize the mechanisms of action of polymorphonuclear
cells in synergy with the melatonin hormone.
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