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The electrochemical characteristics of cation-exchange membranes based on polynorbornenes with fluorinated and sulfonated
dicarboximide side chain groups were reported. This study was extended to a block copolymer containing structural units with
phenyl and 4-oxybenzenesulfonic acid, 2,3,5,6-tetrafluorophenyl moieties replacing the hydrogen atom of the dicarboximide
group. A thorough study on the electrochemical characteristics of the membranes involving electromotive forces of concentration
cells and proton conductivity is reported. The proton permselectivity of the membranes is also discussed.

1. Introduction

Ion-exchange membranes have received considerable atten-
tion for many applications. Thus, the desalination of sea-
water and brackish-water, treatment of industrial effluents,
concentration or separation of food and pharmaceutical
products containing ionic species are some of the examples
of these kinds of applications [1, 2].

Ion-exchange membranes should exhibit high conduc-
tance, high permselectivity, low free diffusion of ionic
species, low osmotic flow, good mechanical properties, and
high chemical stability. Many polyelectrolytes based on
perfluorinated polyimides, polyetherketones, polysulfones,
polyphosphazenes; have been synthesized, and their elec-
trochemical characteristics have been studied [3]. It is well
known that norbornene monomers can be easily functional-
ized and membranes from functionalized polynorbornenes
with adamantyl, phenyl, cyclohexyl, and pentafluorophenyl
dicarboximide side groups have been prepared [4-6]. Taking

into account these antecedents and searching for new ion-
exchange membranes, a study was undertaken focused on
the preparation of cation-exchange membranes based on
modified polynorbornenes.

In an earlier work, the preparation of hydrogenated
and sulfonated poly(N-phenyl-exo-endo-norbornene-5,6-
dicarboximide) has been reported [7]. A drawback of these
membranes is that the sulfonation procedure does not
guarantee a uniform sulfonation of the phenyl groups,
and even it can produce degradative processes in the
polymer chains. In order to circumvent these difficulties,
we have synthesized poly(N-pentafluorophenyl-exo-endo-
norbornene-5,6-dicarboximide) and successfully replaced
the fluorine atom in position 4 of the phenyl group by
sulfonation in mild conditions [8].

The fluorine atoms in the polyelectrolyte side chains
can decrease attractive intermolecular interactions between
phenyl groups thus avoiding the molecular piling of the
phenyl rings. This behavior is a direct consequence of the



high electronegativity of the fluorine atom which severely
reduces the polarizability of the C*—F bond and as a result the
formation of nonpermanent or flitting dipoles which are the
basis of the London dispersion forces [9]. It should be noted
that earlier studies on gas transport in polynorbornene-
based membranes showed that fluorinated moieties in the
polymer chains cause a significant increase in gas perme-
ability as a consequence of the decrease in intramolecular
interactions [10]. The cation-exchange membranes were also
prepared from copolymers resulting from partially replacing
the phenyl groups of poly(N-phenyl-exo-endo-norbornene-
5,6-dicarboximide) by 4-oxybenzenesulfonic acid, 2,3,5,6-
tetrafluorophenyl groups [11]. The aim of this study was
to find out how the decrease of the density of sulfonic
acid in the membranes affects their transport characteristics.
The acronyms used for the homopolymeric and the copoly-
meric acidic membranes were, respectively, PSENDIHS and
C5FNDIHS, and the structural units of the respective chains
are shown in Figure 1.

2. Experimental Part

2.1. Synthesis of the Monomer. By reaction of norbornene-
5,6-dicarboxylic anhydride (NDA) with 2,3,4,5,6-penta-
fluoroaniline an amic acid (AA) that is obtained which fur-
ther treated with anhydrous sodium acetate/acetic anhydride
produces the monomer N-pentafluorophenyl-exo-endo-
norbornene-5,6-dicarboximide (5FNDI) (see Scheme 1).
More details of the synthesis are given elsewhere [8].

2.2. Polymerization. Polymerization of 5FNDI was carried
out by ring opening metathesis polymerization (ROMP)
(Scheme 1). The reaction was performed at 45°C for 2h in
glass vials, under nitrogen atmosphere. The polymerization
was terminated by adding ethyl vinyl ether to the reaction
medium which was further poured into methanol, solubi-
lized with chloroform containing a few drops of 1 N HCI, and
precipitated again into methanol. The product was dried in a
vacuum oven at 40°C to constant weight. Then, the polymer
was hydrogenated quantitatively at room temperature and
115 bar using a Wilkinson’s catalyst (Scheme 2).

2.3. Sulfonation Procedure. Hydrogenated poly(N-penta-
fluorophenyl-norbornene-5,6-dicarboximide) (P5FNDIH)
(0.5g, 1.51mmol), sodium 4-hydroxybenzenesulfonate
dihydrate (0.70g, 3.02mmol), and potassium carbonate
(0.52 g, 3.77 mmol) were mixed in a round flask equipped
with a Dean-Stark trap and stirred in 15mL of solvent
(N,N-dimethylacetamide-toluene 2:1) at 120°C for 9h
(Scheme 2). Progressive precipitation overtime was ob-
served. The product was then filtered off, washed several
times with distilled water and dried in a vacuum oven
at 40°C overnight. The resulting polymer PSFNDIHS, a
pale-brown powder, was soluble in DMF and DMSO. Yield:
94%, Ty = 228°C, Ty = 260°C (sulfonic group loss), Tax =
430°C (main chain decomposition).
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'H NMR (300 MHz, DMF-d;): 6 (ppm) = 7.80 (2H, s),
7.18 (2H, s), 3.56 (2H, s), 2.73, 2.31, 1.83, 1.58, 1.91.

I3C NMR (75 MHZ, DMF-d;): § (ppm) = 175.0 (C=0),
145.5, 145.0, 140.4, 139.7, 128.2 (C-0O), 115.1, 107.2, 49.0,
43.0.

1F NMR (300 MHz, DMSO-dg, ref. TFA [—77 ppm]): &
(ppm) = —141.9, —143.0, —153.1.

FT-IR (thin film, cm™!): 2926 (C-H asym str), 2860 (C-
H sym str), 1787 (C=0), 1726, 1636, 1509, 1406, 1356, 1295
(C-F), 1140 (—-SOsH, asym str), 1132, 1039 (—SOsH, sym
str), 981, 833, 698, 561. The acronym for this polymer will be
P5FNDIHS (Figure 1).

2.4. Copolymerization. The copolymer was prepared via
ROMP in a block fashion [11]. Firstly, monomer PhNDI,
synthesized according to literature [8] and catalyst I were
stirred in 1,2-dichloroethane at 65°C for 0.33h. Then,
monomer 5FNDI dissolved in 1,2-dichloroethane was added
to the polymer solution and stirred at 65°C for 0.66h
(Scheme 1). The obtained copolymer C5FENDI was soluble
in chloroform and dichloroethane. The incorporation of
5FNDI in copolymer was 32mol% as determined by 'H
NMR. The block copolymer obtained was hydrogenated
as mentioned above and the pentafluorophenyl moieties
of hydrogenated poly(N-phenyl-exo-endo-norbornene-5,6-
dicarboximide-co- N - pentafluorophenyl-exo-endo- norbor-
nene-5,6-dicarboximide) (C5FNDIH) were sulfonated with 4-
hydroxybenzenesulfonate dihydrate using the procedure used
for the sulfonation of hydrogenated poly(IN-pentafluoro-
phenyl-exo-endo-norbornene-5,6-dicarboximide) (Scheme 2).
The acronym for this copolymer will be CSFNDIHS and its
composition is shown in Figure 1.

2.5. Membranes Preparation and Atomic Force Microscopy
(AFM). P5FNDIHS and C5FNDIHS membranes (in sodi-
um salt form) were cast, respectively, from hot N,N-dim-
ethylformamide solutions (~2wt %) of P5FNDIHS and
C5FNDIHS chains in a Teflon mold and dried at 70°C for
12 h. The films were immersed firstly in stirring methanol at
room temperature for 3h and secondly in deionized water
for 1h in order to remove the residual solvent. Afterwards,
the membranes underwent a proton exchange treatment
with 1.0 N hydrochloric acid during 12h. Then, the films
were washed repeatedly with deionized water until the rinse
water became neutral. Finally, the membranes were dried
under a vacuum at 120°C for 10 h.

The surface morphology of the thin films was observed
using tapping mode AFM (Multimode Nanoscope IVa,
Digital Instrument/Veeco) under ambient conditions. In
tapping mode, the stylus oscillates and touches the sample
only at the end of its downward movement. The nominal
resonance frequency for the tapping mode was between 265—
309 kHz with a phosphorous (1) doped Si cantilever which
had a spring constant that ranged from 20 to 80 N m~!. The
set point in the AFM control program was adjusted to change
the contact force between the tip and surface in order to
detect the existence of morphologies.
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FiGUure 1: Acid form structural units of hydrogenated-sulfonated poly(N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide)
(P5FNDIHS) and hydrogenated-sulfonated poly(N-phenyl-exo-endo-norbornene-5,6-dicarboximide-co-N-pentafluorophenyl-exo-endo-
norbornene-5,6-dicarboximide) (C5FNDIHS).
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ScHEME 1: Monomer synthesis and further polymerization.
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ScHEME 2: Synthesis of sulfonated polymer and copolymer.

TasLE 1: Density in Kgm™, p, water uptake in Kg H,O/Kg dry membrane, w,, IEC in equivalents of fixed anionic groups per Kg dry
membrane obtained by titration, X ~, and NMR, Xy,r, molecules of water per fixed ionic group, A, and conductivity, ¢, in S/m, at 30°C.

Membrane P Wy X~ XNMR Ax- A XJmr o
P5FENDIHS 1500 0.617 1.750 2.060 19.6 16.6 2.24
C5FNDIHS 1380 0.373 0.286 0.204 72.5 101.6 0.0134

2.6. Density, Water Uptake, and Ion-Exchange Capacity of
the Membranes. The density of the dry membranes was
measured by the flotation method using isooctane as solvent.
The values of this parameter are shown in the first column of
Table 1.

Weighed dry membranes were immersed in distilled
water for several hours, removed from the solution, gently
blotted with filter paper to remove superficial water, and
weighed. From the weights of the dry membranes, my,
and the membranes equilibrated with water, m,,, the water
uptake, wy, in g H,O/g dry membrane is obtained as w, =
(my/mgq) — 1.

The ion-exchange capacity (IEC) of a given membrane
was measured by immersing the weighed dry membrane in a
1 N HCI solution for 1 h. Then the membrane was removed
from the solution, washed several times with distilled water
to eliminate the chloride acid absorbed, and finally immersed
in a 1 N sodium chloride solution. The protons exchanged in
the reaction

R-H+Na* — R-Na+H" (1)

were estimated by titration with a very diluted NaOH
solution. The values of IEC in equiv/Kg dry membrane were
obtained as IEC = VN/my where V is the volume in L
of the solution of NaOH of normality N (equiv/L) used
in the titration, and my, is the mass of the membrane in
Kg.

2.7. Electromotive Forces of Concentration Cells. Electromo-
tive forces of concentration cells made up of two semicells
separated by the ion-exchange membrane were measured
(Figure 2). The configuration of the cells was Ag [AgCl| HCI
solution (c¢;) [cation-exchange membrane| HCl solution
(c2) 1AgCl|Ag, where ¢; and c, are the concentrations of the
electrolyte in the left-hand and right-hand compartments
of the concentration cells. Notice that the anion of the
electrolyte must be reversible with that of the electrodes.
The solution in each compartment was kept under strong
stirring to minimize the formation of membrane-solution
interface layers. The evolution of electromotive force, emf,
of the cell with time was measured at 25°C with a 3645-
20 Hioki voltage logger and recorded every second with a
3911-20 communication base apparatus via a PC. The emf
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FiGUure 2: Concentration cell used to measure the electromotive
force: (C) half cell, (E) electrodes, (M) ion-exchange membrane,
and (S) magnetic stirrers.
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F1GURE 3: Cell used to measure the ionic conductivity of the mem-
branes.

of the concentration cell was taken as that one at which this
quantity reaches a maximum.

2.8. Ohmic Resistance Measurements. The ohmic resistance
of the membranes in the acid form was measured with a
Novocontrol BDS system comprising a frequency response
analyzer (Solartron Schlumberger FRA 1260) and a broad-
band dielectric converter with an active sample head. Gold
disk electrodes were used in the impedance measurements
carried out at several temperatures in the frequency window
49 X 1072 — 1 x 107 Hz. The temperature was controlled
by a nitrogen jet (QUATRO from Novocontrol) with a
temperature error of 0.1K during every single sweep in
frequency (Figure 3). Measurements were carried out on
molded disk-shaped samples of 60-100 ym thickness with
diameters of 20 and 10 mm.
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FIGURE 4: Evolution of the emf of the PSFNDIHS membrane for
different c,/c; ratios: (1) 0.01/0.005, () 0.02/0.01, (A) 0.1/0.05,
() 0.2/0.1, (<1) 0.4/0.2, (») 0.8/0.4, and () 1.0/0.5.
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FiGURrE 5: Evolution of the emf of the CSFNDIHS membrane for
different c,/c; ratios: ((J) 0.01/0.005, (¢) 0.02/0.01, (A) 0.1/0.05,
() 0.2/0.1, (<1) 0.4/0.2, (») 0.8/0.4, and () 1.0/0.5.

3. Results and Discussion

Values of the water uptake and the ion-exchange capacity
(IEC) of the membranes measured by titration are given
in Table 1. The values of the IEC estimated from the NMR
spectra, also given in Table 1, somewhat differ from those
determined by titration. Moreover, the number of moles
of water per —SO3~ group anchored to the polymer chains
of the membranes are also shown in Table 1. It is worth
noting that in spite of its relatively low IEC, the CSFNDIHS
membrane exhibits a rather large number of molecules of
water per anionic fixed group.

The variation of the electromotive force, emf, of the
concentration cell with time for several HCI solutions flank-
ing the membrane of interest is shown in Figures 4 and 5.



The ratio between the concentrations of the solutions in
the concentrated, c¢,, and diluted, ¢;, compartments lies in
the vicinity of 2. In all cases, prior to each experiment, the
membrane was washed several times with distilled water
until exhausting the free electrolyte inside the membrane
and then was equilibrated with the solution used in the
dilute compartment of the concentration cell. An inspection
of the evolution of the curves in the figures shows that the
emf of the concentration cell increases with time needing
nearly 3h in most cases to reach the maximum value and
then decreases as time increases. The emf at the maximum
of the curves was taken as the apparent electromotive force
of the concentration cell flanked by electrolyte solutions
with concentration c,/c;.

The emf of a concentration for an electrolyte A% B~ —
v*A* + v~ B% isgiven by [12]

a az
emf = % ) ty(c)dIn a. = g L 7,(c)d In a-,

(2

where a; and a, are, respectively, the activities of the
electrolyte solutions in the compartments 1 and 2 of the
concentration cell, t; and 7, (= t./z;) are, respectively,
the number of equivalents and moles of cations transported
across the membrane by a Faraday of current, F, and v =
v; + v_ is the total number of moles of ions proceeding
from the dissociation of the electrolyte. For monovalent
electrolytes, such as HCI, (2) becomes

mf - _¥th+(c)d In a.. (3)

Notice that for monovalent electrolytes, t, = 7.
Since transport numbers depend on the concentration of
electrolyte, solution of (3) requires measuring the #,(c)
profile across the membrane using the Hirthoff method, that
is, determining the variation of concentration of electrolyte
in a concentration cell flanked by the electrolyte at the same
concentration c after passing a known amount of dc current
across the membrane. However, if the concentration ratio
c2/cy is 2 or lower, the average transport number of the cation
can approximately be estimated as

emf

em fnax

ty = (4)
where emf is the experimental value of the concentration
cell and emf __ can be obtained doing £, = 1 in (3), that
is,

max

em fmax = —gln Z—j. (5)

Values of the apparent proton transport numbers for
different concentrations flanking the membrane are shown
in Figure 6.

The response of cation-exchange membranes in acid
form to an alternating electric field of angular frequency w
is modeled by an electric circuit consisting of an ohmic resis-
tance Ry accounting for proton transport in the membrane
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FIGURE 6: Variation of the apparent proton transport number with
the geometric average of the molality of the solutions flanking the
membrane in PSENDIHS (squares) and C5FNDIHS (circles).

in series with a parallel RC circuit. The RC circuit represents
a Debye relaxation process with a single relaxation time 7 =
RC. Strictly speaking, relaxation processes are described by
a distribution of relaxation times and as a result it is more
realistic to replace the capacitor by a constant phase element
of admittance Y*(w) = Yo(jwr)", 0 < n < 1[13]. The
impedance of the circuit is given by

Z*(w) =Ry + (6)

__ R
1+Y (jwr)"’

where Y7 = RYj is a dimensionless parameter. The complex
plane plot Z” (w) versus Z'(w), called Nyquist diagram [14],
is an arc intersecting the abscissa axis at @ — oo and
w — 0. Taking into account that lim, . »Z'(w) = Ry and
lim,_ Z"(w) = 0, the intersection of the arc with the
abscissa axis at high frequencies gives the ohmic resistance
of the membrane to proton transport. However, Nyquist
plots for the acidic PSENDIHS and C5FNDIHS membranes
presented in Figures 7 and 8, respectively, show in addition
to the polarization arc another arc, at higher frequencies, that
presumably intersects with the abscissa axis at the origin. The
real impedance where the two arcs intersect with the abscissa
axis at the same point is the resistance Ry of the membrane.
On the other hand, the polarization arc in the low-frequency
region does not intersect with the abscissa axis as (6) predicts
but both |Z”| and Z’ increase as frequency decreases. This
behavior is presumably associated with a charge-transfer
resistance Rcr and a double-layer capacitance Cg. The
Warburg impedance [13, 15, 16] nearly always exhibits these
two characteristics in such a way that it is conditioned by
the diffusion of charges in the membrane-electrode interface.
The value of this impedance for an interface of infinite
thickness is given by

[ . 0
Zi(w) = PR ]m, (7)
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FIGURE 7: Nyquist plots at 10 (H), 20 (e), 30 (A), 40 (J) y 50°C
(O) for the PSENDIHS membrane in the acid form equilibrated
with distilled water. Inset: zoom of the Nysquit plots at 20°C and
40°C in the high-frequency region.
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FIGURE 8: Nyquist plots at 20 (H), 30 (O), 50 (A) y 70°C (V) for the
C5FNDIHS membrane in the acid form equilibrated with distilled
water. Inset: zoom of the Nyquist plots at high frequencies.

where ¢ is a constant that depends on %; (1/C?D}’*) where
C! and D; are, respectively, the bulk concentration and
diffusion coefficients of the reactant species i. As a result
the modulus of the impedance scales as |Z (w)| ~ w2,
that is, the double logarithmic plot of the modulus of the
complex impedance is a straight line of slope —1/2 in the case
of a double layer of infinite thickness. Although the results
seem to support the existence of a Warburg impedance, there
are not enough data in the low-frequency region that allow
to reach a definite conclusion concerning the membrane-
electrode double layer thickness.

To account for the arc intersecting with the origin at high
frequencies, the equivalent circuit of the membrane (ohmic
resistance of the membrane in series with a circuit made up
of constant phase element in parallel with the polarization
resistance) should be in parallel with a capacitor, in the case
of a semicircle, or a constant phase element for an arc.
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FIGURE 9: Bode diagram showing the variation of the modulus
of the impedance |Z*| (lines) and the out-of-phase angle (¢ =
tan~!/(Z"/Z") (symbols) with the frequency at 20°C (solid line and
filled circles), 40°C (dash line and open squares) and 60°C (dot line
and filled triangles) for the PSENDIHS membrane in the acid form
equilibrated with distilled water.
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FIGURE 10: Bode diagram showing the variation of the modulus
of the impedance |Z*| (lines) and the out-of-phase angle (¢ =
tan~!/(Z"/Z") (symbols) with the frequency at 20°C (solid line and
filled circles), 40°C (dash line and filled squares), 60°C (dot line and
open triangles), and 80°C (dash dot line and filled circles) for the
C5FNDIHS membrane in the acid form equilibrated with distilled
water.

An alternative method to determine the resistance of the
membranes is the Bode diagram [17] consisting in the plot
of both the modulus of the impedance and tan"'(Z"/Z")
against frequency. According to (6),

lim |Z*(w)| =R, +Ry;  lim |Z*(w)| = Ry,
w—20 w—0

’ (®)
il 8

¢ = lim tan™!

w— 00
[lustrative Bode plots for the PSFNDIHS and C5FNDIHS
membranes are plotted in Figures 9 and 10, respectively. The
curves show that the modulus of the impedance undergoes
a sharp decrease reaching a plateau whereas ¢ reaches
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TaBLE 2: Comparative and illustrative results for the ohmic resistance, Ry, and conductivity, o, of the membranes at 30°C obtained from

Nyquist and Bode diagrams.

Membrane Ry (Nyquist), Q Ry (Bode), Q o (Nyquist), S/m o (Bode), S/m
P5FNDIHS 1.79 1.70 2.13 2.24
C5FNDIHS 20.24 20.41 0.0135 0.0134

a maximum at the plateau. The resistance of the membrane
is taken as the value of |Z*(w)| at the maximum of ¢.
It can be seen at very high frequencies that the modulus
drops as a result of the fact that the capacitor in parallel
with Ry governs the impedance of the circuit. The results
obtained for Ry by the two methods are in rather good
agreement. For examples the value of Ry for the PSENDIHS
membrane at 30°C estimated from Nyquist and Bode plots
are, respectively, 1.79 and 1.70 Q. These results are 20.24
and 20.41 Q) for the CSFNDIHS membrane (see Table 2). For
consistency, the results of the Bode plots obtained for Ry, will
be used in the analysis below.

The resistance Ry; of the membranes was measured at
different temperatures and the corresponding conductivities
were obtained by means of the familiar expression

77 RS ®)
where | and S are, respectively, thickness and area of the
membrane in contact with the electrodes. For comparative
purposes the values of the conductivity at 30°C are shown in
Table 1. [llustrative Arrhenius plots showing the temperature
dependence of the conductivity of the membranes obtained
from the resistances of the membranes estimated from Bode
plots are shown in Figure 11.

Figure 12 shows representative morphologies of the
P5FNDIHS and C5FENDIHS membranes. The molecu-
lar chains of the latter membranes contain, respec-
tively, 68% and 32% molar fractions of phenyl and 4-
oxybenzenesulfonic acid, 2,3,5,6-tetrafluorophenyl moieties
bonded to the dicarboximide side groups. It is expected
that these moieties are mutually incompatible and therefore
segregations occur giving rise to nanosize domains observed
in the AMF of C5FNDIHS. It is worth noting that the AFM of
P5FNDIHS suggests a much more homogeneous membrane
surface than that of C5FNDIHS. Moreover, it is expected
that the surface of the dry PSFNDIHS and C5FNDIHS
membranes has significant surface fluorine content com-
pared to the theoretical bulky fluorine content owing to the
low-surface energy of the tetrafluorophenyl moieties which
provide a thermodynamic-driving force for the self-assembly
at the surface air-polymer interface [18, 19].

In spite of the high water uptake of the PSFNDIHS
membrane, the moles of water per anionic fixed group in
the membrane, A, are of the same order as that reported
for Nafion [20] and copolyimide acid membranes [21, 22].
However, it is surprising that the value of A for the low
IEC C5ENDIHS membrane is nearly four times that of the
P5FNDIHS. This fact suggests that microphases separation
in the latter membrane serves to compartmentalize an excess
of water into the hydrophilic polar side chain domains,
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FIGURE 11: Arrhenius plot showing the temperature dependence of
the PSENDIHS (squares) and C5FNDIHS (circles) membranes.

specifically in the vicinity of the dicarboximide side groups.
It is worth noting in this regard that apparently dried
naphthalenic polyimides may contain up to 10% of water.
Moreover, 'H NMR experiments carried out on acidic naph-
thalenic polyimide membranes heated at 130°C under vac-
uum show peaks at 0.7-1 ppm corresponding to water asso-
ciated with imide groups [23]. This water may be absorbed
by the membranes during the NMR experiments handling.
An inspection of the dependence of the electromotive
force on time for the C5FNDIHS and P5FNDIHS mem-
branes shows that a certain time is required to reach a maxi-
mum value and then decreases as time increases. The emf of
the concentration cell containing the former membrane falls
to zero. The change is not so dramatic for the concentration
cell with the PSENDIHS membrane. The drop of ¢, to zero
for the C5SFNDIHS membrane at long times, even for dilute
concentration solutions, suggests that the concentration of
electrolyte equalizes in the two compartments of the concen-
tration cell presumably as a consequence of strong electrolyte
diffusion. The drop of t, with increasing concentration is not
so dramatic for the PSFNDIHS membrane at low concen-
trations, but the decrease of the transport parameter is still
significant. To explain this behavior the membranes can be
viewed formed by hydrophilic pores to the walls of which
anionic SOs~ groups are anchored. These groups prevent
the diffusion of coions across the pores and therefore hinder
electrolyte diffusion thus increasing the transport number of
counterions. The strong dependence of the counterion trans-
port on electrolyte concentration suggests that the number
of anionic fixed groups in the walls is not large enough to
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FIGURE 12: AFM topographic image for CSENDHIS (a) and PSENDIHS (b) membranes.

prevent coins diffusion across the membranes. As a result,
electrolyte diffusion from the high-to the low-concentration
compartment occurs, ¢;/c; decreases, and the electromotive
force of the concentration goes down. Owing to the rather
high time necessary to reach a maximum and the rather
high free ionic diffusion taking place in that period of time,
the ratio ay/a; presumably undergoes a significant decrease
for the more concentrated solutions. Therefore, the emf at
the maximum is the lower bound of this quantity and the
transport number corresponding to the nominal values of
c2/¢; should be higher than those obtained by means of (4).

The curves showing the variation of the transport num-
ber of protons with the geometrical average of the molality of
the solutions flanking the membranes show that both mem-
branes are ideally permselective for very dilute solutions,
but the permselectivity undergoes a rather fast drop with
increasing concentration. When the electrolyte solutions are
flanking the membranes, protons in the concentrated HCI
solution migrate to the side of the membrane facing the
diluted HCI solution. Because fixed ions in the membrane
hinder chloride anions transport across the membrane, the
side of the membrane in contact with the concentrated HCI
solution is negatively charged whereas that in contact with
diluted HCl solution is positively charged. As a result an elec-
tric potential is created inside the membrane that drags the
pore liquid positively charged toward the concentrated elec-
trolyte solution compartment, enhancing the osmotic flow.

As the concentrations of the electrolyte solutions in-
crease, chloride anions are not totally rejected by the fixed
anions of the membrane, and diffusion of hydrochloric acid
from the concentrated HCI solution compartment to the
diluted HCI solution compartment occurs. Both the ionic
diffusion across the membranes and the osmotic flow may
be responsible for the low permselectivity of the membranes
at high electrolyte solution concentration.

In an earlier work we carried out the synthesis of the
nonfluorinated  poly(IN-phenyl-exo-endo-norbornene-5,6-
dicarboximide) which underwent nonuniform sulfonation

of the phenyl groups by using acetyl sulfate as sulfonating
agent [7]. The IEC of the membrane prepared from this ionic
polynorbornene dicarboximide was 0.82 eq/Kg dry mem-
brane and in spite of having a higher IEC, in comparison
with that of the fluorine-containing CSFNDIHS membrane,
the former membrane exhibited a water uptake of 0.124 Kg
H,0/Kg dry membrane, about one-third of the value in this
latter obtained by titration; additionally, the conductivity
of the sulfonated membrane equilibrated with water was
0.0414 S/m, of the same order of that found for the fluorine-
containing CSFNDIHS membrane. These results suggest that
the sulfonic acid groups have not relaxed the attractive inter-
actions between phenyl groups and that molecular piling of
the aromatic rings has taken place inhibiting the emergence
of microphases separation in the non fluorinated membrane
and therefore decreasing the storage of an excess of water
into the polar side chain domains, specifically in the vicinity
of the dicarboximide side groups. As it is seen, the chemical
structure plays an important role in this kind of macro-
molecules since the more fluorine content in the polymer the
more water uptake of the membrane. Indeed, an increase in
the density of sulfonic acid affects directly the proportional
transport properties in the membrane as it is shown in the
fluorine-containing P5FNDIHS that exhibits the highest
IEC, water uptake, and ionic conductivity of all the ionic
polynorbornene dicarboximides we have discussed so far.
The conductivity of membranes with high water uptake
is strongly dependent on the fixed ions concentration. Thus
the P5FNDIHS membrane (average IEC = 1.90 eq/Kg dry
membrane) exhibits a conductivity of 2.24 S/m, at 30°C,
of the same order of that reported for high-conductivity
acidic membranes and about two orders of magnitude higher
than that of the C5FNDIHS membrane (average IEC =
0.245 eq/Kg dry membrane). Despite the low permselectivity
of the membranes at high electrolyte solution concentration,
the rather high level of ionic conductivity as well as water
content seems promising for low-temperature fuel cell
applications. Arrhenius plots representing the temperature
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dependence of the membranes, presented in Figure 11, show
that the activation of energy associated with proton transport
across the PSFNDIHS membrane (11.7 + 0.8 kJ/mol) is less
than one half of that corresponding to the C5FNDIHS
membrane (29.3 + 1.6 kJ/mol).

The study of the mechanism governing proton transport
in acidic ion-exchange membranes has drawn the attention
of many researchers [24, 25]. Ab initio simulations suggest
that the proton state in bulk water and in water clusters
fluctuates between more localized hydronium ion-like states
or Eigen ions and more delocalized HsOj-like states or
Zundel ions in such a way that forming and breaking
hydrogen bonds in the neighborhood of the proton location
(Grotthus like hoping) may be responsible for proton trans-
port [26-30]. Proton diffusion involving this mechanism
presumably takes place in high-conductivity membranes,
such as, the PSFNDIHS membrane, is named structural
diffusion. In low-conductivity membranes, such as, the
C5FNDIHS membrane, water acts as a carrier of protons,
and the transport is called vehicular diffusion.

4. Conclusions

The efficient segregation of hydrophilic from hydrophobic
moieties, presumably favored by the low polarity of C*—
F bonds attached to the phenyl groups, gives rise to the
formation of percolation paths responsible for the rather
high proton conductivity of the homopolymeric membranes.
The copolymeric membranes absorb an unusual quantity
of water despite their low IEC. It seems that microphases
separation in the membranes serves to compartmentalize an
excess of water into the polar side chain domains, specifically
in the vicinity of the dicarboximide side groups.

The electromotive force of the concentration cells under-
goes a strong decrease at long times in the case of the
homopolymeric membrane dropping to zero for the copoly-
meric membranes. The performance of the membranes in
separation processes in diluted solutions is rather poor,
unless the concentrations of the solutions at both sides of the
membranes are continuously renewed.

Abbreviations

5FNDI: N-pentafluorophenyl-exo-endo-norbornene-
5,6-dicarboximide

a: Activity coefficient of the electrolyte solution

AA: Amic acid

Ci: Concentration of the solution in the diluted
compartment

Cy: Concentration of the solution in the

concentrated compartment

C5FNDI:  Poly(N-pentafluorophenyl-norbornene-5,6-
dicarboximide-co-N-pentafluoropheny
lI-exo0-endo-norbornene-5,6-dicarboximide)

C5FNDIH: Hydrogenated copolymer

C5FNDIHS: Copolymeric acid membrane
emf: Electromotive force
F: Faraday constant
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IEC: Ion exchange capacity
: Thickness of the membrane in contact with
the electrodes

m: Molality of the solution

mg: Weight of the dry membrane

Myt Weight of the membrane equilibrated with
water

NDA: Norbornene-5,6-dicarboxylic anhydride

P5FNDI:  Poly(N-pentafluorophenyl-norbornene-5,6-
dicarboximide)

P5FNDIH: Hydrogenated homopolymer

P5FNDIHS: Homopolymeric acid membrane

PhNDI: N-phenyl-exo-endo-norbornene-5,6-
dicarboximide

ROMP: Ring opening metathesis polymerization

Ry Ohmic resistance of the membrane to proton
transport

S: Area of the membrane in contact with the
electrodes

Ta: Temperature of sulfonic group loss

Ta: Temperature of main chain decomposition

T: Glass transition temperature

te: Number of equivalents of cations
transported across the membrane by a
Faraday of current

Wy: Water uptake

Z*: Impedance of the circuit

VA The Warburg impedance

¢: out-of-phase angle

A Moles of water per anionic fixed group in the
membrane

v: Total number of moles of ions

p: Density of the membrane

o: Conductivity of the membrane in acid form

Tyt Number of moles of cations transported
across the membrane by a Faraday of current

w: Angular frequency of an alternating electric
field.
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