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A mathematical model of the dynamics of the self-ignition of a reaction-diffusion system is studied in this paper. An approximate
analytical method (modified Adomian decomposition method) is used to solve nonlinear differential equations under steady-
state condition. Analytical expressions for concentrations of the gas reactant and the temperature have been derived for Lewis
number (Le) and parameters 𝛽, 𝛾, and 𝜙2. Furthermore, in this work, the numerical simulation of the problem is also reported
using MATLAB program. An agreement between analytical and numerical results is noted.

1. Introduction

Nonlinear dynamical phenomena in combustion process
are an active area of experimental and theoretical research.
Mathematical models that describe this phenomenon can
be considered as nonlinear dynamical systems. The dynamic
characterization of such models was developed by Continillo
et al. [1]. The detailed numerical simulation of autoigni-
tion of coal stockpiles leads to the observation of steady
regimes. To better investigate this phenomenon, two sim-
plified distributed-parameter models were discussed which
incorporate heat conduction, mass diffusion, and one-step
Arrhenius exothermic chemical reaction. Both model equa-
tions were solved with straight forward finite-difference
schemes [2]. The problem of spontaneous ignition of coal
stockpiles is challenging for safety implications and for its
theoretical complexity: a spontaneous combustion reaction
takes place in a bed of solid fuel, while flow, driven by
natural convection generated by the onset of temperature
gradients within the pile, occurs. Coal stockpiles self-ignite
when reaction of coal with oxygen present in the atmosphere
generates heat, that is, not efficiently removed toward the
external ambient [3]. Continillo et al. [4, 5] have analyzed the

self-combustion of coal piles in the absence of natural convec-
tion. The three main phenomena in the self-ignition of coal
stockpile are convection, reaction, anddiffusion.On the other
hand, Continillo et al. [6] studied the dynamic behavior of a
two-dimensional coal pile also by accounting for natural con-
vection. As part of a comprehensive study of self-heating of
coal stockpiles, a simple mathematical model has been devel-
oped. To our knowledge, no rigorous analytical expressions
of gas reactant (Y) and temperature (𝑇) have been derived
for all possible values of parameters under steady-state
conditions.Thepurpose of this paper is to derive approximate
analytical expressions for gas reactant concentration and
temperature using the modified Adomian decomposition
method.

2. Mathematical Formulation of
the Boundary Value Problem

The nonlinear differential equations are those of a distribut-
ed-parameter dynamic model of heterogeneous reaction in a
one-dimensional layer.The gaseous reactant diffuses through
the reacting medium and a first order one-step exothermic
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chemical reaction takes place. The reaction rate depends
on the temperature through the Arrhenius exponential.
The Arrhenius rate equation is a mathematical expression
which relates the rate constant of a chemical reaction to the
exponential value of the temperature. The model nonlinear
equations in dimensionless form are [1]

𝜕𝑌

𝜕𝑡
= Le𝜕

2𝑌

𝜕𝑥2
− 𝜙2𝑌 exp(−

𝛾

𝑇
) ,

𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑥2
+ 𝛽𝜙2𝑌 exp(−

𝛾

𝑇
) ,

(1)

where 𝑌 is the concentration of the gas reactant, T is the
temperature, Le is the Lewis number (the ratio between
mass and heat diffusivities), 𝛽 is the dimensionless heat
of reaction, 𝜙 is the thermal Thiele modulus (the ratio
of the time scale of the limiting transport mechanism to
the time scale of intrinsic reaction kinetics [7]), and 𝛾 is
the dimensionless activation energy (minimum amount of
energy between reactant molecules for effective collisions
between them). The boundary conditions are

𝑇 (0, 𝑡) = 𝑇 (1, 𝑡) = 1, 𝑌 (0, 𝑡) = 1,

𝜕𝑌

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1
= 0 for 𝑡 > 0.

(2)

Under steady-state condition, the equations become

𝑑2𝑌

𝑑𝑥2
−
𝜙2

Le
𝑌 exp(−

𝛾

𝑇
) = 0,

𝑑2𝑇

𝑑𝑥2
+ 𝛽𝜙2𝑌 exp(−

𝛾

𝑇
) = 0

(3)

with boundary conditions

𝑇 = 1, 𝑌 = 1, at 𝑥 = 0,

𝑇 = 1,
𝑑𝑌

𝑑𝑥
= 0 at 𝑥 = 1.

(4)

3. Analytical Solution of Nonlinear Dynamics
of a Self-Igniting Reaction-Diffusion
System under Steady-State Condition Using
Modified Adomian Decomposition Method

In the recent years, much attention is devoted to the applica-
tion of theAdomian decompositionmethod to the solution of
various scientific models [8]. An efficient modification of the
standard Adomian decomposition method for solving initial
value problem in the second order partial differential equa-
tion yields the MADM. The MADM without linearization,
perturbation, transformation, or discretization gives an ana-
lytical solution in terms of a rapidly convergent infinite power
series with easily computable terms. The results show that
the rate of convergence of modified Adomian decomposition
method is higher than standard Adomian decomposition
method [9–13]. Using this method (see Appendix A), we
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Figure 1: Dimensionless concentration Y versus dimensionless
spatial coordinate x using (5) for Le = 0.233, 𝛽 = 4.287, 𝛾 = 13.6,
and various values of 𝜙2. Solid lines represent the analytical solution,
whereas the dotted lines are for the numerical solution.

obtain an approximate analytical expression of concentration
of gas reactant (𝑌) and temperature (𝑇) (see Appendix B) as
follows:

𝑌 (𝑥) = 1 +
𝜙2

Le
exp (−𝛾)(𝑥

2

2
− 𝑥) +

𝜙4

Le
exp (−2𝛾)

× [
1

Le
(
𝑥4

24
−
𝑥3

6
+
𝑥

3
) −

𝛾𝛽

2
(
𝑥4

12
−
𝑥3

6
+
𝑥

6
)] ,

(5)
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(6)

4. Numerical Simulation

Nonlinear diffusion equation (3) for the boundary condition
(4) is also solved numerically. We have used the function
pdex1 in MATLAB software to solve the initial-boundary
value problems for the nonlinear differential equations
numerically. This numerical solution is compared with our
analytical results in Figures 1–4. Upon comparison, it gives
a satisfactory agreement for all values of the dimensionless
parameters 𝛽, 𝛾, and 𝜙2.TheMATLAB program is also given
in Algorithm 1.

5. Discussion

Equations (5) and (6) represent the simplest form of approx-
imate analytical expressions for the concentration of gas
reactant and temperature for all values of parameters 𝛼,
𝛽, 𝛾, and 𝜙2. The Thiele number (thermal) is the ratio of
layer thickness (L) and thermal diffusivity (𝛼). Equation (5)
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Figure 2: Dimensionless temperature T versus dimensionless spa-
tial coordinate using (6) for Le = 0.233, 𝛽 = 4.287, 𝛾 =13.6, and
various values of 𝜙2. Solid lines represent the analytical solution,
whereas the dotted lines are for the numerical solution.
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Figure 3: Dimensionless concentration Y versus dimensionless
spatial coordinate x using (5) for Le = 0.233, 𝛽 = 4.287, 𝜙2 = 1000,
and various values of 𝛾. Solid lines represent the analytical solution,
whereas the dotted lines are for the numerical solution.

represents the new approximate analytical expression of
concentration of gas reactant. The numerical solution is
compared with the analytical results in Figures 1–4. These
figures represent the analytical and numerical concentra-
tion profiles of gas reactant and temperature for different
values of parameters 𝛽, 𝛾, and 𝜙2. Figure 1 represents the
dimensionless concentration Y versus dimensionless spatial
coordinate 𝑥 for 𝜙2 ≤ 35000. From the figure it is inferred
that the value of Y decreases when the value of 𝜙2 or layer
thickness increases. Figure 2 illustrates the dimensionless
concentrationY versus dimensionless spatial coordinate𝑥 for
𝜙2 ≤ 35000 and we infer that the dimensionless temperature
increases with the increase in values of layer thickness.
Figure 3 represents the dimensionless concentrationY versus
dimensionless spatial coordinate 𝑥 for values of 𝛾 ≤ 13.6.
From the figure it is inferred that the value of Y decreases
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Figure 4: Dimensionless temperature T versus dimensionless spa-
tial coordinate x using (6) for Le = 0.233, 𝛽 = 4.287 𝜙2 = 1000, and
various values of 𝛾. Solid lines represent the analytical solution,
whereas the dotted lines are for the numerical solution.

Table 1: Comparison between analytical and numerical values of
dimensionless concentration 𝑌 (Le = 0.233, 𝛽 = 4.287, 𝛾 = 13.6,
and 𝜙2 = 30000).

𝑥 Numerical value of 𝑌 Analytical value of 𝑌 % deviation
0 1 1 0
0.2 0.9661 0.9713 0.53
0.4 0.9398 0.9489 0.97
0.6 0.9216 0.9329 1.23
0.8 0.9113 0.9233 1.32
1 0.9082 0.9201 1.31

when the value of dimensionless activation energy (𝛾)
increases. Figure 4 illustrates the dimensionless temperature
T versus dimensionless spatial coordinate 𝑥 for the values
of 𝛾 ≤ 13.6; the dimensionless temperature increases with
increase in values of dimensionless activation energy (𝛾).
From Figures 2 and 4 it is evident that the maximum value
for dimensionless concentration is 1 and that temperature
attains its maximum value when the spatial coordinate 𝑥 =
0.5. Figure 5 confirms the results given by Figures 1 to
4.

Our analytical results are compared with the numerical
results for the dimensionless concentration Y in Table 1.
The maximum relative error between our analytical results
and simulation results for the concentration Y is 1.3%.
Also in Table 2, our analytical results are compared with
the numerical results for the dimensionless temperature T.
Satisfactory agreement is noted. The maximum relative error
in this case is 0.4%.

6. Conclusion

The system of steady-state nonlinear differential equa-
tions in different dynamic modes for the concentration of
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function pdex4
m = 0;
x = linspace(0,1);
t = linspace(0,100000);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
figure
plot(x,u1(end,:))
title(‘u1(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u1(x,2)’)
%——————————————————————–
figure
plot(x,u2(end,:))
title(‘u2(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u2(x,2)’)
%——————————————————————–
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [1; 1].∗ DuDx;
l = 0.233;
p = 35000;
b = 4.287;
g = 13.6;
F = −p∗u(1)∗exp(−g/u(2))/l;
F1 = b∗p∗u(1)∗exp(−g/u(2));
s = [F; F1];
%——————————————————————–
function u0 = pdex4ic(x);
u0 = [1; 1];
%——————————————————————–
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [ul(1)−1; ul(2)−1];
ql = [0; 0];
pr = [0; ur(2)−1];
qr = [1; 0];

Algorithm 1: MATLAB program to find the numerical solution of nonlinear differential equation (1) when the time (𝑡) is large (or) (3).

Table 2: Comparison between analytical and numerical values of
dimensionless temperature 𝑇 (Le = 0.233, 𝛽 = 4.287, 𝛾 = 13.6, and
𝜙2 = 30000).

𝑥 Analytical value of 𝑇 Numerical value of 𝑇 % deviation
0 1 1 0
0.2 1.0155 1.1013 0.27
0.4 1.0235 1.0191 0.42
0.6 1.0233 1.0191 0.41
0.8 1.0152 1.0128 0.24
1 1 1 0

gas reactant and temperature has been solved analytically.
The model investigated the influence of parameters over
the temperature and concentration of gas reactant in the
dynamicmode.The approximate analytical expression for the
steady-state concentration of gas reactant and temperature

is obtained using the modified Adomian decomposition
method. A satisfactory agreement with the numerical result
is noted. The analytical results will be useful to characterize
the model predictions for the various values of parameters
Thiele number (𝜙2), Lewis number (Le), layer thickness (L),
and thermal diffusivity (𝛼).

Appendices

A. Basic Concept of Modified Adomian
Decomposition Method

Consider the nonlinear differential equation in the form

𝐿 (𝑦) + 𝑁 (𝑦) = 𝑔 (𝑥) (A.1)

with initial condition

𝑦 (0) = 𝐴, 𝑦󸀠 (0) = 𝐵, (A.2)
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Figure 5: (a)The normalized three-dimensional concentration of gas reactantY versus dimensionless spatial coordinate 𝑥 andThiele number
𝜙2, (b) the normalized three-dimensional concentration of gas reactant Y versus dimensionless spatial coordinate 𝑥 and dimensionless
activation energy 𝛾, (c) the normalized three-dimensional temperature T versus dimensionless spatial coordinate 𝑥 and Thiele number 𝜙2,
and (d) the normalized three-dimensional temperature T versus dimensionless spatial coordinate 𝑥 and dimensionless activation energy 𝛾.

where 𝑁(𝑦) is a nonlinear real function, 𝑔(𝑥) is the given
function, and 𝐴 and 𝐵 are constants. We propose the new
differential operator as follows:

𝐿 = 𝑥−𝑛
𝑑2

𝑑𝑥2
𝑥𝑛𝑦. (A.3)

So, problem (A.1) can be written as

𝐿 (𝑦) = 𝑔 (𝑥) − 𝑁 (𝑦) . (A.4)

The inverse operator 𝐿−1 is therefore considered a twofold
integral operator as follows:

𝐿−1 (⋅) = 𝑥
−𝑛∬
𝑥

0

𝑥𝑛 (⋅) 𝑑𝑥 𝑑𝑥. (A.5)

By operating 𝐿−1 on (A.4), we have

𝑦 (𝑥) = 𝐴 + 𝐵𝑥 + 𝐿−1𝑔 (𝑥) − 𝐿
−1𝑁(𝑦)

= 𝐴 + 𝐿−1𝑔 (𝑥) − 𝐿
−1𝑁(𝑦) .

(A.6)
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The modified Adomian decomposition method introduces
solution 𝑦(𝑥) and the nonlinear function 𝑁(𝑦) by infinite
series

𝑦 (𝑥) =
∞

∑
𝑛=0

𝑦
𝑛
(𝑥) , (A.7)

𝑁(𝑦) =
∞

∑
𝑛=0

𝐴
𝑛
, (A.8)

where the components 𝑦
𝑛
(𝑥) of the solution 𝑦(𝑥) will be

determined recurrently and the Adomian polynomials 𝐴
𝑛

of 𝐹(𝑥, 𝑦) are evaluated using the formula

𝐴
𝑛
(𝑥) =

1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
𝑁(
∞

∑
𝑛=0

(𝜆𝑛𝑦
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0
. (A.9)

By substituting (A.7) and (A.8) into (A.6),

∞

∑
𝑛=0

𝑦
𝑛
(𝑥) = 𝐴 + 𝐿−1𝑔 (𝑥) − 𝐿

−1

∞

∑
𝑛=0

𝐴
𝑛
. (A.10)

By using the modified Adomian decomposition method, the
components 𝑦

𝑛
(𝑥) can be determined as

𝑦
0
(𝑥) = 𝐴 + 𝐿−1𝑔 (𝑥) 𝑦

𝑛+1
(𝑥)

= −𝐿−1 (𝐴
𝑛
) , 𝑛 ≥ 0,

(A.11)

which gives

𝑦
0
(𝑥) = 𝐴 + 𝐿−1𝑔 (𝑥) ,

𝑦
1
(𝑥) = −𝐿

−1 (𝐴
0
) ,

𝑦
2
(𝑥) = −𝐿

−1 (𝐴
1
) ,

𝑦
3
(𝑥) = −𝐿

−1 (𝐴
2
) ,

...

(A.12)

From (A.9) and (A.12), we can determine the components
𝑦
𝑛
(𝑥), and hence the series solution of 𝑦(𝑥) in (A.7) can be

immediately obtained.

B. Analytical Solution of Nonlinear Reaction-
Diffusion Equation (3) Using Modified
Adomian Decomposition Method

In this appendix we derive the general solution of nonlinear
equation (3) by using modified Adomian decomposition
method. We write (3) in the operator form as

𝐿 (𝑌 (𝑥)) = 𝑘𝑁 (𝑌 (𝑥)) ,

where 𝐿 = 𝑥−1
𝑑2

𝑑𝑥2
𝑥

=
𝜙2

Le
𝑌 exp(−

𝛾

𝑇
) ,

(B.1)

𝐿 (𝑇 (𝑥)) = 𝑘𝑁 (𝑇 (𝑥))

= −𝛽𝜙2𝑌 exp (−
𝛾

𝑇
) .

(B.2)

Applying the inverse operator 𝐿−1(⋅) = 𝑥−1∬
𝑥

0
𝑥(⋅)𝑑𝑥 𝑑𝑥 on

both sides of (B.1) and (B.2) yields

𝑌 (𝑥) = 𝐴𝑥 + 𝐵 + 𝐿
−1 (

𝜙2

Le
𝑌 exp(

−𝛾

𝑇
)) , (B.3)

𝑇 (𝑥) = 𝐶𝑥 + 𝐷 + 𝐿−1 (−𝛽𝜙2𝑌 exp (−
𝛾

𝑇
)) , (B.4)

where 𝐴, 𝐵, 𝐶, and𝐷 are constants of integration.
Let
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∞

∑
𝑛=0

𝑌
𝑛
(𝑥) , (B.5)
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∞
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∞
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, (B.7)

where
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𝑁[𝑇 (𝑥)] = −𝛽𝜙
2𝑌 exp(−

𝛾
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) . (B.10)

In view of (B.5), (B.7), and (B.8), (B.3) gives
∞

∑
𝑛=0

𝑌
𝑛
(𝑥) = 𝐴𝑥 + 𝐵 + 𝐿

−1 (
∞

∑
𝑛=0

𝐴
𝑛
) . (B.11)

We identify the zeroth component as

𝑌
0
(𝑥) = 𝐴𝑥 + 𝐵. (B.12)
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Using initial condition (4), we get 𝐴 = 0 and 𝐵 = 1;

∴ 𝑌
0
= 1 (B.13)

and the remaining components are as the recurrence relation

𝑌
𝑛+1

(𝑥) = 𝐿
−1 (𝐴
𝑛
) , 𝑛 ≥ 0, (B.14)

where 𝐴
𝑛
are the Adomian polynomials of 𝑌

1
, 𝑌
2
, . . . 𝑌
𝑛
. We

can find 𝐴
𝑛
as follows:

𝐴
0
= 𝑁 (𝑌

0
) ,

𝐴
1
=

𝑑

𝑑𝜆
𝑁 (𝑌
0
+ 𝜆𝑌
1
) .

(B.15)

In view of (B.6), (B.9), and (B.10), (B.4) gives
∞

∑
𝑛=0

𝑇
𝑛
(𝑥) = 𝐶𝑥 + 𝐷 + 𝐿−1 (

∞

∑
𝑛=0

𝐵
𝑛
) . (B.16)

We identify the zeroth component as

𝑇
0
(𝑥) = 𝐶𝑥 + 𝐷. (B.17)

Using initial condition (4), we get 𝐶 = 0 and𝐷 = 1;

∴ 𝑇
0
= 1 (B.18)

and the remaining components are as the recurrence relation

𝑇
𝑛+1

(𝑥) = 𝐿
−1 (𝐵
𝑛
) , 𝑛 ≥ 0, (B.19)

where 𝐵
𝑛
are the Adomian polynomials of 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
. We

can find 𝐵
𝑛
as follows:

𝐵
0
= 𝑁 (𝑇

0
) .

𝐵
1
=

𝑑

𝑑𝜆
𝑁 (𝑇
0
+ 𝜆𝑇
1
) .

(B.20)

Hence solving (B.14) and (B.19)we get the following solutions:

𝑌
1
=
𝜙2

Le
exp (−𝛾)(𝑥

2

2
− 𝑥) , (B.21)

𝑇
1
= −𝛽𝜙2 exp (−𝛾)(𝑥

2

2
−
𝑥

2
) , (B.22)

𝑌
2
=
𝜙4

Le
exp (−2𝛾)( 1

Le
(
𝑥4

24
−
𝑥3

6
+
𝑥

3
)

−
𝛾𝛽

2
(
𝑥4

12
−
𝑥3

6
+
𝑥

6
)) ,

(B.23)

𝑇
2
= −𝛽𝜙4 exp (−2𝛾)( 1

Le
(
𝑥4

24
−
𝑥3

6
+
𝑥

8
)

−
𝛾𝛽

2
(
𝑥4

12
−
𝑥3

6
+
𝑥

12
)) .

(B.24)

Adding (B.13), (B.21), and (B.23) we get (5) in the text. Adding
(B.18), (B.22), and (B.24) we get (6) in the text.

C.

See Algorithm 1.

Notations

Symbols

𝑐
0
: Concentration of the free stream

𝑐
𝑝
: Specific heat

𝐷: Mass diffusivity
𝐸: Activation energy
𝐾
0
: Preexponential factor

𝐿: layer thickness
Le: Lewis number,𝐷/𝛼
𝑅: Gas reactant
𝑇: Dimensionless temperature 𝑇̃/𝑇̃

0

𝑇̃: Temperature
𝑇̃
0
: Free stream temperature

𝑡: Dimensionless time 𝑡̃𝛼/𝐿2
𝑡̃: Time
𝑌: Dimensionless concentration 𝑐/𝑐

0
.

Greek letters

𝛼: Thermal diffusivity
𝛽: Dimensionless heat reaction (−Δ𝐻𝑐

0
)/(𝜌𝑐
𝑝
𝑇̃
0
)

𝛾: Dimensionless activation energy, 𝐸/(𝑅𝑇̃
0
)

Δ𝐻: Enthalpy of reaction
𝜌: Density
Φ: Thiele number,√𝑘

0
𝐿2/𝛼.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the University Grant Commission
(UGC) Minor Project no. F. MRP-4122/12 (MRP/UGC-
SERO), Hyderabad, Government of India. The authors are
thankful to Shri. S. Natanagopal, secretary at Madura College
Board, and Dr. R. Murali, principal at Madura College
(autonomous), Madurai, Tamil Nadu, India, for their con-
stant encouragement.

References

[1] G. Continillo, V. Faraoni, P. L. Maffettone, and S. Crescitelli,
“Non-linear dynamics of a self-igniting reaction-diffusion sys-
tem,” Chemical Engineering Science, vol. 55, no. 2, pp. 303–309,
2000.

[2] G. Continillo, P. L. Maffettone, and S. Crescitelli, “On the
numerical simulation of the chaotic behavior of some distrib-
uted-parameter systems,” in Proceedings of the 1st National



8 International Journal of Chemical Engineering

Conference Chaos and Fractals in Chemical Engineering, pp. 218–
226, World Scientific, Singapore, May 1994.

[3] C. Gaetano and G. Giovanni, Characterization of Chaotic
Dynamics in the Spontaneous Combustion of Coal Stock-
piles, Istituto di Ricerchesulla Combustione (IRC) Consiglio
Nazionaledelle Ricerche, Naples, Italy, 1996.

[4] G. Continillo, P. L. Maffettone, and S. Crescitelli, First Con-
ference on Chemical and Process Engineering, Paper no. 2.2,
Firenze, Italy, 1993.

[5] G. Continillo, P. L. Maffettone, and S. Crescitelli, “On the
numerical simulation of the chaotic behaviour of some
distributed-parameter systems,” inChaos and Fractals in Chem-
ical Engineering, G. Biardi, M. Giona, and A. R. Giona, Eds., pp.
218–226, World Scientific, Singapore, 1995.

[6] G. Continillo, P. L. Maffettone, and S. Crescitelli, in ICheaP-2,
C. T. Eris, Ed., vol. 1 of AIDIC Conference Series, pp. 415–424,
Firenze, Italy, 1995.

[7] W. B. J. Zimmerman, Microfluidics, History Theory & Applica-
tions, Springer, New York, NY, USA, 2006.

[8] G. Adomian, “Convergent series solution of nonlinear equa-
tions,” Journal of Computational and Applied Mathematics, vol.
11, no. 2, pp. 225–230, 1984.

[9] Y. Q. Hasan and L. M. Zhu, “Modified Adomian decomposition
method for singular initial value problems in the second-order
ordinary differential equations,” Surveys in Mathematics and Its
Applications, vol. 3, pp. 183–193, 2008.

[10] Y. Q. Hasan and L. M. Zhu, “Solving singular boundary value
problems of higher-order ordinary differential equations by
modified Adomian decomposition method,” Communications
in Nonlinear Science and Numerical Simulation, vol. 14, no. 6,
pp. 2592–2596, 2009.

[11] A.-M. Wazwaz, “A reliable modification of Adomian decompo-
sitionmethod,”AppliedMathematics and Computation, vol. 102,
no. 1, pp. 77–86, 1999.

[12] A.-M. Wazwaz, “Analytical approximations and pade approx-
imants for volterra’s population model,” Applied Mathematics
and Computation, vol. 100, no. 1, pp. 13–25, 1999.

[13] A.-M.Wazwaz, “A newmethod for solving singular initial value
problems in the second-order ordinary differential equations,”
AppliedMathematics and Computation, vol. 128, no. 1, pp. 45–57,
2002.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


