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In this paper, the Kedem–Katchalsky equations in matrix form for nonhomogeneous ternary nonelectrolyte solutions were
applied for interpretation of transport through the membrane mounted in horizontal plane. Coefficients Hr

ij, Hr
ij, and Hr

det �

det[Hr] (for nonhomogeneous solutions), Hij and Hdet � det[H] (for homogeneous solutions) (i, j ∈ {1, 2, 3}, r�A, B),
ψij � (HA

ij −HB
ij)/Hij, and ψdet � (HA

det −HB
det)/Hdet were calculated on the basis of experimentally determined coefficients (Lp, σ1,

σ2 ω11, ω22, ω21, ω12, ζ
r
1, and ζr

2) for glucose in aqueous ethanol solutions and two configurations of the membrane system. From
the calculations, it results that the values of coefficients Hr

12, Hr
13, Hr

22, Hr
23, Hr

32, Hr
33, and Hr

det depend nonlinearly on solution
concentration as well as on a configuration of membrane system. Besides, the values of coefficients Hr

21, H12, H21, H22, Hr
33, and

Hdet depend linearly on solution concentration. 0e value of coefficients H13, H23, and H33 do not depend on solution con-
centration. 0e coefficients ψ12, ψ13, ψ22 �ψ23, ψ32 �ψ33, and ψdet depend nonlinearly on solution concentration and for
C1 ≈ 9.24molm−3 are equal to zero. For C1 < 9.24molm−3, the values of coefficients ψ12 and ψ13 are negative and for
C1 > 9.23molm−3, positive. In contrast, the values of coefficients ψ22 �ψ23, ψ32 �ψ33, and ψdet for C1 < 9.24molm−3 are positive
and for C1 > 9.24molm−3, negative. For ψ � 0, we can observe nonconvective state, in which concentration Rayleigh number
reaches the critical value RC � 1691.09, for ψ < 0 is convective state with convection directed straight down and for ψ > 0 is
convective state with convection directed straight up.

1. Introduction

0e membrane transport study is still a scientific challenge
fulfilling the cognitive and application criteria in many
processes occurring in living organisms (in membranes and
biological cells, kidneys, etc.) observed in laboratory condi-
tions and used in industry (hemodialysis, desalination of
water, concentration of juices, etc.) [1, 2]. Moreover, in recent
years, experimental techniques using microfluidic methods
and nanoscale interface engineering to study interalia col-
loidal flows have been developed [3, 4].0e exchange of fluids
and substances dissolved in it by biological membranes fa-
cilitates the transport of substances needed by living organ-
isms to maintain their metabolic activity and regulation of

pressure equilibrium by membranes in order to maintain the
structural integrity of biological systems [5]. Passive and
active transport processes control permeation of these sub-
stances. Passive transport mechanisms allow the flows of
water and/or solutes to reduce their concentration gradients
without energy using. In turn, active transport mechanisms
allow penetration of dissolved substances against their con-
centration gradients, at the expense of energy supplied from
metabolic reactions. 0e interaction between these mecha-
nisms determines the hydrostatic fluid pressure and osmotic
pressure differences through biological membranes, which are
important features of biological systems [6, 7].

To describe transport phenomena in biological and
technical systems, models developed in the framework of
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nonequilibrium thermodynamics [8–12], diffusion models
[13, 14], and friction [15–17]; models developed in the
framework of statistical physics [18–20]; and models de-
veloped as part of the network thermodynamics [21–26] are
used. In order to characterize the relationship between
generalized streams of liquid and solutes and their generalized
driving forces, which are derived from the electrochemical
and/or chemical affinity gradient, the thermodynamics of
Onsager are used [9, 11, 27, 28]. 0is model is based on the
existence of the dissipation function, which describes the total
change in the entropy of the system. In near-equilibrium
systems, i.e., those in which the dissipation rate of free energy
is small, linear dependencies between the flow and the driving
forces (thermodynamic stimuli) can be assumed [10, 11]. 0e
classic Kedem–Katchalsky model equations were developed
in accordance with these principles [9]. 0is model takes into
account the interaction between solvents and nonionic sol-
utes. 0is gives a set of phenomenological membrane co-
efficients that can be easily determined experimentally in a
series of independent experiments. Moreover, this formalism
provides the theoretical basis for the analysis of the volume
and solute fluxes in various membrane systems [10, 11].
0erefore, the KK equations are one of the basic research tools
for membrane transport in both biological and artificial
systems. Many versions of these equations are used: classical
[7], Kargol’s [29], Chang and Pinsky [6], and network
thermodynamics [22–26]. 0ese versions of KK equations for
nonelectrolytes show the relationship between volume flow
(Jv) and dissolved matter (Js) and thermodynamic forces:
osmotic (Δπ) and/or hydrostatic (ΔP). 0e network form of
KK equations is obtained by symmetrical and/or hybrid
transformation of classical KK equations using Peusner
network thermodynamics (Peusner’s Network 0ermody-
namics, Peusner’s NT) [22]. For homogeneous and non-
homogeneous binary solutions of nonelectrolytes, two
symmetrical and two hybrid forms of KK equations are
known. 0e symmetrical form of these equations contain
Peusner coefficients: Lij and Rij (for homogeneous solutions)
and hybrid forms- Lr

ij and Rr
ij (for inhomogeneous solutions)

(i, j∈ {1, 2}, r�A, B) [22, 24].
0erefore, the concepts of L, R, H, and P have been in-

troduced in the form of Kedem–Katchalsky network equa-
tions for homogeneity conditions and Lr, Rr, Hr, and Pr in
the form of Kedem–Katchalsky network equations for po-
larization concentration conditions of solutions separated by
the membrane [25]. For the homogeneity conditions of
nonelectrolytic ternary solutions, there are two symmetrical
and six hybrid forms of network KK equations. 0e sym-
metric forms of these equations, similarly to homogeneous
ternary solutions, contain Lij and Rij coefficients and are
derived directly from Onsager’s thermodynamics and hybrid
forms-Pij,Hij,Kij,Nij, Sij, andWij (i, j∈ {1, 2, 3}), which are
a consequence of the application of network thermodynamics
techniques [30]. For concentration polarization conditions,
these coefficients should be written in the form Lr

ij, Rr
ij, Hr

ij,
Kr

ij, Pr
ij, Nr

ij, Sr
ij, and Wr

ij (i, j∈ {1, 2, 3}, r�A, B). 0erefore,
the concept of the form L, R, H, K, P, N, S, and W can be
introduced in the network equations KK for the conditions of
homogeneity and the form Lr, Rr, Hr, Kr, Pr, Nr, Sr, and Wr

of the KK equations for the concentration polarization
conditions of ternary solutions separated by the membrane.

0e aim of the next series of papers is to present the form
Lr, Rr, Hr, Kr, Pr, Nr, Sr, and Wr of the KK equations for
concentration polarization conditions of ternary solutions.0e
aim of this work is to develop the form of Hr of the KK
equations, containing the Peusner coefficients Hr

ij (i, j∈ {1, 2,
3}, r�A, B). Besides, we compare Hr

ij and Hijcoefficients and
matrix coefficients Hr

det � det [Hr] and Hdet � det [H]. We will
present the results of calculations of coefficients Hr

ij and Hij

matrix coefficients Hr
det � det [Hr] and Hdet � det [H] and the

quotients ψij� (HA
ij −HB

ij)/Hij and ψdet � (HA
det −HB

det)/Hdet.

2. Materials and Methods

2.1. Membrane System. Similarly as in previous papers
[31, 32], we will consider transport of nonhomogeneous
ternary nonelectrolyte solutions with concentrations at the
initial moment (t� 0) Ckh and Ckl (Ckh>Ckl, k� 1, 2) through
the membrane (M) in the single-membrane system (Figure 1).
0is membrane separates compartments l and h and is iso-
tropic, symmetric, electroneutral, and selective for solvent and
nonionized dissolved substances. In the case of membrane
located in horizontal plane that is perpendicularly to the
gravity vector, there are configurations A or B of arrangement
of solutions in relation to the membrane (r�A or B). In
configuration A, the solution with concentration Ckl is in the
compartment over the membrane while the solution with
concentration Ckh is in compartment under the membrane. In
configuration B of the membrane system, location of solutions
is reversed. We will consider only isothermal and stationary
processes of membrane transport, for which themeasure is the
volume fluxes (Jr

v) and solutes fluxes (Jr
k) (k� 1, 2 and r�A,

B). 0ese fluxes can be described by the KK equations for
nonhomogeneous ternary nonelectrolyte solutions [33].

Under such conditions, solutes, which diffuse through
the membrane, create the concentration boundary layers
(CBLs) on both sides of the membrane signed by lrh and lrl
[32, 33]. 0e CBL lrh has a thickness marked as δr

h and CBL lrl
has a thickness marked as δr

l .
0e mean concentrations of solutes “1” and “2” in

membrane (C1, C2) can be calculated using expressions
Ck � (Ckh−Ckl) [ln (CkhCkl

−1)]−1 (k� 1, 2). Appearance of
CBLs causes those concentrations at the interfaces of the
membrane and solutions, respectively, to decrease from Ckh
to Cr

ki and increase from Ckl to Cr
ke. For steady state, the

following relation is fulfilled: Cr
ki >Cr

ke, Cr
ke >Ckl, Ckh>Cr

ki

(k� 1, 2) [31, 34]. In addition, ρer and ρir denote the densities
at interfaces lrl /M and M/lrh, respectively, while ρl and ρh
(ρl< ρh or ρl> ρh) denote the densities of solutions outside
the layers. Moreover, ρr

e > ρl or ρr
e < ρr

i , ρr
e > ρr

i or ρr
e < ρr

i , and
ρr

i > ρh or ρr
i < ρh [34]. If the solution with lower density is

under the membrane the system, lrh/M/lrl loses its hydro-
dynamic stability, and convective instabilities in the near
membrane area are observed [33, 34].

0e measure of the concentration polarization is the
concentration polarization factor (ζr

k). Its value depends on
both the concentration of solutions separated by the mem-
brane (Ck) and the configuration of the membrane system
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(r�A, B). More speci�cally for this case, the thicknesses of
CBLs δrh and δrl exceed values (δrh)crit and (δrl )crit, and co-
e�cient of concentration polarization (ζrk) exceeds its critical
value (ζrk)crit suitably [34–36]. For diluted ternary non-
electrolyte solutions, the concentration polarization factor
(ζrks) and the thickness of concentration the boundary layers
(δrh and δrl ) can be described by the expression ζrks(Ck, Cs) �
1 + RTωks[δ

r
l (Ck, Cs) + δrh(Ck, Cs)]{ Dks

−1}−1 [31].

2.2. Matrix Form of the Kedem–Katchalsky Equations.
According to the Kedem–Katchalsky formalism [7, 10, 33],
transport properties of the membrane are determined for
solutions containing a solvent and dissolved two substances
(ternary solution) by practical coe�cients: hydraulic per-
meability (Lp), re�ection (σk, k� 1, 2), and permeability of
solute (ωkf, k, f ∈ {1, 2}). In turn, the transport properties of
the complex lrl /M/lrh are characterized by hydraulic per-
meability (Lrp), re�ection (σrk, σ

r
a), and permeability co-

e�cients of solute (ωrkf). �e coe�cients of hydraulic,
osmotic, advective, and di�usive concentration polarization
are de�ned by expressions ζrp � Lrp/Lp, ζrvk � σrk/σk,
ζra � σra/σk, and ζrs � ωrkf/ωkf [23]. �e decrease of the value
of volume and solute �uxes from Jv and Jk (in conditions of
homogeneous solutions) to Jrv and Jrk (in condition of
concentration polarization) is caused by formation of the
concentration boundary layers lrl and l

r
h, respectively [33].

�e classical form of Kedem–Katchalsky equations for
concentration polarization conditions can be written as

Jrv � ζrpLp ΔP− ζ
r
v1σ1Δπ1 − ζ

r
v2σ2Δπ2( ), (1)

Jr1 � ζrs11ω11Δπ1 + ζrs12ω12Δπ2 + C1 1− ζra1σ1( )Jrv, (2)

Jr2 � ζrs21ω21Δπ1 + ζrs22ω22Δπ2 + C1 1− ζra2σ2( )Jrv, (3)

where Jrv, J
r
1, and J

r
2 are volume and solutes “1” and “2”

�uxes, respectively; Lp is the hydraulic permeability co-
e�cient; σ1 and σ2 are re�ection coe�cients suitably for
solutes “1” and “2”; ω11 and ω22 are the solute permeability
coe�cients for solutes “1” and “2” generated by forces with
indexes “1” and “2” and ω12 and ω21 are the cross coe�cients
of permeability for substances “1” and “2” generated by forces
with indexes “2” and “1” respectively. ΔP � Ph −Pl is the
hydrostatic pressure di�erence (Ph, Pl are higher and lower

values of hydrostatic pressure suitably). Δπk�RT(Ckh−Ckl) is
the di�erence of osmotic pressure (RT is the product of gas
constant and thermodynamic temperature whereas Ckh and
Ckl are solutes concentrations, k� 1, 2). Ck is the mean solute
concentration in membrane and is expressed by
Ck � (Ckh−Ckl) [ln (CkhCkl

−1)]−1 (k� 1, 2).
Relatively simple algebraic transformations allow

transforming equations (1)–(3) into the form

ΔP−Δπ1 −Δπ2 �
Jrv
ζrp
−C1 1− ζrv1σ1( )

Δπ1
C1

−C2 1− ζrv2σ2( )
Δπ2
C2
,

(4)

Jr1 � C1 1− ζra1σ1( )Jrv + C1ζ
r
s11ω11
Δπ1
C1

+ C2ζ
r
s12ω12
Δπ2
C2
, (5)

Jr2 � C2 1− ζra2σ2( )Jrv + C1ζ
r
s21ω21
Δπ1
C1

+ C2ζ
r
s22ω22
Δπ2
C2
, (6)

�e above equations are one of the forms of Kedem–
Katchalsky equations obtained by the hybrid transformation
of Peusner’s thermodynamic networks.

Equations (4) and (5) can be transformed by simple
algebraic transformations to the matrix form:

ΔP−Δπ1 −Δπ2

Jr1

Jr2




�

Hr
11 Hr

12 Hr
13

Hr
21 Hr

22 Hr
23

Hr
31 Hr

32 Hr
33





Jrv

Δπ1
C1

Δπ2
C2





� Hr[ ]

Jrv

Δπ1
C1

Δπ2
C2





,

(7)

where Hr
11 � (ζ

r
pLp)
−1, Hr

12 � −C1(1− ζ
r
v1σ1), Hr

13 � −C2
(1− ζrv2σ2), Hr

21 � C1(1− ζ
r
a1σ1), Hr

22 � C1ζ
r
s11ω11, Hr

23 �
C2ζ

r
s12ω12, Hr

31 � C2(1− ζ
r
a2σ2), Hr

32 � C1ζ
r
s21ω21, Hr

33 �
C2ζ

r
s22ω22, and [Hr] is the matrix of Peusner’s coe�cients

Hr
ij (i, j ∈ {1, 2, 3}) for ternary nonelectrolyte solutions in

conditions of concentration polarization.
It results from equation (7) for the nondiagonal co-

e�cientsHr
12 ≠H

r
21,H

r
13 ≠H

r
31, andH

r
23 ≠H

r
32. On the basis

of equation (7), we get Hr
12 � −Hr

21(1− ζ
r
v1σ1)(1− ζ

r
a1σ1)
−1,

M

Ckl JvA

Ckh JsAPh

Pl

llA

lhA

(l)

(h)
(a) (b)

Ckh

CklJvB

JsB Ph

Pl

lhB

llA
M

(l)

(h)g

Figure 1: �e model of single-membrane system: M, membrane; lAl and lAh , the concentration boundary layers in con�guration A; lBl and l
B
h ,

the concentration boundary layers in con�guration B; Ph and Pl, mechanical pressures; Ckh and Ckl, concentrations of solutions; JAk and JAv ,
solute and volume �uxes in con�guration A; and JBk and JBv , solute and volume �uxes in con�guration B.
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Hr
31 � −Hr

31(1− ζ
r
v2σ2)(1− ζ

r
a2σ2)
−1, and Hr

23 � Hr
32C2ω12

ζr
s12(C1ω21ζ

r
s21)
−1. Moreover, the determinant of the matrix

[Hr] is equal to
det H

r
􏼂 􏼃 � H

r
det � C1C2ζ

r
p−1Lp
−1

c1 + C1C2
2 1− ζr

a2σ2( 􏼁c2

+ C1
2
C2 1− ζr

a1σ1( 􏼁c3,

(8)
where c1 � ω11ζ

r
s11ω22ζ

r
s22 −ω12ζ

r
s12ω21ζ

r
s21, c2 � ω11ζ

r
s11

(1− ζr
v2σ2)−ω12ζ

r
s12(1− ζ

r
v1σ1), c3 � ω22ζ

r
s22(1− ζ

r
v1σ1)−

ω21ζ
r
s21(1− ζ

r
v2σ2).

Index “r” in equations (3)–(10) indicates that the fluxes
Jr

v, Jr
1, and Jr

2, coefficients Hr
ij (i, j ∈ {1, 2, 3} and r�A, B) and

matrix [Hr] of these coefficients, depend on configuration of
the membrane system. For homogeneous conditions
(ζr

p � ζr
v1 � ζr

v2 � ζr
a1 � ζr

a2 � ζr
s11 � ζr

s12 � ζr
s22 � ζr

s21 �1), we get

ΔP−Δπ1 −Δπ2

J1

J2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Jv

Δπ1

C1

Δπ2

C2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� H
r

􏼂 􏼃

Jv

Δπ1
C1

Δπ2
C2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where H11 � Lp
−1, H12 � −C1(1− σ1) � −H21, H13 � −C2

(1− σ2) � −H31, Hr
22 � C1ζ

r
s11ω11, H23 � C2ω12, H32 �

C1ω21, H33 � C2ω22, and [H] is the matrix of Peusner’s
coefficients Hij (i, j∈ {1, 2, 3}) for ternary nonelectrolyte
homogeneity solutions.

On the basis of equation (9), we get H23 �

H32C2ω12C1
−1ω21
−1. 0e determinant of the matrix [H] is

equal to

det[H] � Hdet � C1C2L
−1
p c1 + C1C

2
2 1− σ2( 􏼁c2

+ C
2
1C2 1− σ1( 􏼁c3,

(10)

where c1 � ω11ω22 −ω12ω21, c2 � ω11(1− σ2)−ω12(1− σ1),
and c3 � ω22(1− σ1)−ω21(1− σ2).

In order to show the relationship between coefficients
Hr

ij and Hij and between Hr
det and Hdet for A and B con-

figurations of the membrane system (r�A, B), we can
calculate using equations (6), (10), (11), and (12), the co-
efficients ψij � (HA

ij −HB
ij)/Hij and ψdet � (HA

det −HB
det)/Hdet.

0e expressions for the coefficients ψij and ψdet are given as
follows:

ψ11 �
HA

11 −HB
11

H11
�
ζBp − ζ

A
p

ζAp ζ
B
p

, (11)

ψ12 �
HA

12 −HB
12

H12
�
σ1 ζBv1 − ζ

A
v1􏼐 􏼑

1− σ1
, (12)

ψ13 �
HA

13 −HB
13

H13
�
σ2 ζBv2 − ζ

A
v2􏼐 􏼑

1− σ2
, (13)

ψ21 �
HA

21 −HB
21

H21
�
σ1 ζBa1 − ζ

A
a1􏼐 􏼑

1− σ1
, (14)

ψ22 �
HA

22 −HB
22

H22
� ζAs11 − ζ

B
s11, (15)

ψ23 �
HA

23 −HB
23

H23
� ζAs12 − ζ

B
s12, (16)

ψ31 �
HA

31 −HB
31

H31
�
σ2 ζBa2 − ζ

A
a2􏼐 􏼑

1− σ2
, (17)

ψ32 �
HA

32 −HB
32

H32
� ζAs21 − ζ

B
s21, (18)
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ψ33 �
HA

33 −HB
33

H33
� ζAs22 − ζ

B
s22, (19)

ψdet �
HA

det −HB
det

Hdet
�

C1C2 cA
1 ζ

B
p − cB

1 ζ
A
p􏼐 􏼑 + Lpζ

A
p ζ

A
p C1C2

2
cA
2 − cB

2( 􏼁 + C1
2
C2 cA

3 − cB
3( 􏼁􏼔 􏼕

ζApζ
B
pC1C2 c1 + Lp c2 + c3( 􏼁􏽨 􏽩

, (20)

where cA
1 � ω11ζ

A
s11ω22ζ

A
s22 −ω12ζ

A
s12ω21ζ

A
s21, cB

1 � ω11ζ
B
s11ω22

ζBs22 −ω12ζ
B
s12ω21ζ

B
s21, cA

2 � (1− ζAa2σ2)[ω11ζ
A
s11(1− ζ

A
v2σ2)−

ω12ζ
A
s12(1− ζ

A
v1σ1)], cB

2 � (1− ζBa2σ2)[ω11ζ
B
s11(1− ζ

B
v2σ2)−

ω12ζ
B
s12(1− ζ

B
v1σ1)], cA

3 � (1− ζAa1σ1)[ω22ζ
A
s22(1− ζ

A
v1σ1)−

ω21ζ
A
s21(1− ζ

A
v2σ2)], cB

3 � (1− ζBa1σ1)[ω22ζ
B
s22(1− ζ

B
v1σ1)−

ω21ζ
B
s21(1− ζ

B
v2σ2)], c1 � ω11ω22 −ω12ω21, c2 � C2(1− σ2)

[ω11(1− σ2)−ω12(1− σ1)], and c3 � C1(1− σ1)[ω22 (1−
σ1)−ω21(1− σ2)].

0e values of coefficients ψij and ψdet show the influence
of concentration polarization and natural convection on the
membrane transport.

3. Results and Discussion

0e values of coefficientsHij, Hr
ij, H

r
det, ψij � (HA

ij −HB
ij)/Hij,

and ψdet � (HA
det −HB

det)/Hdet, (i, j ∈ {1, 2, 3}, r�A, B), which
describe equations (7)–(20), are calculated for polymer
membrane Nephrophan and glucose solutions in aqueous
solution of ethanol. 0e glucose concentration was marked
by index “1” and the ethanol concentration by index “2”.0e
concentration of substance “1” in the compartment (h) take
values from C1h � 1mol·m−3 to C1h � 101mol·m−3. In turn,
concentration of a substance “2” in the compartment (h) was
constant and amounted to C2h � 201mol·m−3. 0e con-
centrations of both components in the compartment (l) were
established and amounted to C1l �C2l � 1mol·m−3. In ex-
pressions under equations (7)–(20), there are coefficients
that describe transport properties of membrane (Lp, σ1, σ2
ω11, ω22, ω21 and ω12), average concentrations of solutions
“1” and “2” in the membrane (C1, C2), and coefficients of
concentration polarization (ζr

p, ζ
r
a1, ζ

r
a2, ζ

r
v1, ζ

r
s11, ζ

r
s12, ζ

r
v2,

ζr
s22, and ζr

s21). 0e values of these coefficients are calculated,
using conditions ζr

p � ζr
a1 � ζa2r � 1, ζr

v1 � ζr
s11 � ζr

s12 � ζr
1, and

ζr
v2 � ζr

s22 � ζr
s21 � ζr

2 [33, 37].
In order to calculate Hij, Hr

ij, Hr
det, ψij � (HA

ij −HB
ij)/Hij,

and ψdet � (HA
det −HB

det)/Hdet, (i, j ∈ {1, 2, 3}, r�A, B) on the
basis of equations (7)–(20), we used the characteristics
ζr
1 � f(C1, C2 � const.) and ζr

2 � f(C1, C2 � const.) presented
in Figure 2 and following data: Lp � 4.9×10−12 m3·N−1·s−1,
σ1 � 0.068, σ2 � 0.025, ω11 � 0.8×10−9mol·N−1·s−1, ω12 � 0.81
× 10−13mol·N−1·s−1, ω22 �1.43×10−9mol·N−1·s−1, ω21 � 1.63
× 10−12mol·N−1·s−1, C1 � 2.79÷ 21.67mol·m−3 and C2 �

37.71mol·m−3.
0e calculations based on equations (7) and (9) show

that HA
11 � HB

11 �H11 � 0.204×1012N·s·m−3, and HA
31 �

HB
31 �H31 � 36.77mol·m−3 are independent of both con-

centration of solution and configuration of the membrane
system.

Dependencies of coefficients HA
12 � f(C1, C2 � const.),

HB
12 � f(C1, C2 � const.), H12 � f(C1, C2 � const.), and

HA
21 � HB

21 �H21 � f(C1, C2 � const.) are shown in Figure 3.
Graphs 1A, 1B, and 1 show that values of coefficients HA

12,
HB

12, andH12 are decrease almost linearly with the increase in
C1 for C2 � 37.71mol·m−3. 0ese coefficients fulfill the
following conditions: for C1 � 9.24mol·m−3, HA

12 � HB
12 �

−8.98mol·m−3, for C1 < 9.24mol·m−3, H12>HA
12 >HB

12 < 0,
and for C1 > 9.24mol·m−3, H12>HB

12 >HA
12 < 0.

Graph 2 shows that values of coefficients HA
21, HB

21, and
H21 increase linearly with the increase in C1 for
C2 � 37.71mol·m−3. 0ese coefficients fulfill the condition
HA

21 � HB
21 �H21> 0. Dependencies of coefficients HA

13 � f(C1,
C2 � const.), HB

13 � f(C1, C2 � const.), and H13 � f(C1,
C2 � const.) are presented in Figure 4. Graphs 1A and 1B
show that values of coefficients HA

13 and HB
13 decrease and

increase nonlinearly with the increase in C1 for
C2 � 37.71mol·m−3, respectively. 0e value of coefficient is
equal to H13 �−36.77mol·m−3 and is independent of both
concentration of solution and configuration of the mem-
brane system. 0ese coefficients fulfill the following con-
ditions: for C1 � 9.24molm−3, HA

13 � HB
13 �−37.49mol·m−3,

for C1 < 9.24mol·m−3, H13<HA
13 <HB

13 < 0, and for
C1 > 9.24mol·m−3, H13<HB

13 <HA
13 < 0.

0e graphs 1A, 1B, and 1 shown in Figure 5 illustrate the
dependencies HA

22 � f(C1, C2 � const.), HB
22 � f(C1,

C2 � const.), and H22 � f(C1, C2 � const.). Graph 1A shows
that the values of coefficient HA

22 first increase in a nonlinear
way and then decrease in a nonlinear manner with the
increase of C1value and graph 1B shows that the HB

22values
increase nonlinearly with the increase of the of C1value (for
C2 � 37.71mol·m−3). In turn, the course of graph 1 shows
that H22 is a linear function of C1(for C2 � 37.71mol·m−3).
0ese coefficients fulfill the following conditions: for
C1 � 9.24mol·m−3, HA

22 � HB
22 � 1.81× 10−9mol2N−1·s−1·m−3,

for C1 < 9.24mol·m−3, H22>HA
22 >HB

22 > 0, and
C1 > 9.24mol·m−3, H22>HB

22 >HA
22 > 0.

Dependencies of coefficients HA
23 � f(C1, C2 � const.),

HB
23 � f(C1, C2 � const.), and H23 � f(C1, C2 � const.) are

presented in Figure 6. Graphs 1A and 1B shows that values of
coefficients HA

23 and HB
23 decrease and increase almost

nonlinearly with the increase in C1 for C2 � 37.71mol·m−3,
respectively. 0e value of coefficient is equal to
H23 � 30.54mol·m−3 and is independent of both concen-
tration of solution and configuration of the membrane
system. 0ese coefficients fulfill the following conditions:
for C1 � 9.24mol·m−3, HA

23 � HB
23 � 6.98×10−13mol2·N−1·

s−1·m−3, for C1 < 9.24mol·m−3, H23>HA
23 >HB

23 > 0, and
C1 > 9.24mol·m−3, H23>HB

23 >HA
23 > 0.

International Journal of Chemical Engineering 5



�e graphs 1A, 1B, and 1 shown in Figure 7 illustrate the
dependencies HA

32 � f(C1, C2 � const.), HB
32 � f(C1,

C2 � const.), and H32� f(C1, C2 � const.). Graph 1A shows
that the values of coe�cientHA

32 �rst increase in a nonlinear
way and then decrease in a nonlinear manner with the
increase of C1 value, and graph 1B shows that theHB

32 values
increase nonlinearly with the increase of the of C1 value (for

C2 � 37.71mol·m−3). In turn, the course of graph 1 shows
that H32 is a linear function of C1 (for C2 � 37.71mol·m−3).
�ese coe�cients ful�ll the following conditions: for
C1 � 9.24mol·m−3, HA

32 �HB
22 � 3.35×10

−12mol2·N−1·s−1·
m−3, for C1 < 9.24mol·m−3, H32>HA

32 >H
B
32 > 0, and for

C1 > 9.24mol·m−3, H32>HB
32 >H

A
32 > 0.

0.54

0.36
Configuration A

Configuration B

0.234

ζ ir

ζ1
A = f(C1, C2 = const.)
ζ1

B = f(C1, C2 = const.)
ζ2

A = f(C1, C2 = const.)
ζ2

B = f(C1, C2 = const.)

0.18

0.00
0 7 9.24 14 21

C1 (mol·m–3)

Figure 2: Dependencies of concentration polarization coe�cient
(ζrk, k� 1, 2) on glucose concentration in 201molm−3 aqueous
ethanol solution for con�guration A (r�A and B (r�B)) of the
single-membrane system [31, 32].
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Figure 3: �e graphic illustration of the dependence Hr
ij � f(C1,

C2 � 37.71mol·m−3), (i≠ j, r�A, B) for the glucose in aqueous
ethanol solution in conditions of concentration polarization for
con�gurations A and B of the membrane system, respectively:
HA

12 � f(C1,C2 � const.)—curve 1A;HB
12 � f(C1,C2 � const.)—curve

1B; and HA
21 �HB

21 � f(C1, C2 � const.)—line 2. �e lines illustrate
the dependence H12� f(C1, C2 � const.)—line 1 and H21� f(C1,
C2 � const.) (line 2) in conditions of homogeneity of solutions.

–36.75

–37.00

–37.25

–37.50

–37.75

0 7 9.24

1A

1B

1

14 21

C1 (mol·m–3)

H
r 13

 (m
ol

·m
–3

)

HA
13 = f(C1, C2)

HB
13 = f(C1, C2)

H13 = f(C1, C2)

Figure 4:�e graphic illustration of the dependenceHr
13 � f(C1, C2

� 37.71mol·m−3), (r�A, B) for the glucose in aqueous ethanol
solution in conditions of concentration polarization for con�gu-
rations A (HA

13 � f(C1,C2 � const.), curve 1A) and B (HB
13 � f(C1,

C2 � const.), curve 1B) of the membrane system. Line 1 illustrates
the dependence H13� f(C1, C2 � const.) for conditions of homo-
geneity of solutions.
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Figure 5:�e graphic illustration of the dependenceHr
22 � f(C1, C2

� 37.71mol·m−3) (r�A, B) for the glucose in aqueous ethanol
solution in conditions of concentration polarization for con�gu-
rations A (HA

22 � f(C1, C2 � const.), curve 1A) and B (HB
22 � f(C1,

C2 � const.), curve 1B) of the membrane system. Line 1 illustrates
the dependence H22� f(C1, C2 � const.) in conditions of homo-
geneity of solutions.
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Dependencies of coe�cients HA
33 � f(C1, C2 � const.),

HB
33 � f(C1, C2 � const.), and H33� f(C1, C2 � const.) are

presented in Figure 8. Graphs 1A and 1B show that values of
coe�cients HA

33 and HB
33 decrease and increase almost

nonlinearly with the increase in C1 for C2 � 37.71mol·m−3,
respectively. �e value of coe�cient is equal to
H33� 53.92×10−9 mol2·N−1·s−1·m−3 and is independent of
both concentration of solution and con�guration of the
membrane system. �ese coe�cients ful�ll the following
conditions: for C1 � 9.24molm−3, HA

33 �HB
33 � 12.64×

10−9mol2·N−1·s−1·m−3, for C1 < 9.24mol·m−3, H33<HA
33 <

HB
33 > 0, and for C1 > 9.24mol·m−3, H33<HB

33 <H
A
33 > 0.

�e graphs 1A, 1B, and 1 shown in Figure 9 illustrate the
dependencies HA

det � f(C1, C2 � const.), HB
det � f(C1,

C2 � const.), and Hdet � f(C1, C2 � const.). Graph 1A shows
that the values of coe�cientHA

det �rst increase in a nonlinear
way and then decrease in a nonlinear manner with the
increase ofC1 value, and graph 1B shows that theHB

det values
increase nonlinearly with the increase of the of C1 value (for
C2 � 37.71mol·m−3). In turn, the course of graph 1 shows
that det [H] is a linear function of C1 (for
C2 � 37.71mol·m−3). �ese coe�cients ful�ll the following
conditions: for C1 � 9.24mol·m−3, HA

det �HB
det � 6.74×10

−6

mol2·N−1·s−1·m−3, for C1 < 9.24mol·m−3, Hdet >HA
det >H

B
det

> 0, and for C1 > 9.24mol·m−3, Hdet >HB
det >H

A
det > 0.

Figures 3–9 show that there are three groups of char-
acteristics Hr

ij � f(C1, C2 � const.), Hij � f(C1, C2 � const.),
andHr

det � f(C1, C2 � const.), (i, j ∈ {1, 2, 3} and r�A, B).�e
�rst group includes the characteristics presented in Figure 3,
the second Figures 4, 6, and 8, and the third the charac-
teristics shown in Figures 5, 7, and 9. In the case of group 1,
which includes concentration characteristics of coe�cients
Hr

12, H12, Hr
21, and H21 (r�A, B), these coe�cients are

expressed in the same units, and their values are in the range
−21.62mol·m−3÷ 20.19mol·m−3.

In the case of the second group of characteristics, the
shape of the concentration characteristics of the coe�cients
Hr

13, H13, Hr
23, H23, Hr

33, and H33 (r�A, B) is very similar.
However, the values of these coe�cients di�er by up to
several orders of magnitude: −37.68mol·m−3≤Hr

13, H13 ≤
−37.23mol·m−3, 0.95×10−13mol2·N−1·s−1·m−3≤Hr

23, H23 ≤
30.54×10−13mol2·N−1·s−1·m−3 and 1.51× 10−9mol2·N−1·s−1·
m−3≤Hr

23, H23 ≤ 53.92×10
−9mol2·N−1·s−1·m−3.

Moreover, the values of coe�cients Hr
13 and H13 are

expressed in di�erent units than coe�cients Hr
23, H23, Hr

33,
and H33.
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Figure 6: �e graphic illustration of the dependence Hr
23 � f(C1,

C2 � 37.71mol·m−3) (r�A, B) for the glucose in aqueous ethanol
solution in conditions of concentration polarization for con�gu-
ration A (HA

23 � f(C1,C2 � 37.71mol·m−3), curve 1A) and B
(HB

23 � f(C1,C2 � 37.71mol·m−3), curve 1B), of the membrane
system. Line 1 illustrates the dependenceH23 � f(C1,C2 � const.) in
conditions of homogeneity of solutions.
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Figure 7: �e graphic illustration of the dependence Hr
32 � f(C1,

C2 � 37.71mol·m−3) (r�A, B) for the glucose in aqueous ethanol
solution in conditions of concentration polarization for con�gu-
rations A (HA

32 � f(C1, C2 � const.), curve 1A) and B (HB
32 � f(C1,

C2 � const.), curve 1B) of the membrane system. Line 1 illustrates
the dependence H32� f(C1, C2 � const.) in conditions of homo-
geneity of solutions.
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Figure 8: �e graphic illustration of the dependence
Hr

33 � f(C1,C2 � 37.71mol·m−3) (r�A, B) for the glucose in aqueous
ethanol solution in conditions of concentration polarization for
con�guration A (HA

33 � f(C1,C2 � 37.71mol·m−3), curve 1A) and B
(HB

33 � f(C1, C2 � 37.71mol·m−3), curve 1B), of the membrane
system. Line 1 illustrates the dependenceH23 � f(C1, C2 � const.) in
conditions of homogeneity of solutions.
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�e third group of characteristics includes the con-
centration characteristics of coe�cientsHr

22,H22,Hr
32,H32,

Hr
det, and Hdet. Values of coe�cients Hr

det and Hdet are
expressed in units other than Hr

22, H22, Hr
32, and H32. In

addition, the values of these coe�cients di�er from each
other by several orders of magnitude: 0.02×10−9
mol2·N−1·s−1·m−3≤Hr

22, H22 ≤ 17.33×10
−9mol2·N−1·s−1·

m−3, 0.03×10−12mol2·N−1·s−1·m−3≤Hr
32, H32 ≤ 35.32×

10−12mol2·N−1·s−1·m−3, and 0.03×10−6mol4·N−1·s−1·m−9 ≤
Hr

det, Hdet ≤ 236.09×10
−6mol4·N−1·s−1·m−9.

�e graphs 1–5 shown in Figure 10 illustrate the de-
pendencies ψ22 �ψ23 � f(C1, C2 � const.), ψ32 �ψ33 � f(C1,
C2 � const.), ψdet � f(C1,C2 � const.), ψ13 � f(C1,C2 � const.),
and ψ12 � f(C1, C2 � const.), respectively. �ese coe�cients
ful�ll the following conditions: for C1 � 9.24mol·m−3,
ψ22 �ψ23 �ψ32 �ψdet �ψ13 �ψ12 � 0, for C1 < 9.24mol·m−3,
ψ22 �ψ23 ≈ψ32 �ψ33 >ψdet > 0 and ψ12 >ψ13 < 0, and for
C1 > 9.24mol·m−3, ψ22 �ψ23 ≈ψ32 �ψ33 <ψdet < 0 and,
ψ12 >ψ13 > 0. Besides, throughout the range of solution
concentrations ψ11 �ψ21 �ψ31 � 0.

For example, we will consider equation ψ22 � ζA1 − ζ
B
1

and dependencies ζr1 � f(C1,C2 � const.) (r�A, B) presented
in Figure 2. It is drawn from the equation and Figure 2 that if
ψ22� 0, then ζA1 � ζ

B
1 � 0.234. Moreover, by taking expres-

sions ζA1 �D1 (D1 + 2RTω11δA)−1 and ζB1 �D1
(D1 + 2RTω11δB)−1 into account in equation (15), one can
show that ψ22 � 2RTω11(δ

A − δB)D−111 . From the equation, it
becomes apparent that if ψ22� 0, then δA� δB. Moreover,
using equations δr � Dks(1− ζ

r
i )(2RTωksζ

r
i )
−1and ρh−ρl �

(zρ/zC1)(C1h−C1l) + (zρ/zC2)(C2h−C2l), where (zρ/zC1)�
0.06 kg·mol−1, (zρ/zC2)�−0.0095 kg·mol−1, we can show
that, if ψ22� 0, it is for C1 � 9.24mol·m−3 (C1h�
33.44mol·m−3 and C1l� 1mol·m−3) and C2 � 37.71m−3
(C2h� 201mol·m−3 and C2l� 1mol·m−3) we get ρh−ρl�
0.046 kg·m−3 and δA� δB≈ 1.4×10−3m.

Taking these data into consideration as well as
D11� 0.69×10−9m2·s−1, g� 9.81m·s−2, ω11� 0.8×10−9
mol·N−1 s−1, ]� 1.063×10−6m2·s−1, ρl� 998.3 kg·m−3,
ζ1A� ζ1B� ζ � 0.234, and δA� δB� δ � 1.4×10−3m in the
expression for the concentration Rayleigh number RC�
[g(ρh − ρl)(δ)

3](ρh]hD11)−1� [g(ρh − ρl)(1− ζD11
2)3] [8ρh

vhD1
4(ζRTω11)

3]−1 [31, 34], we get RC� 1691.09. �e value
is similar to the classical Rayleigh number critical value for
Bernard problem RC� 1707.76 [38].

4. Conclusions

(1) �e Kedem–Katchalsky equations in matrix form for
nonhomogeneous ternary nonelectrolyte solutions
were applied for interpretation of transport through
the membrane mounted in horizontal plane. Co-
e�cients Hr

ij and Hr
det � det [Hr] (for non-

homogeneous solutions), Hij and Hdet � det [H] (for
homogeneous solutions) (i, j ∈ {1, 2, 3}, r�A, B),
ψij� (HA

ij −H
B
ij)/Hij, and ψdet� (HA

det−H
B
det])/Hdet

were calculated on the basis of experimentally de-
termined coe�cients (Lp, σ1, σ2 ω11, ω22, ω21, ω12, ζr1,
and ζr2) for glucose in aqueous ethanol solutions and
two con�gurations of the membrane system.

(2) We can conclude that Peusner’s Network �ermo-
dynamics (PNT) is an alternative manner of de-
scription ofmembrane transport both for homogeneity
of solutions separated by a membrane and in condi-
tions of concentration polarization.

(3) �e values of coe�cients Hr
12, H

r
13, H

r
22, H

r
23, H

r
32,

Hr
33, and Hr

detdepend nonlinearly on solution
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Figure 10: �e graphic illustration of the dependence
ψij � f(C1,C2 � 37.71mol·m−3) (i≠ j, r�A, B) for the glucose in
aqueous ethanol solution in conditions of concentration polari-
zation of the membrane system, respectively: ψ22 �ψ23 � f(C1,
C2 � const.)—curve 1; ψ32 �ψ33 � f(C1, C2 � const.)—curve 2;
ψdet � f(C1, C2 � const.)—curve 3; ψ13 � f(C1, C2 � const.)—curve 4;
and ψ12 � f(C1, C2 � const.)—curve 5.
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Figure 9: �e graphic illustration of the dependence Hr
det � f(C1,

C2 � 37.71mol·m−3) (r�A, B) for the glucose in aqueous ethanol
solution in conditions of concentration polarization for con�gu-
rations A (HA

det � f(C1, C2 � const.), curve 1A) and B (HB
det � f(C1,

C2 � const.), curve 1B) of the membrane system. Line 1 illustrates
the dependence Hdet� f(C1, C2 � const.) in conditions of homo-
geneity of solutions.
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concentration as well as on a configuration of
membrane system. 0e values of these coefficients in
the convective state are greater then their values in
the nonconvective state.

(4) 0e values of coefficients Hr
21, H12, H21, H22, Hr

33,
and Hdet depend linearly on solution concentration.
0e value of coefficients H13, H23, and H33 does not
depend on solution concentration.

(5) We can distinguish three groups of characteristics
Hr

ij � f(C1, C2 � const.), Hij � f(C1, C2 � const.), and
Hr

det � f(C1, C2 � const.), (i, j ∈ {1, 2, 3} and r�A, B).
In the case of group 1, which includes concentration
characteristics of coefficients Hr

12, H12, Hr
21, and H21

(r�A, B), these coefficients are expressed in the same
units and their values are in the range −21.62
mol·m−3÷ 20.19mol·m−3. In the case of the second
group of characteristics, the shape of the concen-
tration characteristics of the coefficients Hr

13, H13,
Hr

23, H23, Hr
33, and H33 (r�A, B) is very similar. 0e

values of coefficients Hr
13 and H13 are expressed in

different units than coefficients Hr
23, H23, Hr

33, and
H33. 0e third group of characteristics includes the
concentration characteristics of coefficients Hr

22,
H22, Hr

32, H32, Hr
det, and Hdet. Values of coefficients

Hr
det and Hdet are expressed in units other than Hr

22,
H22, Hr

32, and H32.
(6) 0ere is a threshold value of concentration

C1 ≈ 9.24mol·m−3 above which the values of co-
efficients ψ12, ψ13, ψ22 �ψ23, ψ32 �ψ33, and ψdet are
equal to zero. For C1 < 9.24mol·m−3, the values of
coefficients ψ12 and ψ13 are negative and fulfill the
conditions ψ22 �ψ23 ≈ψ32 �ψ33 >ψdet > 0 and ψ12 >
ψ13 < 0. For C1 > 9.23mol·m−3 values of coefficients
ψ12 and ψ13 are positive and fulfill the conditions
ψ22 �ψ23 ≈ψ32 �ψ33 <ψdet < 0 and, ψ12 >ψ13 > 0. In
contrast, the values of coefficients ψ22 �ψ23,
ψ32 �ψ33, and ψdet for C1 < 9.24molm−3 are positive
and for C1 > 9.24mol·m−3 negative. Besides,
throughout the range of solution concentrations,
ψ11 �ψ21 �ψ31 � 0.

(7) If ψ22 � 0, then ζA
1 � ζB

1 � 0.234 and it is conjugated
with critical value of concentration Rayleigh
number RC � [g(ρh − ρl)(δ)3](ρh]hD11)−1 � [g(ρh −
ρl)(1− ζD11

2)3] [8ρh]hD1
4(ζRTω11)3]−1 � 1691.09.

0e value is similar to the classical Rayleigh
number critical value for Bernard problem RC �

1707.76 [38].
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[26] A. Ślęzak, S. Grzegorczyn, and K. Batko, “Resistance co-
efficients of polymer membrane with concentration polari-
zation,” Transport in Porous Media, vol. 95, no. 1, pp. 151–170,
2012.

[27] M. H. Friedman, Principles andModels of Biological Transport,
Springer, New York, NY, USA, 2008.

[28] Y. Demirel and S. I. Sandler, “0ermodynamics and bio-
energetics,” Biophysical Chemistry, vol. 97, no. 2-3, pp. 87–
111, 2002.

[29] M. Kargol and A. Kargol, “Mechanistic formalism for
membrane transport generated by osmotic and mechanical
pressure,” General Physiology and Biophysics, vol. 22, no. 1,
pp. 51–68, 2003.
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