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�e modelling and numerical simulation of the drying process in porous media are discussed in this work with the objective of
presenting the drying problem as the system of governing equations, which is ready to be solved by many of the now widely
available control-volume-based numerical tools. By reviewing the connection between the transport equations at the pore level
and their up-scaled ones at the continuum level and then by transforming these equations into a format that can be solved by the
control volume method, we would like to present an easy-to-use framework for studying the drying process in porous media. In
order to take into account the microstructure of porous media in the format of pore-size distribution, the concept of bundle of
capillaries is used to derive the needed transport parameters. Some numerical examples are presented to demonstrate the use of
the presented formulas.

1. Introduction

�e drying process plays an important role in many different
industries, for example, in chemicals, pharmaceuticals, and
agriculture. �e drying process is one of the most complex
problems that one finds in process engineering because not
only heat and mass transfer takes place simultaneously in the
course of the process but also because other phenomenamay
play a significant role. Although drying processes have been
studied experimentally and theoretically for decades, sim-
ulating the coupling of heat and mass transfer and other
phenomena in drying is still a challenging problem. Many
researches were carried out to build suitable models and
simulate numerically the drying process in engineering, and
among recent works are those of Sekki and Karvinen [1],
Antonov et al. [2], Azmir et al. [3], Ramos et al. [4], and Wu
et al. [5].

Besides theoretical developments, numerical methods
were applied successfully to simulate the drying process of
porous media at the macroscopic scale and at the

microscopic scale [6]. At the microscopic scale, the drying of
porous media can be modelled as a network of pores, and the
motion of the liquid-gas interface is modelled at the pore
level, for example, in the work of Laurindo and Prat [7], Prat
[8], Segura and Toledo [9], Metzger et al. [10], and
Hirschmann and Tsotsas [11]. By using this approach [12],
which we will refer to as the discrete approach, the micro-
scopic structure and therefore the transport properties of the
porous medium can be modelled with better accuracy.
However, the problem becomes very large, and solving the
system of equations of coupled heat-mass transfer becomes
in many cases impractical, in particular when dealing with
systems of large geometrical dimension. In such cases, the
use of the continuous approach is more relevant (see for
example [13, 14] or [15]). �e continuous approach is built
on the assumption that the porous medium can be described
as a fictitious continuum by using effective coefficients for
heat and mass transfer. For many applications, by using the
continuous approach, the drying characteristics of porous
media can be simulated with a very good accuracy. However,
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one of the challenges in using the continuous approach is
how to determine the transport parameters [16]. Note that
since the continuous approach is built on a fictitious con-
tinuum, this is also called the continuum approach. A
continuous model for the drying process is therefore also
called a continuum model.

In developing a drying model at the macroscopic scale,
Whitaker [17] used the volume averaging technique to
derive a system of macroscopic transport equations from a
set of basic transport laws at the microscopic level. In
Whitaker’s work [18], a porous medium is assumed to be
equivalent to a continuum. A set of conservation equations
for mass, energy, and momentum are introduced using
average state variables. �e continuous model developed
by Whitaker is considered as rigorous and the most ad-
vanced continuous model today. �e theory of Whitaker
was later applied to different porous media, for example,
by Perré [19], Ouelhazi et al. [20], Boukadida and Nas-
rallah [21], Boukadida et al. [22], Ferguson [23], Perré and
Turner [24], Truscott [25], and Truscott and Turner [26].
Numerical techniques were developed to simulate the
drying process using the derived average conservation
equations. Among others, Perré and Turner [24] employed
the control volume method to solve the problem. �e
advantage of this numerical method is that it ensures the
conservation of mass and enthalpy through the boundaries
of elements.

Despite the fact that the derivation of the governing
equations of the drying problem at the continuum level can
be found elsewhere [18], some effort was made to put these
equations into a format that can be solved numerically [24],
and there is the need to put all available knowledge in one
framework, which is easy to understand and ready to be
solved by many of the now-available numerical tools (as
example of such tools, see [27, 28] or [29]). Such a
framework will not only offer us the tool to solve the drying
problem quickly but will also allow us to modify the gov-
erning equations in order to reflect the different phenomena
that are not yet taken into consideration. In this work, by
following the previous foundation laid out byWhitaker [18],
Perré and Turner [24], and others, we will revisit the

continuous approach starting with the transport equations at
the pore scale (microlevel). We will briefly review the set of
transport equations at the macro level. After that, we will
introduce the transport parameters as a function of the
material microstructure, and finally, some numerical solu-
tion will be presented and discussed.

2. GoverningEquations at theMicroscopic Scale
(Pore Scale)

We consider here a rigid porous medium V with external
boundary zV in which the matrix is made of some solid
material and a system of interconnected voids. �e voids are
also called here “pores”. �ese pores are connected as a
network of pores (voids). At the microscopic level (or pore
level), we consider a small part dV of the porous medium
with three phases: solid, liquid, and gas (Figure 1). �e solid
phase is denoted by s, the liquid phase (water) is denoted by
w, and the gas phase is denoted by g. �e gas phase has two
components (species): air (denoted by a) and vapour
(denoted by v). In drying analysis, one of the primary ob-
jectives is to compute the distribution of moisture content,
temperature, and internal gaseous pressure within the po-
rous medium during the drying process. At the pore level,
the (local) moisture content, the temperature, and the
gaseous pressure at each point can be determined using
suitable laws of physics such as the conservation of mass, the
conservation of linear momentum, and the conservation of
energy of each phase: solid, liquid, and gas. �ese conser-
vation laws will be presented in the following, according to
the work of Whitaker [18].

Note that we do not consider the particular shape of each
pore (void) in the pore network. As presented later, the
property of the pore network will be represented by the total
amount of void volume in terms of porosity. �e equations
presented in this section are valid for each phase (liquid, air,
and vapour) inside dV. By transforming the transport
equations presented in this section to the macroscopic level
(continuum level, Section 3), the influence of the pore shape,
the number of pores, the size distribution of the pores, and
how they are connected are represented by some effective
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Figure 1: Modelling the drying process in porous media: pore scale (the microscopic scale) and macroscopic scale.
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transport properties, which can be determined by experi-
mental measurement.

2.1.MassConservationat thePore Scale. By assuming that no
chemical reaction happens during drying, the total mass
conservation equation of each phase can be written as

zρ
zt

+ ∇ · (ρv) � 0, (1)

and the mass conservation equation of each component in
each phase is

zρi

zt
+ ∇ · ρivi( 􏼁 � 0, for i � 1, 2, . . . , N. (2)

In the above equations, the first terms on the left-hand
side are the change of mass due to accumulation, the second
terms express the change of mass due to convection, v is the
mass average velocity, and ρ is the total mass density of the
phase under consideration.

v � 􏽘
N

i�1

ρi

ρ
vi,

ρ � 􏽘

N

i�1
ρi,

(3)

where N denotes the total number of components, ρi is the
density, and vi is the velocity of component i.

2.2. Conservation of Linear Momentum at the Pore Scale.
By neglecting the contribution of body forces such as the
gravitation force, the conservation of linear momentum for
each phase can be written as

ρ
Dv
Dt

� ∇ · T, (4)

where T is the stress tensor. �e conservation of angular
momentum requires this tensor to be symmetric:

T � TT
. (5)

2.3. Energy Conservation at the Pore Scale. �e conservation
of energy for each phase can be presented in the following
format:

z

zt
(ρh) + ∇ · (ρhv) � −∇ · q +

DP

Dt
+ τ : ∇v +Φ, (6)

where h is the enthalpy per unit mass, q is the conductive
heat flux vector, τ is the viscous stress tensor, the term τ : ∇v
is the viscous dissipation, P is the pressure, DP/Dt is the
compression work, and Φ is the source or sink of electro-
magnetic energy. �e conductive heat flux vector q is
computed by Fourier’s law:

q � −λ∇T, (7)

where λ represents the thermal conductivity. If the contri-
bution of Φ is neglected and if in addition, we assume that,

for liquid and gas phases, the viscous dissipation and the
compression work are negligible:

τ : ∇v � 0,

DP

Dt
� 0,

(8)

and then the energy equation is reduced to
z

zt
(ρh) + ∇ · (ρhv) � −∇ · q. (9)

It is also assumed that the enthalpy is independent of
pressure and that all heat capacities are constant so that the
following relationship

h � cp T−TR( 􏼁, (10)

holds, where cp is the specific heat capacity and TR is the
reference temperature (chosen here to be TR � 273.15K).

After having the above conservation equations, we can
apply them to each phase of the three-phase system under
consideration. Note that we are still considering these
equations at the pore level.

2.4. SolidPhase. �e solid phase is considered to be rigid and
fixed in space with zero velocity (movement of the solid
phase is not considered):

vs � 0. (11)

�is assumption means that, for the solid phase, we need
to study only the conservation of energy equation (6), which
now becomes

ρs
zhs

zt
� −∇ · qs. (12)

By making use of equation (7) and taking into account
the assumption (10), we have the following conservation of
energy for the solid phase:

ρscp,s
zTs

zt
� λs∇

2
Ts. (13)

2.5. LiquidPhase. For the liquid phase, which contains water
as the only component, the mass conservation equation is

zρw
zt

+ ∇ · ρwvw( 􏼁 � 0. (14)

�e use of equations (7) and (10) allows us to write the
energy conservation of the liquid phase in the following
format:

ρwcp,w
zTw

zt
+ vw · ∇Tw􏼠 􏼡 � λw∇

2
Tw. (15)

2.6. Gas Phase. �e gas phase is more complicated than the
solid and the liquid phase since it contains two components:
air and vapour. �e mass conservation of the gas phase can
be written in the following form:
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zρg
zt

+ ∇ · ρgvg􏼐 􏼑 � 0. (16)

By writing the component velocity vi in terms of the
mass average velocity vg and the diffusion velocity ui,

vi � vg + ui, i � a, v. (17)

We can write the mass conservation of air and vapour in
the following form:

zρi

zt
+ ∇ · ρivg􏼐 􏼑 � −∇ · ρiui( 􏼁, i � a, v. (18)

Furthermore, by expressing the diffusive flux ρiui as

ρiui � −ρgδv,a∇
ρi

ρg
􏼠 􏼡, (19)

where δv,a is the binary molecular diffusion coefficient for
vapour and air, we finally have

zρi

zt
+ ∇ · ρivg􏼐 􏼑 � ∇ · ρgδv,a∇

ρi

ρg
􏼠 􏼡⎡⎣ ⎤⎦, i � a, v. (20)

Note that for a multicomponent phase, the appropriate
form of the energy equation (9) can be written in the fol-
lowing format:

z

zt
􏽘

N

i�1
ρihi

⎛⎝ ⎞⎠ + ∇ · 􏽘
N

i�1
ρihivi

⎛⎝ ⎞⎠ � −∇ · q, (21)

where hi is the enthalpy per unit mass of component i, and
the mass average enthalpy h is defined in a similar way as the
mass average of velocity:

h � 􏽘
N

i�1

ρi

ρ
hi. (22)

By using equation (21), for the gas phase, we have

ρgcp,g
zTg

zt
+ vg · ∇Tg􏼠 􏼡 � λg∇

2
Tg −∇ · ρahaua + ρvhvuv( 􏼁,

(23)

where

cp,g �
ρacp,a + ρvcp,v

ρg
. (24)

In addition to the above conservation equations, ideal
gas laws are assumed for partial and total gas pressures:

Pi �
ρi

􏽥RT

􏽥Mi

, (25)

where i stands for a, v, or g, 􏽥R is the ideal gas constant, and
􏽥Mi stands for molar mass of air, vapour, or gas. �e con-
straint for the partial and total gas pressure is simply

Pa + Pv � Pg. (26)

Besides the set of equations listed above, the
boundary conditions connecting the transport equations

for the three separate phases need to be specified.
Details can be found, for example, in the work of Whi-
taker [18].

3. Numeric Ready Continuum Equations of the
Drying Process

�e macroscopic transport equations can be obtained from
the microscopic ones presented in Section 2 by using the
volume averaging method [17]. �is set of macroscopic
equations is summarized as follows [14].

3.1. Conservation Equation for Water. �e mass conserva-
tion equation for water in the both liquid and gas phase can
be written as follows:

z

zt
ρwεw + εgρv􏼐 􏼑 + ∇ · ρwvw + ρvvg􏼐 􏼑 � ∇ · ρgDeff · ∇

ρv
ρg

􏼠 􏼡⎡⎣ ⎤⎦,

(27)

where εw � Vw/V and εg � Vg/V are the volume fractions of
the liquid and gas phase with respect to the total volume V of
the porous medium and Deff is the effective diffusivity
tensor.

3.2. Conservation Equation for Air. �e second equation is
the mass conservation equation for air in the gas phase:

z

zt
εgρa􏼐 􏼑 + ∇ · ρavg􏼐 􏼑 � ∇ · ρgDeff · ∇

ρa
ρg

􏼠 􏼡⎡⎣ ⎤⎦. (28)

3.3. Conservation Equation of Energy. �e third equation is
the energy conservation equation for the whole system:

z

zt
εsρshs + εwρwhw + εgρvhv + εgρaha􏼐 􏼑

+ ∇ · ρwhwvw + ρvhv + ρaha( 􏼁vg􏽨 􏽩

� ∇ · ρghaDeff · ∇
ρa
ρg

􏼠 􏼡⎡⎣ ⎤⎦ + ∇ · ρghvDeff · ∇
ρv
ρg

􏼠 􏼡⎡⎣ ⎤⎦

+ ∇ · λeff∇T( 􏼁,

(29)

where εs � Vs/V is the volume fraction and of the solid phase
and λeff is the effective thermal conductivity tensor. Note
that, since the sum of the solid, liquid water, and gas is the
total volume of the porous medium Vs + Vw + Vg � V, the
sum of all volume fractions is unity:

εs + εw + εg � 1. (30)

In the above equations, the velocities are computed by
using
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vw � −
Kwkw
μw
∇Pw − ρwg∇χ( 􏼁,

vg � −
Kgkg
μg
∇Pg − ρgg∇χ􏼐 􏼑,

(31)

where Kw and Kg are the absolute permeabilities of liquid
and gas phases, kw and kg are the corresponding relative
permeabilities, g is the gravitational acceleration, and χ is the
height. In this work, for simplicity, we will not consider the
gravitational effect, and therefore, the terms with g∇χ drop
out. In order to compute the gas pressure, we make use of
equation (26):

Pg � Pa + Pv � ρa
􏽥RT

􏽥Ma
+ Pv, (32)

where the vapour pressure will be computed by the sorption
isotherm, which can be determined by an experiment. �e
liquid water pressure is computed by the following equation:

Pw � Pg −Pc, (33)

where Pc is the capillary pressure.
Also in the above equations, the enthalpies of the solid

phase (hs), liquid water (hw), air (ha), and vapour (hv) are
computed using (10) as

hi � ci T−TR( 􏼁, i � s,w, a,

hv � Δhvw + cv T−TR( 􏼁,
(34)

where Δhvw is the latent heat of vaporization. For the com-
putation of these values, we use here cw � 4185 J·kg−1·K−1,
cv � 1874 J·kg−1·K−1, and ca � 1005.683 J·kg−1·K−1. �e value
of cs can be given directly or indirectly depending on the ease
of use and on the particular porous medium under consid-
eration. For example, in the case of light concrete, instead of
using directly cs, we can use an averaged heat capacity ρCp
defined as follows:

ρCp � εsρscs + εwρwcw + εgρvcv + εgρaca. (35)

In solving the above system of conservation equations,
we can use as main variables the temperature T, the volume
fraction of the liquid water εw, and the gas density ρg at each
point in our porous medium. However, since it is convenient
to compute different quantities using moisture content X,
we will use here as main variables the temperature T, the
moisture content X, and the gas density ρg at each point in
our porous medium. �e formula for moisture content X is
written as

X �
εwρw
εsρs

. (36)

By using moisture content, the volume fraction of liquid
water εw can be computed by equation (36) as
εw � ((εsρs)/ρw)X. �e volume fraction of gas is

εg � 1− εs( 􏼁− εw � 1− εs( 􏼁−
εsρs
ρw

X, (37)

where the volume fraction of the solid phase εs can be
computed by the porosity of the medium under consider-
ation. �e vapour pressure will be computed by the sorption
isotherm and can be determined experimentally as the
function of moisture content and temperature
Pv � Pv(X, T). �e vapour density is ρv � (Pv

􏽥Mv)/􏽥RT. �e
gas density is ρa � ρg − ρv. Note that for simplicity, the
density of water is considered here as constant
ρw � 1000 kg/m3.

Besides the above governing equations, the boundary
conditions for mass and heat transfer at the external drying
surfaces zV of the porous medium must be specified. Here,
we assume that, at the external drying surfaces, the fluxes of
mass and heat are described for convective drying by the
boundary layer theory with Stefan correction. For the mass
flux Jw · 􏽢n at zV, we have

Jw · 􏽢n � _mv
􏼌􏼌􏼌􏼌zV

� β
Pg

􏽥Mv
􏽥RT

ln
Pg −Pv,∞

Pg −Pv
􏼠 􏼡, (38)

and for the energy flux Je · 􏽢n at zV,

Je · 􏽢n � _q + Δhv _mv
􏼌􏼌􏼌􏼌zV

� α T−T∞( 􏼁

+ Δhvβ
Pg

􏽥Mv
􏽥RT

ln
Pg −Pv,∞

Pg −Pv
􏼠 􏼡,

(39)

where Jw and Je are the fluxes of water and heat, re-
spectively; Pv,∞ and T∞ are the vapour pressure and the
temperature of bulk drying air; 􏽢n is the outward-pointing
normal vector at the boundary surface; and β and α are
mass and heat transfer coefficients. Additionally, the gas
pressure at the external drying surfaces is fixed at the
pressure of the bulk drying air:

Pg � P∞. (40)

Sorption isotherm, capillary pressure, ideal gas laws, and
enthalpy-temperature relations will help express all variables
as functions of three state variables.

As summary, in solving the drying problem using the
continuous approach (continuum approach), we will solve
the 3 conservation equations (27)–(29) with the corre-
sponding boundary and initial conditions. �e main vari-
ables to be solved are the temperature T, the moisture
content X, and the gas density ρg. �e boundary condition
for heat and mass transfer will be temperature and relative
humidity of drying air. �ese conditions will be used with
the help of equations (38)–(40) in terms of drying air
temperature (T∞), vapour pressure in drying air (Pv,∞), and
total pressure of drying air (P∞).�e initial condition will be
the temperature T, moisture content X, and gas pressure
(Pg) at each point inside the porous medium to be dried at
the beginning of the drying process. By using these values,
the initial values of our main variables T, X, and ρg can be
computed.
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4. Transport Parameters as Functions of
Material Microstructure

A major problem in using the continuous approach (with
the governing equations presented in the previous section) is
the determination of the different model parameters for a
given porous material. In this section, based on the work of
Metzger and Tsotsas for a bundle of capillaries [30], we
present a simple and effective way to compute the needed
transport properties by taking into account the character-
istics of the pore structure of porous materials, namely, the
pore size and its distribution. In this approach, the capillary
pressure and the absolute and relative permeabilities are
computed as functions of material pore size and pore-size
distribution. �e effective diffusivity and effective thermal
conductivity are considered as dependent on porosity ψ and
saturation S. �ese parameters will then be used in the
continuous dryingmodel presented in the last section, which
is capable of modelling the spatial and temporal evolution of
moisture content, temperature, and gaseous pressure. �e
aim here is to provide a tool that we can use to understand,
on a fundamental basis, how a variation of pore-size dis-
tribution changes the drying behaviour of porous media.
However, it should be pointed out that the pore-size dis-
tribution alone is not enough to characterize the drying
behaviour of a porous medium; it is only the most accessible
structural information.�e idea to use a bundle of capillaries
to describe the pore space is not new. As an example,
Krischer and Kast [31] described liquid water transport in
porous media using this geometry. However, the idea was
rarely used for a systematic investigation of the whole drying
process.

In using the concept presented by Metzger and Tsotsas
[30], we assume that a bundle of capillaries represents the
void space of a porous medium, as shown in the model
depicted in Figure 2. In the model, the capillary tubes are
set perpendicular to the surface of the porous body and the
solid phase is arranged in parallel. �ere is no lateral
resistance to heat or mass transfer between solid and
capillaries, making the model strictly one-dimensional.
We restrict ourselves to large enough pore sizes so that
for every capillary the gas-liquid phase boundary can be
described by a meniscus having a capillary pressure.
During drying, larger capillaries will empty first, because
they have lower capillary pressure. However, this capillary
pumping is subject to friction leading to a nontrivial
moisture profile.

For our investigation, two types of pore-size distribu-
tions (capillary radius distributions) are used.�e first one is
a monomodal normally distributed pore volume

dV

dr
�

C
���
2π

√
σ0

e
−(1/2) r−r0( )/σ0( )

2

, (41)

where r0 is the mean pore radius, σ0 is the standard
deviation, and C is a constant. �is normal distribution is
truncated at r0 ± 2.5σ0. �e integral of the pore-size
distribution computed in this truncated range must be
equal to the void volume of the sample, or in other words,

the total volume fraction of liquid for S � 1 must cor-
respond to the porosity ψ of the sample. However, in
this work, this integral is set to unity for the sake of
simplicity.

�e second distribution type is a bimodal distribution,
which consists of two monomodal models (with different
mean pore radii and deviations) named here as small pore
and large pore distributions. In bimodal distributions, the
volume fractions of small pores and large pores and the
transition region between the two kinds of pores are taken
into account. Similar to the case of monomodal distribution,
the integral of the pore-size distribution in this case is set to
unity. Evidently, different choices are possible for the cap-
illary radius distribution. However, the mono- and bimodal
distributions are considered to be enough for a systematic
investigation.

If the porous medium is partially saturated with water,
the assumption of ideal lateral transfer between the capil-
laries implies that, for a given local free water saturation Sfw,
small capillaries are filled up to a maximum radius rfill such
that

Sfw � 􏽚
rfill

rmin

dV

dr
dr, (42)

where rmin is the smallest capillary radius of the bundle.
�e localization of free water Sfw is the key for computing

effective parameters as the function of saturation. Based on
equation (42), the maximum radius rfill can be computed for
a given Sfw. For any saturation under the irreducible value,
the saturation of free water Sfw is zero and the maximum
radius filled by liquid rfill is set to rmin.

Adsorbed water, whichmay play an important role in the
drying of hygroscopic materials, needs to be modelled
separately since it depends mainly on material properties
(the influence of pore-size distribution is neglected because
the condensation due to the Kelvin effect only plays an
important role at very high level of relative humidity). In our
work, we chose the same type of temperature-independent
sorption isotherm as Perré and Turner [24] used for
concrete:

φ �
S

Sirr
· 2−

S

Sirr
􏼠 􏼡, for S≤ Sirr, (43)

where φ is the relative humidity, Sirr is the maximum amount
of adsorbed water, S � Sirr + Sfw, and in the presence of free
water, φ � 1.

Besides vapour pressure, the capillary pressure is also
linked to saturation by a state equation given by the me-
niscus in the largest filled capillary:

Pc Sfw, T( 􏼁 �
2 · σ(T)

rfill Sfw( 􏼁
, (44)

where the zero contact angle is assumed and σ is the
temperature-dependent surface tension.

Let us now consider one capillary, which is fully satu-
rated by water. On the one hand, the volumetric flow rate is
calculated from Poiseuille’s equation:
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_V �
1
8η

·
ΔPw

L
· π · r

4
, (45)

where L is the capillary length, r is the capillary radius, η is
the dynamic viscosity (temperature dependent), and Pw is
the water pressure. On the other hand, the mean velocity v

(volumetric flow rate per total cross section of the porous
medium) of the liquid can be described by the generalized
Darcy law. In this calculation, we assume that gravitational
effects are negligible and that velocity is small enough to
neglect inertial effects. If we apply Darcy law to a fully
saturated capillary (kw � 1), we obtain

v �
K

η
·
ΔPw

L
. (46)

By comparing equations (45) and (46), the absolute
permeability can be found to be

K �
1
8

r
2
. (47)

By extending the above formula to the bundle of
capillaries, we get

K �
1
8

􏽚
rmax

rmin

r
2dV

dr
dr, (48)

where the interval [rmin, rmax] is the total range of the pore-
size distribution.

�e relative permeabilities of liquid and gas phases are
computed in a similar way as the absolute permeability:

kw Sfw( 􏼁 �
1
8K

􏽚
rfill

rmin

r
2dV

dr
dr, (49)

kg Sfw( 􏼁 �
1
8K

􏽚
rmax

rfill

r
2dV

dr
dr. (50)

Note that the sum of these two quantities is unity.
In order to illustrate the influence of pore-size distri-

bution on the effective parameters, four different cases of
pore-size distribution are considered [33].�e parameters of
the distributions and the corresponding permeabilities are
presented in Table 1 and Figure 3. For the bimodal distri-
butions, the volume is equally distributed to the two modes.
�e capillary pressure curves for these four pore-size dis-
tributions are illustrated in Figure 4. Naturally, with the
decreasing saturation, the capillary pressure increases. �e
overall level of the capillary pressure is determined by the

mean pore size r0 of the mode, and its range of variation is
determined by the standard deviation σ0.

�e effective vapour diffusivity does not depend on the
distribution of the pores but on the evaporation area.
�erefore, this transport parameter is assumed to be a
function of saturation, porosity, and the binary diffusion
coefficient δva [14]

Deff(S, T, P) � (1− S) · ψ · δva(T, P), (51)

where ψ is the porosity, which is the ratio of the total void or
pore volume (Vvoid) to the total volume (Vtotal) of the
material ψ � Vvoid/Vtotal.

�e next parameter is the effective thermal conductivity.
Like the effective vapour diffusivity, this transport parameter
is also assumed to be independent of pore-size distribution.
As heat conduction occurs in all phases in parallel, the heat
flux or thermal conductivity contributions must be weighted
according to the respective volume fractions of the phases. If
the contribution of gas is neglected, then the effective
thermal conductivity can be computed as follows [14]:

λeff(S, T) � (1−ψ) · λs(T) + S · ψ · λw(T). (52)

5. Numerical Solution Using the Control
Volume Method

In principle, the finite element method, the finite difference
method, or the control volume method can be employed to
solve the governing equations of the drying problem pre-
sented in the previous sections. Many works were carried out
trying to find the best technique for the simulation of the
drying process. In the quest for a quicker, more accurate, and
less expensive solution, even mixtures of different methods
appeared, for example, the so-called control volume finite
element method [23]. In many textbooks on numerical
methods for heat and mass transfer, the control volume
method is praised for its accuracy in solving problems in-
volving conservation of heat and mass [34]. �e method was

Table 1: Pore-size distributions and absolute permeabilities.

r0 ± σ0 (nm) K (10−15m2)

Case 1 100± 5 1.238 MonomodalCase 2 1000± 100 124.6
Case 3 100± 10; 200± 20 3.119 BimodalCase 4 100± 10; 2000± 200 245.1
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Figure 2: Partially saturated bundle of capillaries: relationship between free water saturation Sfw and maximum radius filled rfill [32].
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applied in drying simulations by, for example, Perré and
Turner [24], Truscott [25], Truscott and Turner [26], Hadley
[35], Nasrallah and Perre [36], Perre and Degiovanni [37],
and Turner and Ferguson [38, 39]. �e basic idea of the
control volume method is simple. In this method, the cal-
culation domain is divided into a number of nonoverlapping
control volumes, each of which is associated with a grid
point or node [34]. �e system of differential equations is
then integrated over each control volume. Piecewise profiles
expressing the variation of variables and related quantities
are used to evaluate the required integrals. For each control
volume, the result is a discrete version of the differential
equations involving the variables related to the central node

of this control volume and to the nodes connected to it. �e
most important feature of the control volume method that
makes it different from other methods is that the re-
quirement of conservation of the basic physical quantities
such as mass and energy will be satisfied at any discrete level:
across a control volume element, over a group of control
volume elements, or over the whole calculation domain. In
this section, we will present and discuss the results of some
example problems.

In the first two examples, the drying process is con-
sidered with some given transport properties. In the third
example, the transport properties are computed by using
the microscale properties of the porous material, as pre-
sented in the last section. �e purpose here is to showcase
the validity of the above system of governing equations and
the effect that the microstructure (in this case, pore size and
pore-size distribution) has on the drying behaviour of
porous media. In the first and in the second examples, a
spherical particle is considered. In the third and fourth
examples, we consider an infinite plate with a thickness of
200mm. In practical application, the infinite plate can be
used for the case the thickness of a real plate is small in
comparison with its length and width. �e first example is
presented to demonstrate that the current approach can
capture important effects which lead to large differences
between isothermal and nonisothermal drying. �e second
example shows that simplification in models like the dif-
fusion model and receding front model can lead to large
differences in drying kinetics. �is example also shows that
the current approach can capture the different drying
characteristics of the two simplified models. �e third and
the fourth examples demonstrate the capability of our
approach in capturing changes of transport parameters
(and correspondingly changes in the drying kinetics) due to
changes in the microstructure of a porous medium (pore
size and pore-size distribution). �e fourth example also
demonstrates the accuracy of the current approach when
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Figure 3: Relative permeabilities for four cases of mono- and bimodal distributions.
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we compare the simulation results with those of the discrete
approach.

In the first example, we examine here the drying of a
sphere of light concrete with radius R� 2.5mm. �e initial
temperature of the sample is T0 � 20°C, the initial moisture
content is X0 �1, and the initial pressure is P0 �1 bar for the
whole sample. �e heat transfer coefficient is
α� 14.25W·m−2·K−1, and mass transfer coefficient is
β� 0.015m·s−1. �e drying air has temperature T∞� 20°C
and relative humidity φ� 50%.

�e material properties of light concrete used in this
example are given as follows [24]: porosity ψ � 0.8, solid
density ρs � 2500 kg·m−3, and heat capacity:

ρCp � εsρs(840 + 4185X) J·kg−1·K−1. (53)

�e fully saturated material has a moisture content of
Xsat � 1.6. �e sorption isotherm is

ϕ(X, T) �
Pv

P∗v(T)
�

1, if X>Xirr,

X

Xirr
2−

X

Xirr
􏼠 􏼡, if X≤Xirr,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(54)

where Xirr � 0.07 is the irreducible moisture content. �e
saturation vapour pressure P∗v(T) is given as a function of
temperature T (°C) by Antoine’s equation:

P
∗
v � 133.32 · e

(18.584−(3984.2/(233.426+T)))
. (55)

�e capillary pressure is computed from

Pc � 40 · σ(T) · e
8.4057×10−0.3476Xfw( ), (56)

where the surface tension σ is a function of temperature T

(°C):

σ(T) � −1.3 · 10−7 · T
2 − 1.58 · 10−4 · T + 0.07606N·m−1,

(57)

andXfw is the moisture content of free water:Xfw � X−Xirr.
�e absolute permeability is taken as constant:

K� 2×10−13m2.�e relative permeabilities for liquid kw and
for gas kg phases are calculated from the following
relationship:

kw �
0, X>Xirr,

Sfw( 􏼁
3
, X≤Xirr,

􏼨

kg �
1, X>Xirr,

1 + 2Sfw − 3( 􏼁 Sfw( 􏼁
2
, X≤Xirr,

􏼨

(58)

where Sfw � (X−Xirr)/(Xsat −Xirr) and Xsat is the saturated
moisture content.

�e effective diffusivity is calculated from

Deff � 0.2 · δva · kg, (59)

where kg is the relative permeability of gas and δva is the
binary diffusivity of vapour in air [31]:

δva(T, P) � 2.26 · 10−5 ·
T

TR
􏼠 􏼡

1.81
PR

Pg
, (60)

where TR � 273.15K and PR � 101325 Pa are reference
temperature and pressure, respectively.

�e effective thermal conductivity has contributions
from both the solid and the liquid phase (the contribution of
the gas phase is neglected). It is computed as

λeff � (0.142 + 0.46X)W·m−1·K−1. (61)

Note that in order to solve a drying problem, there are 2
approaches that we can use, depending on the characteristics
of the accompanying heat transfer process. In the first ap-
proach, only mass transfer is considered. Here the tem-
perature is assumed to be constant. We will call this
isothermal approach. A typical example of this approach in
solving the drying problem is the use of the diffusion model.
By using the diffusion model, only mass transfer is con-
sidered. Despite the fact that the diffusion coefficient can be
formulated as a function of temperature, the heat transfer is
completely neglected, and the temperature of the porous
medium is considered as unchanged during the drying
process. �e solution using this approach is accurate enough
and becomes acceptable when the isothermal condition can
be actually satisfied; for example, when the transfer of heat
takes place quick enough, the temperature of the whole
system remains constant. In the second approach, the heat
and mass transfer processes are considered as coupled.
Despite the fact that this system is often difficult to solve, the
corresponding solution is closer to reality. �e second ap-
proach must be used in the case isothermal condition is
violated; for example, when the transfer of heat takes place
too slowly, the constant temperature of the system under
consideration cannot be guaranteed. We will call this the
nonisothermal approach. Evidently, if the solutions obtained
by the 2 approaches are very similar, the preferred approach
is the isothermal one since this is the simpler approach. On
the contrary, if the 2 solutions are very different, the non-
isothermal approach must be used.

As we will see in the following, the drying problem
considered in our first example does not satisfy the iso-
thermal condition. �e temperature of the sphere is not
constant, and the drying process is therefore nonisothermal.
We will call this the nonisothermal drying. By solving this
nonisothermal process, we would like to demonstrate that
the approach presented in Section 3 above is capable of
dealing with fully coupled mass and heat transfer processes.
In addition, we would like to show that the presented ap-
proach can also handle the case of isothermal drying. In
order to do this, we consider another case with the same
drying conditions as stated above, but with different heat
transfer properties, α� 6000W/m2/K (heat transfer co-
efficient) and λs � 6000W/m/K (thermal conductivity of
sample’s solid phase, see Section 2). In this case, the effective
thermal conductivity is dominated by thermal conductivity
of the sample’s solid phase. Under these conditions, the heat
transfer process will happen much faster. As we will show
later, under these conditions, the temperature of the sphere
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is almost constant, and the drying process is thus isothermal.
We will call this the isothermal drying. Finally, by comparing
the result of the 2 cases (isothermal and nonisothermal
drying), we would like to point out that not only the
temperatures of the system are different but also the drying
rates are significantly different.

We would like to emphasize that, in our simulation,
there is no modelling difference between calculating the
sample moisture content and temperature between the case
of isothermal drying and the case nonisothermal drying.
Here, the same system of equations of fully coupled heat and
mass transfer is solved (see Section 3). �e only the dif-
ference is the condition for heat transfer inside the sample
and at the interface between the sample and the drying air.
With relatively small effective thermal conductivity and
small heat transfer coefficient, the result of our simulation
shows that the temperature inside the sample is not constant
and is not equal to the temperature of the drying air. With
large effective thermal conductivity and large heat transfer
coefficient, the result of our simulation shows that the
temperature inside the sample is constant and is equal to the
temperature of the drying air.

Since the boundary conditions applied to the sample are
symmetric, the drying problem of the sphere can be solved
by the control volume method in one dimension. �e nu-
merical results are presented in Figures 5–7. �e result
presented in Figure 5 shows that, in the first drying period of
the nonisothermal case, a cooling to temperature of 13.17°C
takes place, and the temperature rises back to the initial value
T0 � 20°C in the second drying period. For the isothermal
case (Figure 6), the temperature of the sample stays almost
constant during the whole drying process: a cooling to
temperature of 19.95°C takes place in the first drying period,
and the temperature rises back to the initial value T0 � 20°C
in the second drying period. �e 2 constant temperatures in
the first drying period are very similar to the definition of the
wet bulb temperature (if the supply of moisture were infinite,
the temperature would stay at these 2 temperatures for ever).
Due to this reason, we call these 2 temperatures imaginary
wet bulb temperatures. In the isothermal case, the imaginary
wet bulb temperature is then 19.95°C, while this quantity is
13.17°C in the nonisothermal case.

From the results presented in Figure 7, the evaporation
rate in the first period and the critical moisture content for
the isothermal case are _mv,I � 0.1310 g·m−2·s−1 and
Xcr � 0.1538. �ese values are 0.0394 g·m−2·s−1 and 0.1320
for the nonisothermal case. In the isothermal case, the initial
drying rate is higher compared to the nonisothermal case.
�is is due to the fact that the temperature in the first drying
period of the isothermal case is significantly higher (19.95°C)
than that of the nonisothermal case (13.17°C). Due to this
reason, the effective diffusivity in the isothermal case is larger
than that in the nonisothermal case (because this is a
function of temperature, see equations (59) and (60)).
Consequently, the total drying process is significantly longer
in the nonisothermal case (290.9minutes compared to
99.2minutes).

�e results in this example show a clear difference be-
tween the two cases of isothermal and nonisothermal drying.

It is evident that, in many cases, mass transfer must be
considered together with heat transfer to obtain realistic
results. In these cases, the framework presented above is a
suitable choice.

In the second example, we consider the isothermal drying
of the same spherical particle of light concrete above. We
assume that heat transfer is quick enough so that the
temperature of the sample does not change during the
drying process. �e objective here is to demonstrate that
even in the case of isothermal drying, simplification in
modelling of mass transfer alone may lead to significant
differences in the analysis of a drying process. We will
consider here three cases. In the first case, the problem will
be solved by using the continuous model (using the
framework presented in Section 3 above, which is also called
continuum model) and by using the control volume method
as in the first example. However, in this case, the conser-
vation of energy (29) is not considered, so that the iso-
thermal condition is satisfied. In the second and third cases,
the problemwill be solved using the diffusionmodel, and the
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receding front model presented hereafter. �e isothermal
drying is set at T∞� 20°C, the drying air has zero moisture
content φ� 0, the pressure of drying air is set to 1 bar, the
mass transfer coefficient is β� 0.015m·s−1, and the initial
moisture content is X0 �1 as in the first example.

In using the diffusion model [31], the drying problem for
a sphere can be expressed in the following format:

zX(r, t)

zt
�

1
r2

z

zr
r
2δ∗

zX

zr
􏼠 􏼡, (62)

where r is the radial coordinate and the diffusion coefficient
δ∗ takes the constant value of 2.6 ·10−5m2·s−1 [31].

In addition to the diffusion equation above, we need to
specify the boundary conditions for a sphere at radius r � 0
and r � R. At the centre of the sphere, due to symmetry, we
have

zX

zr
􏼠 􏼡

r�0
� 0. (63)

At the boundary of sphere, the mass flux must satisfy the
boundary condition (38). �e mass flux at the boundary r �

R is computed as follows [31]:

_mv
􏼌􏼌􏼌􏼌r�R

� −δ∗ρs
dX

dr
􏼠 􏼡

r�R

, (64)

where ρs is the density of the solid and _mv is the evaporation
rate. Since this mass flux must satisfy the boundary con-
dition given by the boundary condition (38),
i.e., _mv|r�R � Jw · 􏽢n, we have

−δ∗ρs
dX

dr
􏼠 􏼡

r�R

� β
Pg

􏽥Mv
􏽥RT

· ln
Pg −Pv,∞

Pg −Pv
􏼠 􏼡, (65)

in which the vapour pressure Pv is given by the sorption
isotherm defined above. As summary, the diffusion model
is presented by the conservation of mass (62) and the 2
boundary conditions (63) and (65). In order to get the
numerical solution, the system of 3 equations (62), (63),

and (65) is solved by using the PDE solver pdepe in
MATLAB.

In using the receding front model [40], in the case of
an infinite plate, the porous medium is divided into
2 zones: wet zone and dry zone (Figure 8). We assume
that there is only vapour in the dry zone, and in the wet
zone, only liquid exists. �e mount of adsorbed water is
assumed here to be negligible. Note that the diffusion
takes place in the dry zone. As mentioned above, we
assume that heat transfer is quick so that the temperature
of the sample is constant. Due to this reason, the flux of
heat is not considered. For a plate, the relationship be-
tween the dry-wet front position and the momentary
drying rate is

_mv � −
1
β

+
s

δ∗
􏼠 􏼡

−1Pg
􏽥Mv

􏽥RT
· ln

Pg −Pv,∞

Pg −P∗v
􏼠 􏼡, (66)

where β is the mass transfer coefficient at the surface and
z � s is the position of the front at time t. �e diffusion
coefficient δ∗ is computed as an effective diffusivity, as in
equation (59), with saturation S � 0. As we can see in
equation (66), the mass transfer resistance is obtained by
addition: 1/β is the resistance in the boundary layer and s/δ∗
is the resistance in the dry zone. For a spherical geometry,
the diffusion process takes place through a shell with inner
radius R – s and outer radius R. �is means the resistance in
the dry zone can be computed as R · s/[δ∗(R− s)], and the
time needed to evaporate the amount of water contained in a
shell is as follows:

t �
ρw · ΔV

A · ψ · _mv
, (67)

where A is the surface area of the sphere, ΔV is the volume of
the shell, and ψ is the porosity.

In using the receding front model, for every given value
of s we can compute the drying rate _mv by using equation
(66). By using this drying rate _mv and by computing A and
ΔV as function of s, the corresponding time t can be
computed by equation (67). By using the computed drying
rate _mv, the total moisture inside the sample can be com-
puted. In addition, by using the total moisture of the sample,
the averaged moisture content Xav is obtained. As a con-
sequence, by varying s from 0 to R, we have a set of three
values presenting the drying kinetics of the drying process at
each value of s: (Xav, t, _mv).

�e different solutions of the drying problem by using the
three models are presented and compared in Figures 9–11. As
we can see from Figure 9, all three models capture the initial
value of evaporation rate _mv,I � 0.262 g·m−2·s−1 since for
all three models, the mass transfer is initially only con-
trolled by the boundary layer. From Figure 10, it can be
seen that the receding front model has no first drying
period. �e first drying period of the diffusion model is
longer (Xcr � 0.0722) than in the case of the continuous
model (Xcr � 0.1687). Because the drying rate and
moisture content computed by the three models are
different (Figures 9 and 10), the drying times are also
different. In order to investigate this difference further,
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Figure 7: Isothermal and nonisothermal drying: drying rate curves.
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different radii R of the sample are examined and the
corresponding drying times are computed. As result, the
drying time versus radius of the sample is plotted in the
logarithmic scale in Figure 11. Note that the simulation
results presented in Figures 9 and 10 are obtained with
radius R � 2.5 mm, whereas in Figure 11, the results are
obtained with radii R � 1mm–15mm. �e results show
that the drying time is a linear function of the sample size
for the case of the diffusion model since in this considered
case we have almost only outer resistance (due to small
value of mass transfer coefficient β). If outside resistance
is negligible (when mass transfer coefficient β goes to
infinity), we should obtain drying time as a quadratic
function of the sample size. It is found that the drying
time increases more than linearly with sample size in the
case of the continuous and receding front model.

As the numerical results of this example demonstrate,
even in the case of isothermal drying, the framework pre-
sented here is a suitable choice.

In the third example, we consider the drying of an infinite
plate with a thickness of 200mm. �e system is symmetric,

and one-dimensional control volume elements can be used.
In this example, the porosity is taken as ψ � 0.5, and the solid
phase has thermal conductivity λs � 1W/m/K and volu-
metric heat capacity (ρc)s � 2·106 J/m3/K. �e initial satu-
ration and initial temperature are S0 � 0.9 and T0 � 20°C.�e
drying air has pressure P∞� 1 bar, zero moisture content
φ� 0, and temperature T∞� 80°C. �e heat and mass
transfer coefficients for the boundary layer are given as
α� 95W·m−2·K−1 and β� 0.1m·s−1, respectively. �ree cases
with two types of pore-size distribution (mono-modal and
bimodal) with different mean pore radii r0 and different
standard deviations σ0 are investigated.

In this example, the capillary pressure (Pc), the absolute
permeability (K), and the relative permeability of liquid (kw)
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and gas (kg) phases are computed by using formulas (44) and
(48)–(50), respectively. In order to show changes in trans-
port parameters due to different pore-size distributions,
information about the pore-size distributions and the cor-
responding absolute permeabilities is presented in Table 2
and Figure 12. In our simulation, the total void volume in
each case of the 3 pore-size distributions is controlled with
the help of formula (41). �e total pore volume computed
with the help of this formula must correspond to the po-
rosity ψ � 0.5 of the sample (see also the comment after
formula (41) above).

Note that the capillary pressure (Pc) and the relative
permeability of liquid (kw) and gas (kg) are also computed as
function of different pore-size distributions and are
implemented directly in our calculation but are not shown
here to save space. In order to see how changes in pore size
and pore-size distributions lead to changes in relative per-
meability of liquid (kw) and gas (kg) phases and in capillary
pressure (Pc), refer Figures 3 and 4 and Section 4 above.

�e results of our simulation are presented in Figures 13
and 14. By comparing the three cases, it can be seen that, for
the small pores with a narrow distribution, the first drying
period is short. �e large pore case with a broad distribution
has a long first drying period. �e large pores in a bimodal
distribution can significantly prolong the first drying period,
but the second drying period is entirely determined by the
small pores. It is observed that, in the case 2 with very large
pores (1000± 100 nm), the drying process takes place faster
than in the other two cases. In our simulation, the time to
remove all the free water from the samples is 37.5 hours for
case 1 (100± 5 nm), 21.3 hours for case 2 (1000± 100 nm),
and 27.3 hours for case 3 (100± 10; 200± 20 nm). For more
discussion about the influence of pore-size distribution on
drying kinetics, the readers are referred to [15].

In the fourth example, we consider the drying of the same
plate as in the third example. However, we assume here
isothermal condition. �e simulation result obtained by our
simulation is compared with the solution obtained by a
completely different approach, namely, the “discrete ap-
proach” [8, 9]. �e purpose here is to verify the accuracy of
the simulation approach presented in this work.

In our simulations, convective drying by a flow of ab-
solutely dry air at T∞� 20°C and atmospheric pressure is
applied. For T∞� 20°C, the imaginary wet bulb temperature
is 19.3°C. �e amount of adsorbed water is set to Sirr � 1% to
approach the case of no sorption in the discrete models.
Formulas for monopore-size distribution presented in
Section 4 are used to compute effective parameters of the
drying model with three different distributions (r0± σ0):
100± 5 nm, 100± 10 nm, and 100± 25 nm. Similar to the
third example, the capillary pressure (Pc), the absolute
permeability (K), and the relative permeability of liquid (kw)
and gas (kg) phases are computed by using formulas (44) and
(48)–(50), respectively. More details on the simulation using
the discrete approach can be found in [41].

�e numerical results are presented in Figures 15 and
16 by plotting the normalized drying rate versus saturation
and by plotting the saturation profiles at the end of the first
drying period. Note that, in Figure 15, the normalized

evaporation rate _v is dimensionless and is defined as the
ratio of the evaporation rate ( _mv) to the evaporation rate of
the first drying period ( _mv,I): _v � _mv/ _mv,I. From the nu-
merical results, it is observed that the continuous approach
leads to a slightly longer first drying period and slightly
flatter moisture profiles than the discrete approach.
However, the overall behaviour of the drying curves
demonstrates that the simulation using the continuous
approach agrees well with the simulation using the discrete
approach. �e nonsmooth curves of the discrete approach
are due to assumption that partially filled throats have no
resistance to vapour diffusion.

6. Conclusion

In this work, we revisit the continuous approach for studying
the drying problem of porous media. A ready-to-use system

Table 2: Absolute permeability as function of pore-size
distributions.

r0 ± σ0 (nm) K (10−15m2)

Case 1 100± 5 1.238 MonomodalCase 2 1000± 100 124.6
Case 3 100± 10; 200± 20 3.119 Bimodal
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Figure 12: Monomodal pore-size distribution ((a) 100± 5 nm) and
bimodal pore-size distribution ((b) 100± 10 nm and 200± 20 nm).
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of governing equations is presented. �is system of
equations can be directly solved by many numerical tools
that are now available. By presenting the connection be-
tween the governing equations at the pore level and the

ones at the continuum level, the framework presented here
offers the possibility to modify the system of governing
equations in the case of need, for example to reflect the
different phenomena that are not yet taken into consid-
eration. By using the concept of bundle of capillaries, we
show that this concept can be used to investigate the
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Figure 13: Saturation profiles from left to right: (a) case 1 (100± 5 nm); (b) case 2 (1000± 100 nm); (c) case 3 (100± 10; 200± 20 nm).
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influence of the microstructure on drying behaviour of
porous media.
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