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*e consumption of fossil fuels has exponentially increased in recent decades, despite significant air pollution, environmental
deterioration challenges, health problems, and limited resources. Biofuel can be used instead of fossil fuel due to environmental
benefits and availability to produce various energy sorts like electricity, power, and heating or to sustain transportation fuels.
Biodiesel production is an intricate process that requires identifying unknown nonlinear relationships between the system input
and output data; therefore, accurate and swift modeling instruments like machine learning (ML) or artificial intelligence (AI) are
necessary to design, handle, control, optimize, and monitor the system. Among the biodiesel production modeling methods,
machine learning provides better predictions with the highest accuracy, inspired by the brain’s autolearning and self-improving
capability to solve the study’s complicated questions; therefore, it is beneficial for modeling (trans) esterification processes,
physicochemical properties, and monitoring biodiesel systems in real-time. Machine learning applications in the production
phase include quality optimization and estimation, process conditions, and quantity. Emissions composition and temperature
estimation and motor performance analysis investigate in the consumption phase. Fatty methyl acid ester stands as the output
parameter, and the input parameters include oil and catalyst type, methanol-to-oil ratio, catalyst concentration, reaction time,
domain, and frequency. *is paper will present a review and discuss various ML technology advantages, disadvantages, and
applications in biodiesel production, mainly focused on recently published articles from 2010 to 2021, to make decisions and
optimize, model, control, monitor, and forecast biodiesel production.

1. Introduction

Fossil fuel, the most popular fuel with an essential role in
developing economy and politics in both established and
developing countries, has been a common industrial energy
source for several decades because of its perfect properties
combination like easy transportability, versatility, accessi-
bility, and costly prices [1–3]. Although many undiscovered
oil reserves remain in geological structures and rich un-
conventional oil reservoirs like tar sands, heavy oil, and oil
shale indicate a suitable possibility of commercially viable
resources, they are nonrenewable and limited. *e world
energy demand is assumed to reach a 56% growth between
2010 and 2040; hence there is a dire need for a sustainable

alternative energy resource [4–6]. In addition to resources
limitation, fossil fuel consumption for economic and in-
dustrial activities causes many challenges like air pollution,
global warming, environmental deterioration, health
problems, global climate change issues, and emitting
greenhouse gas (GHG) in the entire world [7]. *e energy
crisis followed by high dependence on fossil fuels, increasing
resource fluctuation, and environmental challenges exac-
erbated the resources ending-up concern and leading the
world towards eco-friendly energy resources to assure a
sustainable energy supply and meeting the escalating energy
requirements from a renewable source [8–12]. Fossil fuel
production will not suddenly stop and remains a universal
energy resource, but scientists try to obtain low carbon
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footprint energy [13]. Biofuels, hydrogen, compressed nat-
ural gas, liquefied petroleum gas, and alcohol have enough
potential to become alternative energy sources [14–16].

A study was performed on renewables to choose the best
alternative energy where bioenergy, today’s largest renew-
able energy resource, presented great potential in addressing
climate change and global energy issues [17]. Biofuel in-
cludes biodiesel, bioethanol, and biogas, obtained from
biomass resources, which can be applied instead of fossil
fuels due to integrating enhanced energy security, envi-
ronmental benefits, availability, renewability, and sustain-
ability to produce various energy sorts like electricity, power,
and heating or to sustain transportation fuels [6, 16, 18–22].
Figure 1 illustrates the research trend in the biofuels field.
*e number of published documents has increased sharply
from 2002 till 2020. Since 2016 a decrease in the growing
number of articles was observed; however, it is still
progressing.

Among all sustainable alternatives to fossil fuel, biodiesel
is a suitable choice for diesel engines due to lower engine
emissions (41% less greenhouse emission), physical and
chemical properties advantages, and no need for significant
modifications [23–26]. Biodiesel and petrodiesel are miscible
in any ratio, which leads to the use of their combination
rather than pure biodiesel, not only in developed countries
such as *e United States, France, Italy, and Germany, but
also in developing countries such as Malaysia, Brazil,
Indonesia, and Argentina [7, 27–29]. Biodiesel production
capacity is an attractive growing trend; the automotive
biofuels market is growing dramatically; it has engaged
many scientists and researchers to satisfy the ever-rising
energy supply demands by producing alternative fuels
[25, 30]. As shown in Figure 2, the share of renewable energy
in generating power is expected to have a 23% increase by
2030.

*e challenge is to identify the biofuel production
process outputs relationship as a function of process pa-
rameters, then maintaining and optimizing effective pa-
rameters in an optimum range to ensure high quality and
productivity [13, 32]. Various transesterification associated
raw materials parameters and reaction conditions like
temperature, oil and catalyst type, reaction duration, oil to
alcohol molar ratio, and catalyst concentration can affect
productivity and production process response features, es-
timated through physical experiments [13, 33–37]. Despite
the necessity of experiments, the prediction of factors effect
is not successful due to the underlying nonlinear relations
between the responses and parameters and also plenty of
process parameters; therefore, high accurate experimental
modeling methods like machine learning-based prediction
and artificial intelligence (AI) techniques are beneficial to
overcome experiment methods limitations and traditional
computing techniques challenges [13, 38–40].

*ey provide mathematical models or independent
modeling approaches according to the nature of the process
to prevent waste of time and money and, furthermore, to
study a wide range of physical and chemical process pa-
rameters separately and generate experimentally inaccessible
details [10, 12, 41–44].

2. An Introduction to AI and ML

AI is the ability of machines to simulate the human brain
activities, applied through different computer science
techniques, like heuristic algorithms, machine learning, and
fuzzy logic [45–47]. It is chiefly employed to predict biomass
and biofuel properties, bioenergy end-use systems perfor-
mance, conversion process performance, supply chain
modeling, and optimization. Recommended optimization
methods are response surface methodology (RSM), genetic
algorithm, and Taguchi method; in the meantime, artificial
neural network (ANN), regression, and analytical methods
are trending modeling methods in internal combustion
engine research [48–51].

ML algorithms evolved with deep learning, reinforce-
ment learning, transfer learning, and extreme learning are
utilized in industrial processes to optimize, monitor, and
control the systems, forecast maintenance, diagnose mis-
takes, and notify process attacks [2, 52–56]. Linear regres-
sion, Principal Component Analysis (PCA), Decision Trees
(DT), Genetic Algorithms (GA), K-nearest Neighbor
Classifier (KNN), Random Forests regression (RF), Artificial
Neural Networks (ANN), and Support Vector Machines
(SVM) are some powerful machine learning algorithms [57].
Machine learning refers to a programmed process using
consecutive iterations based on inputs of external variants,
gradually updating problem-solving capability and self-
improvement to solve the study’s complicated questions
[57, 58].
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Figure 1: *e number of biodiesel research publications (data
extracted from http://www.sciencedirect.com).
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Figure 2: Share of renewables in power generation in the Sus-
tainable Development Scenario, 2000–2030 [31].
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AI applications to bioenergy systems are limited; how-
ever, studies indicate its great potential in addressing bio-
energy development obstacles. Former reviews have
separately focused on either a single AI approach or a part of
bioenergy systems [2, 44, 48, 49, 59]. Due to the wide variety
of AI techniques, conversion technologies, bioenergy
products, biomass types, and supply chain design, a com-
prehensive review of AI applications throughout biomass
agriculture to the consumption phase is necessary. *is
review intends to recommend advanced statistical methods
and current popular machine learning algorithms conflux to
obtain overall pragmatic models as an experiential
agreement.

3. An Introduction to Biodiesel Production

Biodiesel is a clean, aromatic, biodegradable fatty acid
methyl ester derived from waste oils, edible and nonedible
vegetables oil, and animal fat (i.e., chicken and mutton
tallow) as an alternative fuel source for diesel engines to
reduce engine emissions, becoming a global mainstream for
transportation [34, 45, 51, 60–62]. In addition to alternative
transport fuel, biodiesel has other potential usages such as
heating oil, plasticizers, power production, high boiling
absorbents for cleaning gaseous industrial emissions, lu-
bricants, and various solvent applications. Biodiesel has
similar properties to diesel fuel, for instance, cetane number,
viscosity, energy content, and phase variations. Biofuels can
provide a new business for agricultural products and revi-
talizing rural areas [63].

3.1. Advantages

(i) Sulfur-free
(ii) Releasing fewer emissions
(iii) Profitable Physicochemical properties such as

density, cetane number, flash point, viscosity, and
lubrication

(iv) More complete combustion because it is highly
oxygenated

(v) Promoting energy sufficiency [42].

3.2. Disadvantages

(i) Less energy content
(ii) Releasing more nitrogen oxides
(iii) Higher maintenance cost
(iv) High cost of establishment
(v) Separation and purification stage for product
(vi) Undesirable side reactions [51, 64]

Easy production from available renewable feedstock
makes it more attractive. Nonedible tree seed oil resources
are easily found everywhere, even in nonappropriate food
crops land. Pure biodiesel, or a mixture of commercial diesel
and biofuel, can be used in unmodified diesel engines due to
the environmental sustainability advantages [51, 65]. Several

countries command to add biodiesel into all diesel fuels to
encourage people to use biodiesel [63, 66].

*e most common reaction in the biodiesel production
process is transesterification, which uses heterogeneous or
homogeneous acid and base catalysts to improve trans-
esterification under mild reaction conditions. Sodium hy-
droxide and potassium hydroxide (NaOH, KOH) are regular
alkaline catalysts that can provide higher biodiesel yield
[67–70]. *e transesterification reactions among the oil (i.e.,
canola oil, Simarouba glauca oil, soybean oil, sunflower seed
oil, 'evetia peruviana seed oil, palm oil, etc.) and alcohols
(i.e., methanol, ethanol) produce biodiesel [62, 71–76]. It is a
costly energy-consuming production process which results
from product purification and separation, requiring a pre-
treatment step to reduce water and free fatty acids over a
long period [2]. Low esterification efficiency arose from
undesired side reactions. Figure 3 illustrates the trans-
esterification reaction for biodiesel production and input
and output variables.

Various transesterification associated parameters and
reaction conditions like temperature, oil and catalyst type,
reaction duration, oil to alcohol molar ratio, and catalyst
concentration affect productivity, and production process
response features significantly affect transesterification re-
action [37, 78]. Statistical tools and many physical experi-
ments are necessary to predict reaction responses and
interactions to each parameter due to optimizing trans-
esterification [36, 42].

4. ML Methods Application in Biodiesel
Life Cycle

Producing biodiesel from renewables includes the following
steps: extracting oil, pretreating feedstock, transesterification
reaction, separating products, recovering unreacted alcohol,
neutralizing glycerin, washing, and purification of biodiesel
[70, 79]. In this section, we attempted to categorize and
review ML technology applications in 5 crucial steps of
biodiesel production, including soil, feedstock, production,
consumption, and emissions [57, 80].

ML technology can be beneficial in all five stages to
enhance the quality of estimations. *ere are plenty of re-
search reviews on applications of machine learning tech-
nology in modeling biodiesel-fueled engines and
combustion approaches; therefore, this study mainly focuses
on the first three stages. Figure 4 shows an overview of the
biodiesel production trend, inspired by Aghbashlo et al. [79]
and Ahmad et al. [57].

4.1. ML Applications in Soil Stage. Numerous studies on the
plot and tree cases applying ML have been reported in the
soil stage of the biofuels’ life cycle. *e most common ML
methods in the soil stage are Random Forest (RF), Gaussian
Process Model (GPM), and Support Vector Machines
(SVM).

Sorghum crop is beneficial for producing health-promoting
food from seeds, fodder, and biofuels from aboveground
biomass [81]. To predict future trends in sorghum bicolor yield,
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Huntington et al. [82] used the RF approach under four
greenhouse gas (GHG) emission scenarios and two different
watering regimes. *e most valuable sorghum productivity
predictors were vapor pressure deficit, time, and irrigation
practices.*eRFmodel obtained a rational prediction accuracy
by uniquely training and classifying data samples by year and
country. Habyarimana et al. [81] performed a study based on
sorghum fields satellite imaging to predict sorghum biomass
yield using various ML methods like radial basis kernel (SVM-
R), nonlinear kernel (SVM-G), PCA discriminant analysis
(PCA-DA), PLS discriminant analysis (PLS-DA), SVM with
linear classifier (SVM), radial basis kernel with polynomial
basis kernel (SVM-P), simple linear model, RF, ANN, eXtreme
Gradient Boosting-XgbLinear method (GBL), eXtreme

Gradient Boosting-xgbDART method (GBD), and eXtreme
Gradient Boosting-xgbtree method (GBT), where the eXtreme
Gradient Boosting-xgbtree method performed better results.

Gleason et al. [83] compared the Linear Mixed-effects
Regression (LME), Cubist, Support Vector Regression
(SVR), and Random Forest (RF) methods to predict biomass
in a moderately dense forest with 40 to 60% canopy closure
where SVR performed the most accurate biomass model. Lee
et al. [84] conducted a four-scenario context emissions-
based study using Boosted Regression Tree (BRT) model to
estimate corn production environmental impacts from 2022
to 2100, where the BRT model achieved a 0.82 estimating
eutrophication impacts correlation coefficient and 0.78 in
global warming. Yang et al. [85] applied Gaussian Process
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Model (GPM), a Bayesian inference method in a two-stage
machine learning method, to achieve more accurate esti-
mations. First of all, GPM crops yield downscaling and then
an RF model estimated yield. Soil characteristics, solar radi-
ation, average precipitation, wind speed, and temperature are
usually input parameters, and the output parameters are future
life cycle environmental impact and biomass yield. Table 1
provides a summary of soil phase studies in order to un-
derstand the effective method in each study. To form this table,
various research papers have been used to extract data [81–85].

4.2. ML Applications in Feedstock. According to machine
learning applications in the feedstock phase studies, ANN,
multiple linear regression, statistical regression, and multiple
nonlinear regression models are the most popular methods.
Blend composition, temperature, mixing speed, and mixing
time are typical input variables, and the output variables are
viscosity, flash point, oxidation stability, density, methane
fraction, higher heating values, and cetane number. Mairizal
et al. [86] examined biodiesels generated from various re-
sources such as walnut oil, sunflower oil, peanut oil, rapeseed
oil, hydrogenated coconut oil, hydrogenated copra oil, and beef
tallow to predict higher heating value, viscosity, flashpoint,
biodiesel’s oxidative stability, and density by using multiple
linear regressions. Results showed that prediction performance
increases by adding PU/MU (mono- and polyunsaturated fatty
acids balance) as an independent parameter.Model inputs were
feedstock polyunsaturated fatty acids content, iodine value, and
saponification value. In another study on various biodiesels
generated from fatty acid, the ANN method was applied to
estimate cetane number, density, kinematic viscosity, and
flashpoint [87]. Average absolute deviation and model’s esti-
mation accuracy are showed in following values, respectively:
cetane number (1.637%; 96.6%), flash point (0.997%; 99.07%),
kinematic viscosity (1.638%; 95.80%), and density (0.101%;
99.40%). Tchameni et al. [88] used multiple ANN and non-
linear regression (MNLR) to forecast waste vegetable oil
rheological properties. Results presented ANN model superi-
ority over the MNLRmethod performance. Using single linear
regressions andmultiple linear regressions to estimatemethane
yield in biomass structural components revealed a quite
considerable correlation between methane biomass’ potentials
and chemical composition. Table 2 provides a summary of
feedstock phase studies [86–88] to classify the efficient method
and study purposes.

4.3. ML Applications in Production. In the production stage,
choosing a proper ML method depends on produced biofuel
type (i.e., biodiesel, biogas, and biohydrogen). Based on
studies, machine learning applications in biodiesel study can
be organized into four sections: both quality and yield
optimization, estimating quality, estimating yield, estimat-
ing, and optimizing process conditions and efficiency [57].

4.3.1. Quality Prediction. *e prevailing ML method for
quality prediction is ANN developed by the regression
model, using reaction temperature, reaction time,

calcination temperature, pressure, and flow rate as input
variables and FAME (fatty acid methyl ester) content, vis-
cosity, composition, quantity, cetane number, and density
stand as output variables.

Soltani et al. [89] used an artificial neural network
(ANN) to model various reaction parameter effects, i.e.,
calcination temperature, metal ratio, reaction time, and
reaction temperature in a palm fatty acid (PFAD) to esters
distillation, using sulfonated mesoporous zinc oxide
SO3HZnO catalyst. Assessed optimum conditions for
predicting a 56.41 nm SO3H–ZnO nanocrystalline catalyst
size were 160°C reaction temperature, 700 calcine tem-
perature, and 0.004 mole of Zn concentration during
18min reaction time. Zinc concentration and the reaction
time are recognized as the most and least effective pa-
rameters, respectively.

Ahmad et al. [90] used an ensemble learning method like
Least Squares Boosting (LSBoost) integrated with the
polynomial chaos expansion method (PCE) to predict
quantity, quality, flow rate, the cetane number of fatty acid
methyl esters (FAME), and composition in the vegetable oil-
based biodiesel production process. Predicted values showed
1% uncertainty in all process parameters using mean ab-
solute deviation percent (MADP), showing high accuracy of
the proposed model in outcomes prediction and quantifi-
cation uncertainty effect in the process. During the biodiesel
production process from vegetable oil, the PCA method was
applied to estimate relative density, viscosity, and percentage
of vegetable oil conversion to methyl esters. Using PCA is an
effective technique to differentiate and discriminate between
pure biodiesel, pure diesel, waste oil, and their mixture.

Sarve et al. [91] used artificial neural network (ANN) and
response surface methodology (RSM) based on a central
composite design (CCD) to predict fatty acid methyl ester
(FAME) content in biodiesel production from sesame oil,
using barium hydroxide as a basic catalyst. *e best possible
combination of optimum condition values is methanol-to-
oil molar ratio (6.69 :1), reaction time (40.30min), catalyst
concentration (1.79wt.%), and (31.92°C) temperature, which
resulted in 98.6% of FAME content. *e study revealed that
catalyst concentration has the main influence on the FAME
contents in the final product. ANN has a better capability in
predicting the FAME content due to better correlation
coefficient, root mean square error (R2), standard error of
prediction (SEP), and relative percent deviation (RPD)
values compared to RSM.

4.3.2. Yield Estimation. Several studies concentrated on ML
methods application in predicting biodiesel synthesis from
nonedible oils like anaerobic sludge, castor oil, and jatropha-
algae.

Kumar et al. [92] trained an ANN model with Lev-
enberg–Marquardt (LM) algorithm and backpropagation
learning algorithm to predict biodiesel yield in the trans-
esterification process, using jatropha-algae oil blends as
inputs. *e R-square value of 0.9976 compared with the
experimental results confirmed the competency of the ANN
technique.
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Banerjee et al. [93] used the ANN and CCD model in
castor oil and methanol transesterification using H2SO4 acid
catalyst to predict the % fatty acid methyl ester content.*ey
also devised a kinetic model using the experimental and
computed data. Also using ANN-based predicted data and
the experimental outputs, the rate constants of a kinetic
model have been estimated. *e temperature, catalyst
concentration, and methanol-to-oil molar ratio are input
parameters. *e ANNmodel predicted a % fatty acid methyl
ester yield with an 8% deviation.

Kanat et al. [94] used the ANN method and multilayer
neural networks topology to model and estimate the an-
aerobe thermophilic upflow sludge blanket digester biodiesel
and biogas production rate. Trained and tested experimental
data were evaluated in both steady conditions and abnormal
conditions; a high correlation coefficient showed ANN
optimistic results for online monitoring of the thermophilic
reactors. In a jatropha-algae oil blend study, ANN per-
formed better than RSM [95].

A biodiesel synthesis process from waste goat tallow
containing remarkable free fatty acids (FFAs) has been
modeled by RSM and ANN to identify optimum parametric
values that resulted in maximum FA conversion. Under
optimal conditions, response surface methodology (RSM)
and ANN presented similar predictability performance [96].

In another study, a linear regression (LR) and ANN
model based on a Levenberg–Marquardt learning algorithm
were developed for predicting soybean oil-based biodiesel
transesterification yield, where the ANN performed better
than LR [97]. Various conditions of soybean oil to biodiesel
transesterification process have been studied to predict
biodiesel yield [39]. In this study, the artificial neural net-
work is applied with a multilayer feedforward neural net-
work and kinetic models. *e results showed the ANN
model superiority, accuracy, and clarity over the kinetic
modeling method. Guo et al. [98] used an adaptive neu-
rofuzzy interference system (ANFIS) method, based on a
statistical learning theory to estimate the biodiesel

production yield as a function of methanol/oil ratio, pres-
sure, reaction time, and temperature in the noncatalytic
supercritical methanol (SCM) method. *e high value of R-
squared results indicates the ANFIS model’s impact on
biodiesel yield prediction. Mostafa et al. [35] compared
adaptive neurofuzzy inference system (ANFIS) and response
surface methodology (RSM) to predict and simulate the
efficiency of these approaches in modeling the trans-
esterification yield. Box-Behnken design of RSM and two
ANFIS approaches (hybrid and backpropagation optimi-
zation methods) investigated independent variable’s impact
on the conversion of fatty acid methyl esters (FAME). *e
considerable R2 value was 0.9669 for RSM compared with
0.9812 and 0.9808 for two ANFIS models indicating the
ANFIS models superiority against the RSM model for
modeling and optimizing. Maran et al. [49] compared ar-
tificial neural network (ANN) and response surface meth-
odology (RSM) efficiencies to predict and simulate
muskmelon oil-based biodiesel yield. Central composite
rotatable design CCRD investigated the ANN model against
the RSM model. Catalyst concentration, reaction time, re-
action temperature, and methanol-to-oil molar ratio affect
FAME conversion by Multilayer Perceptron (MLP) neural
network and RSM. *e R2 value for RSM was 0.869, and it
was 0.991 for ANN models, showing the ANN model su-
periority against the RSM to model and optimize FAME
production.

4.3.3. Quality and Yield Estimation. Numerous studies have
focused on biodiesel quality and yield optimization. Boba-
dilla et al. [77] used a set of Support Vector Machines (based
on radial basic function kernel, linear kernel, and polyno-
mial kernel) and linear regression methods to predict and
improve biodiesel yield of particular properties like tur-
bidity, higher heating value (HHV) with decreased viscosity,
and density. Appling genetic algorithms to the regression
models obtained more accurate biodiesel optimization

Table 1: Various ML applications in the soil phase of biodiesel production outline.

Reference Applied models Field Results

[81] GBL, GBD, GBT, ANN, RF, SVR, SVM, SVM-P, SVM-R, SVM-G, PCA-
DA, PLS-DA Predict sorghum crop yield GBT

[82] RF Predict sorghum crop yield RF
[83] LME, SVR, RF Predict biomass yield in forest SVR

[84] BRT Estimate corn production environmental
impacts BRT

[85] GPM, RF Land productivity GPM

Table 2: Various ML applications in the feedstock phase of biodiesel production outline.

Reference Applied models Aim

[86] Multiple linear regressions
To predict HHV, viscosity,
FP, oxidative stability,

density

[87] ANN To estimate C, density,
kinematic viscosity, FP

[88] ANN, MNLR, single and multiple linear regressions To estimate oil rheological properties
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scenarios to identify the best combination of independent
and dependent variables.

Cheng et al. [99] developed a GA-ESIMmethod which is
the combination of Evolutionary Support Vector Machine
Inference Model (ESIM) and K-means Chaotic Genetic
Algorithm (KCGA) to predict precisely and optimize bio-
diesel mixture properties.*ey found GA-ESVM better than
ANN-GA and SVM. Obtained results demonstrate that the
GA-ESIM model performance in prediction is more accu-
rate than other AI-based tools.

Sivamani et al. [100] used ANN-GA-based and RSM
models to predict and optimize the biodiesel yield in
Simarouba glauca transesterification. *ey used a gas
chromatography-mass spectroscopic (GC-MS) analysis oil
to observe free fatty acid (FFA) level, and alcohol ratio,
reaction time, and reaction temperature were input
variables.

Ighose et al. [101] focused on an RSM optimization tool
alongside the ANFIS model to predict and optimize the
biodiesel yield in the 'evetia peruviana seed oil trans-
esterification process. In addition to ANFIS and RSMmodel,
using GA resulted in higher'evetia peruvianamethyl esters
yield (TPME) in less time. *e results determined the pri-
ority of ANFIS prediction capability over the RSM model.
Dhingra et al. [102] applied ANN and GA combination in
polanga oil-based biodiesel production to predict and op-
timize reaction variables to maximize the transesterification
process. *e input variables are the ethanol-to-oil molar
ratio, the reaction temperature, the catalyst concentration,
the reaction time, and the stirring speed. Outputs were
combined with GA to optimize reaction conditions resulting
in 92% by weight biodiesel yield.

4.3.4. Estimation and Optimization of Process Conditions and
Efficiency. Karimi et al. [103] implemented a multiobjective
analysis, using RSM and ANN to estimate FAME content
and exergetic efficiency in waste cooking oil trans-
esterification (WCO) for biodiesel production. Water con-
centration, reaction time, immobile lipase, and methanol
concentration have been optimized to achieve 95.7% pre-
dicted FAME content. Corresponded input variables are the
35% catalyst concentration, 12% water content, methanol-to
WCO molar ratio of 6.7, in 20 hours, produced 86% FAME
content, and 80.1% exergy efficiency.

Patle et al. [104] used nondominated sorting GA-II
(NSGA-II) multiobjective optimization to simulate and
compare palm waste cooking oil esterification and trans-
esterification reactions and optimizing heat duty, profit, and
organic waste. As the heat duty increased, the profit im-
proved, which increases the amount of organic waste.
Rouchi et al. [105] used a Multivariate Curve Resolution
Alternative Least Square (MCR-ALS) to process analysis and
control the reaction parameters into the desired path.
Multiple Scatter Correction preprocessing technique and
MCR-ALS evaluate concentrations, the component’s type,
and spectra to obtain biodiesel production from the soybean
process. *e correlation coefficient and standard deviation
of residuals demonstrated the suitability of the MCR-ALS

method. Shukri et al. [106] used ANN to optimize the engine
performance, using a mixture of palm oil methyl ester and
diesel as fuel in a diesel engine. Both experimental results
and the ANN model showed better engine performance for
the biodiesel 10 percent blend (B10) diesel fuel and palm oil
blends due to the higher heating value and cetane number.

Aghbashlo et al. [107] developed an ANFIS model in-
tegrated with linear interdependent fuzzy multiobjective
(ALIFMO) approaches and nondominated sorting genetic
algorithm (NSGA-II) to optimize operating conditions as a
function of inputs. Input parameters were reaction tem-
perature, methanol/oil molar ratio, and residence time.
Optimization minimized normalized exergy destruction
(NED) and maximized functional exergy efficiency (FEE)
and universal exergy efficiency (UEE) output parameters
towards achieving the best conversion efficiency (CE), which
is more than 96.5% of biodiesel content. Applied ANFIS
models perfectly estimated the FEE, UEE, NED, CE pa-
rameters with an R2 ≈ 1.0.

Sarve et al. [108] compared ANN and RSM in biodiesel
production optimization concerning their analysis sensi-
tivity, predictivity and generalization capability, and para-
metric effects. 97.42% of fatty acid ethyl ester (FAEE)
content have been obtained at optimized temperature,
ethanol-to-oil molar ratio, initial CO2 pressure, reaction
time, and temperature, where the temperature was the most
effective. ANNmodel performed better results than the RSM
in mahua oil FAEE content predictions and data fitting.

In a biodiesel production process from vegetable oil,
Nicola et al. [80] employed a multiobjective GA optimiza-
tion to maximize important compounds’ purification and
minimize energy requirements by optimizing main pa-
rameters in the process. Input parameters to the process
model are reflux ratio, the mass flow rate of water, the water
temperature, flash temperature, the number of trays, and
dryer temperature. Among all optimized configurations, the
one which confirms the minimum specific energy con-
sumption and meets the biodiesel quality required standards
was detected. Noriega et al. [109] used group interaction
parameters (GIP) to predict and validate all present two-
phase equilibriums between liquids in the biodiesel pro-
duction system, including glycerol, low molecular weight
alcohols, water, fatty acids, and biodiesel. Results demon-
strated that the amount of carbon, hydroxyl groups, and
unsaturated bonds affect liquid-liquid equilibrium, and the
most efficient parameter was distributed component overall
mass fraction, afterward length of the alcohol chain.

López-Zapata et al. [110] used an Extended Kalman
Filter (EKF) and virtual sensors to measure and estimate
operating conditions variables, control performance, and
monitor the reaction. Performance analysis used alcohol,
triglycerides (TG), methyl ester, diglycerides (DG), glycerol
(GL), and monoglycerides (MG) concentrations to evaluate
jatropha oil-based biodiesel due to a minor number of
measurable variables, like PH and temperature. Fahmi and
Cremaschi [111] developed an ANN superstructure model
to recognize the optimum biodiesel production plant and
best operation conditions. *e ANN model was an effective
alternative for thermodynamics, unit operation, and mixing
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models, presenting a less complicated model for the syn-
thesis process. As mentioned before, Soltani et al. [89] used
ANN to model various reaction parameter effects, using
SO3HZnO catalyst. Assessed optimum conditions were
160°C reaction temperature, 700 calcine temperature, and
0.004 moles of Zn concentration through 18-minute reac-
tion time. Zinc concentration and the reaction time were the
most and the least effective parameter, respectively.

5. Conclusions

According to the machine learning applications in this
study, the most common ML methods in the soil stage are
Random Forest, Gaussian Process Model, and Support
Vector Machines. In the feedstock phase studies, ANN,
multiple linear regression, statistical regression, and mul-
tiple nonlinear regression models are the most popular
methods. Blend composition, temperature, mixing speed,
and mixing time are typical input variables, and the output
variables are viscosity, flash point, oxidation stability,
density, methane fraction, higher heating values, and cetane
number. *e prevailing ML method for quality prediction is
ANN developed by the regression model, using reaction
temperature, reaction time, calcination temperature, pres-
sure, and flow rate as input variables, and FAME content,
viscosity, composition, quantity, cetane number, and density
stand as output variables. *e prevailing ML method for
yield estimation is ANN accompanied by ANFIS, using
methanol-to-oil molar ratio, reaction time, catalyst con-
centration, total volatile fatty acid of the effluent, and
temperature, while % FAME yield, biogas production rate
estimation, biodiesel yield, and biodiesel production are
regular output variables. *e prevailing ML method in
optimizing yield and quality section is ANN accompanied by
GA-based ANFIS and SVM. *e top five main frequently
used input variables are methanol-to-oil molar ratio, stirring
speed, catalyst concentration, reaction time, and reaction
temperature. *e most common output variables are FAME
yield, biodiesel yield, high heating value density, and oil’s
final acid value. *e dominant ML method in the process
efficiency and optimization portion is ANN accompanied by
ANFIS. Frequently used input variables are reaction time,
concentration, water content, methanol-to-oil molar divi-
sion, and temperature, while CE, universal exergy efficiency
(UEE), FAME content, biodiesel yield, and functional exergy
efficiency are output variables. ANN, ANFIS, ELM, and
SVM Machine Learning methods were employed to study
consumption, engine performance, and emission.

Nomenclature

ALIFMO: Artificial linear interdependent fuzzy
multiobjective optimization

AI: Artificial intelligence
ANFIS: Adaptive neurofuzzy interference system
ANN: Artificial neural networks
ALS: Alternative least square
B10: Biodiesel 10 percent blend

BRT: Boosted regression tree
CCD: Central composite design
CE: Conversion efficiency
CN: Cetane number
DA: Discriminant analysis
ELM: Extreme learning machine
FAME: Fatty acid methyl ester
FAs: Fatty acids
FEE: Functional exergy efficiency
FP: Flash point
GA: Genetic algorithm
GBD: eXtreme Gradient Boosting-xgbDART
GBL: eXtreme Gradient Boosting-xgbLinear
GBP: eXtreme Gradient Boosting-xgbtree
GBT: Gene expression programming
GHC: Greenhouse gas
GIP: Group interaction parameters
GPM: Gaussian process model
HC: Hydrocarbon
IAV: Initial acid value of vegetable oil
K-ELM: Kernel-based extreme learning machine
KV: Kinematic viscosity
LLE: Liquid-liquid equilibrium
LME: Linear mixed-effects
LR: Linear regression
LS: Least square
MAPE: Mean absolute percentage error
MCR: Multivariate curve resolution
ML: Machine learning
MNLR: Multiple nonlinear regression
MO: Mustard oil
MSE: Mean squared error
PU/MU: Mono- and polyunsaturated fatty acids balance
NED: Normalized exergy destruction
PAT: Process analytical technologies
PCA: Principal component analysis
PLS: Partial least square
RB-FNN: Radial basis function neural network
RF: Random forest
RFM: Random forest model
RLS: Recursive least squares
RSM: Response surface methodology
SVM: Support Vector Machines
SVR: Support vector regression
UEE: Universal exergy efficiency
UHC: Unburned hydrocarbons
VCR: Variable compression ratio.
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tematic review of deep learning and machine learning
models in biofuels research,” in Proceedings of the Interna-
tional Conference on Global Research and Education,
Springer, Balatonfüred, Hungary, September 2019.

[7] A. K. Agarwal, “Biofuels (alcohols and biodiesel) applications
as fuels for internal combustion engines,” Progress in Energy
and Combustion Science, vol. 33, no. 3, pp. 233–271, 2007.

[8] P. Zelenka, W. Cartellieri, and P. Herzog, “Worldwide diesel
emission standards, current experiences and future needs,”
Applied Catalysis B: Environmental, vol. 10, no. 1, pp. 3–28,
1996.

[9] M. Ben Jebli and S. Ben Youssef, “*e role of renewable
energy and agriculture in reducing CO 2 emissions: evidence
for North Africa countries,” Ecological Indicators, vol. 74,
pp. 295–301, 2017.

[10] R. Concu, M. N. D. S. Cordeiro, C. R. Munteanu, and
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