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-e use of ionic liquids (ILs) for biomass pretreatment to produce cellulose-rich materials (CRMs) has been well proven. In this
research, due to the wide range of applications and ease of using artificial intelligence procedures, on the basis of the algorithm of
stochastic gradient boosting (SGB) decision tree, an artificial intelligence approach is proposed to estimate the properties of
cellulose-rich materials (CRMs). -at being the case, the dataset of the empirical output values was gathered and was randomly
broken down into datasets for testing and training.-ese results show that the best forecasting tool for calculating the properties of
CRMs is the developed model. Furthermore, the accuracy of the databank of the biodiesel target values has been examined. In
contrast, the influences of model contributed variables on the output have been examined as a new issue. It reveals that the most
influencing variable in determining the properties of CRMs is the cellulose enrichment factor.-erefore, this research provides an
innovative and accurate tool for predicting the properties of CRMs and sensitivity investigation on effective parameters to help
investigators developing the optimized process.

1. Introduction

-e source of many environmental issues, including rising
greenhouse gases, global warming, and air pollution, is the
increasing consumption of fossil fuels in the world [1–3].
Biomass as carbon-neutral and low-emission fuels, which
are considered renewable sources, has been considered as a
suitable alternative to fossil fuels in recent years [4–6]. -e
components of lignocellulosic biomass include cellulose,
hemicellulose, and lignin which contain about 40–60%w/w,
15–30%w/w, and 10–25%w/w, respectively. -ese three
components weave together, forming a strong cell wall that
leads to the formation of recalcitrant biomass. -e main
structure of the biomass skeleton is formed by the accu-
mulation of hard cellulose microfibers, and the inside space
is filled by amorphous hemicelluloses and lignin. Eventually,
all the components are joined together by covalent and

hydrogen bonds [7]. Studies have shown that lignin is the
main factor preventing the deconstruction of lignocellulosic
biomass that leads to the conversion of fibrous cellulose into
biochemicals and/or bio-fuels as well. When lignin is
extracted and along with that, hemicellulose decreases, the
available surface area in cellulose increases, creating areas
favorable to reactions such as thermal conversion, bio di-
gestibility, and hydrolysis [8, 9].

Ionic liquid solvents are commonly used to extract lignin
from a large number of lignocellulosic biomass types in
pretreatment processes [10]. -e solid material obtained
from the abovementioned process is a cellulose-richmaterial
(CRM) and can be upgraded into high-quality biochemical
or fuels through processes such as fermentation [11], tor-
refaction [12], and pyrolysis [13].

-ere are three different solvent systems for the ionic
liquid solvents mentioned which include ionic liquids (ILs),
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deep eutectic solvents (DESs), and IL-containing solvent
[14]. Since IL is pure salt, it has a low melting point, so its
physical and chemical properties can be optimized for the
intended purpose by making small changes in its anion and
cation composition [15]. Due to the special properties of IL
solvent, various properties can be enumerated for it, such as
low vapor pressure, nonflammability, and thermal and
chemical stability [16].

Moreover, recent studies have revealed that ILs which
contain organic solvents can reduce the viscosity of IL by
promoting the dissociation of their anion and cation and
lead to further solubility of lignocellulosic biomass [17, 18].
-e chemical composition of DES includes a number of
chemical components in the form of hydrogen bond ac-
ceptor (HBA) and hydrogen bond donor (HBD), and the
melting point of DES is significantly lower than the HBA and
HBD components that form it [19]. Also, the release of the
biomass recalcitrance is facilitated by the strong hydrogen
bond [20].-e number of papers published on ILs in the role
of pretreatment of biomass has been increased in recent
years [21].

Artificial intelligence methods for understanding com-
plex and multidimensional relationships in biomass pre-
treatment processes using ILs have more advantages than
regression and traditional modeling, and machine learning
(ML) is highly regarded among the artificial intelligence
methods [10, 22, 23].

One of the advantages of ML is that it can learn and
detect patterns automatically from a large dataset without
the need for explicit programming. ML has made it simply
possible to evaluate the importance of all input features
which helps to better understand the system, leading to
the model interpretation-based design of experiments.
Recent studies have used ML in upgrading and conversion
processes including hydrothermal, torrefaction, pyrolysis,
and fermentation [24–30]. Gradient boosting (GB),
support vector machines (SVMs), and random forest (RF)
are among the algorithms that have been widely used in
the literature. -e algorithms performed well in pre-
dicting and provided desirable values of two important
indicators, R2 (regression coefficient) and RMSE (root
mean square error). Low values of R2 and RMSE have been
reported at around 0.90. Nevertheless, the feature number
was less than 15, which is different from the biomass
pretreatment system with ILs. One of the challenges we
faced in our system was also describing features specifi-
cally for ILs. Xu et al. used an explicit inner relationship
between the main variables of DESs to describe the
characteristics of each DES, which showed a clear effect on
the pretreatment of lignocellulosic biomass [31]. Physical
and chemical parameters related to hydrogen bonds in
DESs were also analyzed by partial least square (PLS) and
principal component analysis (PCA). Cellulose content
and solid recovery in CRMs are among the most im-
portant properties in the biomass pretreatment process
with ILs. However, the application of ML in evaluating
and predicting feature importance for them has not been
reported yet. -erefore, in this study, we intend to use
machine learning algorithms to predict cellulose

enrichment factor and solid recovery in CRM, which is the
result of biomass pretreatment with ILs. -e dataset used
in our research includes 23 features related to raw biomass
characteristics, IL identities, IL treatment process con-
ditions, and catalyst loading.

-e SGB decision tree approach was considered and
focused on for modeling this work. Visualization and in-
terpretation of high-importance features by plotting their
impact patterns in the form of statistical analyses led to a
better understanding of the multidimensional relationships
in the biomass pretreatment system with ILs. Finally, dif-
ferent sets of input features were examined to explore their
effect on the predictive power of the model.

2. AHistory of the Stochastic Gradient Boosting
(SGB) Decision Tree

An algorithmic boosting function enhances a predictive
function’s accuracy. -is technique begins by repeatedly
executing the function, followed by merging each function’s
throughput with weights to reduce prediction error.
Boosting, which applies to both regression and classification
issues, was developed during the last decade and is, thus,
considered among the most robust and recent learning al-
gorithms [32].

Friedman’s SGB technique [33] is regarded as an ad-
vanced functional approach and statistical study variation.
-is technique’s algorithmic function pertains to boosting
regression trees and calculates the sequence of basic trees
where residuals of predictors from its previous tree create
the subsequent one. Tree intricacy is determined by a single
split consisting of a single root node and two child nodes.
Data are then partitioned incrementally using an SGB ap-
proach. After then, for each partition, the distinction among
the measured values and remnants is determined. Following
that, the residuals are fitted to the tree node to create a new
partition, which will reduce the data’s residual variance in
the previously described tree sequence. By classifying each
statement using the most common technique, as a result, all
the trees produced throughout the process are accrued,
which reduces the SGB’s responsiveness for the imbalanced
sets of data, deficient training set, and anomalies.

Additionally, ensemble education techniques such as
bagging, boosting, and related methods aggregate projec-
tions derived from several designs. -e techniques are
significantly effective in artificial intelligence and the ex-
traction of information [34]. -e techniques include the
following:

f(x) � a0 + 􏽘
k

k�1
akfk(x) , (1)

where k and fk(x) denote each of the basic learner sizes and
the ensemble, respectively, and numerous functions from x,
being input variables originating from the training set.

Ensemble estimation F(x) is a linear mixture from all
projections from the basic ensemble learners, where the
parameters specifying this linear combination are ak􏼈 􏼉

k

0.
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Boosting predicts F(x) derived from the preceding
equation once the additive enhancement is used via the
subsequent formula

f(x) � 􏽘
k

k�0
βkg x; ak( 􏼁, (2)

where g(x; ak) and a � (a1a2, . . .) are denoted as simple
functions of x. A progressive method is utilized to fit the
parameters ak􏼈 􏼉

k
0 and to expand coefficients βk􏼈 􏼉

k
0 to the

training data.
-is procedure begins with the calculation of an esti-

mation F0(x), followed by k � 1, 2, . . . , K.

βk, ak( 􏼁 � argminβ,a 􏽘

N

i�1
L yi, fk−1 xi( 􏼁 + βg xi; a( 􏼁( 􏼁, (3)

fk xi( 􏼁 � fk−1 xi( 􏼁 + βg xi; ak( 􏼁. (4)

-e solution to equation (1) is accomplished in two steps
using gradient boosting for the differentiable and arbitrary
loss functions. Initially, the basic learner function g(x; ak) is
corresponded using the least square criterion.

ak � argmina,ρ 􏽘

N

i�1
yik − ρg xi; a( 􏼁( 􏼁

2
. (5)

To current pseudoresiduals,

yik �
zL yi, F xi( 􏼁( 􏼁

zF xi( 􏼁
􏼢 􏼣

F(x)�FK−1(X)

. (6)

-e optimal coefficient value is then determined as

βK � argminβ 􏽘

N

i�1
L yi, fk−1 xi( 􏼁 + βg xi; a( 􏼁( 􏼁. (7)

As a result, equation (1)’s optimization of the complex
function issue is substituted with equation (2), which em-
ploys smallest squares, succeeding to equation (3)’s sole
variable optimization, which is centered on the loss criterion
L. SGB is concerned with remedying observations that are
proximate to decision-making limits determined through
the data structure when performing the boosting operation
[33]. During the boosting process, it is more likely that
particular findings from a decision tree proximate to other
classes will be identified and corrected [35].

3. Methodology

By utilizing machine learning techniques, the following six
steps are required to develop an SGB tree model: (1)
preparation of the dataset, (2) calculation of the descriptors,
(3) feature selection and model training, (4) validation of the
model, (5) recognition of the applicability domain, and (6)
interpreting the model. -e following subsections provide a
more detailed description of the steps mentioned above.

3.1.0eDataset uponWhich theModelWas Built. A large set
of 514 experimental data on CRM properties, including solid

recovery (SR) and cellulose enrichment factor (CEF), which
are a function of 23 effective variables, was collected from the
literature. Further details on these parameters and data are
provided elsewhere [10]. -ree-quarters of these data was
randomly used for the training phase, and the rest was
retained for testing and evaluating the accuracy of themodel.

3.2. Sensitivity Analysis. Sensitivity studies were performed
to ascertain each component of the input’s effect on variables
in the study. For quantitatively measuring the effect of each
parameter, the following relevance factor was defined
[36–38]:

r �
􏽐

n
i�1 XK,i − XK􏼐 􏼑 YI − Y( 􏼁

�����������������������������

􏽐
n
i�1 XK,i − XK􏼐 􏼑

2
− 􏽐

n
i�1 YI − Y( 􏼁

2
􏽱 . (8)

From the previous formula, n denotes an overall amount
of the data points,Xk.i denotes the ith value of the input for the
kth criterion, and Yi denotes the ith output value. Xk and Y

denote the mean values of the kth input and output pa-
rameters, respectively. -e relevancy factor has a value be-
tween the numbers −1 and +1, with more significant absolute
numbers indicating the criterion corresponded to possess a
farther significant effect on the variables in the study. A
positive or negative value of the factor of relevancy indicates
the straight or opposite consequence of criteria corresponded
to, which suggests that the variable increments when par-
ticular input criteria with a positive relevance element are
increased. At the same time, it lowers when a particular input
criterion with a negative relevance factor increases.

Twenty-four different criteria for the input have been
investigated in this study, all of which directly impacted the
corresponding results. Figures 1 and 2 show the results of the
sensitivity analysis. As shown, the largest eigenvalue n be-
longs to Lg, with the positive relevance factor calculated as
0.59.

3.3. 0e Preanalysis Phase. In this work, five distinct sta-
tistical approaches were used to estimate and validate the
CEF and SR generated from the SGB tree model. -e created
model was run using the MATLAB program version 2018.
-e data gathered in the experiment phase of this study were
utilized for training the model, while approximately 25% of
the data obtained was used to test the models. Additionally,
the data were normalized [39–41].

DK � 2
x − xmin

xmax − xmin
− 1. (9)

In equation (9), x denotes the number from the nth

parameter, and as forecasted, the absolute number of Dk

calculates as lower than 1. -e CEF and SR are predicted
through the primary output, whereas the remaining vari-
ables are utilized as a source of data for the SGB tree model.

3.4. Methodology for Modelling and Verifying.
Verification of the model and its output and its accuracy is a
critical step in the model development process. Validation is
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Figure 1: Sensitivity of parameters affecting the output parameter SR.
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Figure 2: Sensitivity of parameters affecting the output parameter CEF.
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necessary as ranges of parameters are expanded and the
experiments are enhanced. -e equations mentioned below
are utilized to assess the proposed model’s accuracy [42]:

Mean relative error(MRE) �
100
N

􏽘

N

i�1

x
actual
i − x

predicted
i

x
actual
i

⎛⎝ ⎞⎠,

Rootmean square error(RMSE) �

���������������������

1
N

􏽘

N

i�1
x
actual
i − x

predicted
i􏼐 􏼑

2

􏽶
􏽴

,

Standard deviations(STDs) �
1

N − 1
􏽘

N

i�1
(error − error)⎛⎝ ⎞⎠

0.5

,

Mean squared error(MSE) �
1
N

􏽘

N

i�1
x
actual
i − x

predicted
i􏼐 􏼑

2
,

R − squared R
2

􏼐 􏼑 � 1 −
􏽐

N
i�1 x

actual
i − x

predicted
i􏼐 􏼑

2

􏽐
N
i�1 x

actual
i − x

actual
􏼐 􏼑

2 .

(10)

4. Results and Discussion

In Figures 3 and 4, the experimental values are compared to
the CEF and SR calculated via the SGB tree for both the
testing and training datasets.

-e presented model can accurately estimate outputs, as
seen in the figures. Several statistical and graphical techniques
were employed to evaluate the suggested model’s validity. -e
regression plots in Figures 5 and 6 demonstrate the proposed
model’s capacity to project targets, seen by a dense clustering of
the data points surrounding the Y�X line.

-e proposed SBB tree’s error plot is depicted in Fig-
ures 7 and 8. It plots relative error versus the CEF and SR
through both training and testing sets of data, respectively.

Furthermore, estimated errors were also generally centered
on the line of zero deviation. -e mean of the relative error
of the suggested model was worked out to be less than 17%,
which displays the prediction accuracy through the sug-
gested SGB tree model.

Table 1 contains statistical parameters derived from the
suggested model. -e suggested model exhibits low MSE,
STD, RMSE, and MRE% values and an elevated R2, showing
that it accurately predicts outputs.

Phromphithak et al. used the random forest method to
estimate the two output parameters of CEF and SR [10] and
concluded that their model was able to predict these pa-
rameters with an accuracy of R2 � 0.94 and 0.84, respectively,
that is weaker than our proposed model.
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Figure 3: Simultaneous viewing of real and modeled CEF output data.

International Journal of Chemical Engineering 5



100 200 300 400 5000
Data index

0

1

2

3

4

5

6

So
lid

 re
co

ve
ry

Train exp.
Train output

Test exp.
Test output

Figure 4: Simultaneous viewing of real and modeled SR output data.

16 26 36 46 56 66 76 86 96 1066
Estimated cellulose enrichment factor 

6
16
26
36
46
56
66
76
86
96

106

Ac
tu

al
 ce

llu
lo

se
 en

ric
hm

en
t f

ac
to

r 

Train
Test

Linear (train)
Linear (test)

Figure 5: Cross plot on the CEF output values.

1 2 3 4 5 60
Estimated solid recovery

0

1

2

3

4

5

6

Ac
tu

al
 so

lid
 re

co
ve

ry

Train
Test

Linear (train)
Linear (test)

Figure 6: Cross plot on the SR output values.

6 International Journal of Chemical Engineering



5. Conclusions

-e present work provides a novel perspective on the
prediction of CEF and SR. We have developed a precise
stochastic gradient-boosting decision tree model to this end.
-e model has been constructed and validated using the test
and training sets. Additionally, extrinsic assessment sets
were used to evaluate the actual projective capabilities of the

model. -is design is based solely on effective inputs. -us,
the estimated CEF and SR produced via the suggested
method can fill in the investigational observations by as-
suming unknown or missing values. Furthermore, the
proposed prediction mechanism may point researchers in
the direction of a novel successful measurement method.
-is work quantified error analysis for various inputs.
Forward to the results, the strategy outperformed earlier
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Figure 7: -e relative deviation analysis on the CEF output values.
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Table 1: Various statistical analyses to evaluate the proposed model.

Output Phase R2 MRE (%) MSE RMSE STD

Solid recovery
Training set 0.999 0.37 6.87E− 04 2.62E− 002 2.53E− 002
Testing set 0.995 0.98 3.39E− 003 5.82E− 002 5.55E− 002
Total set 0.998 0.52 1.36E− 003 3.69E− 002 3.56E− 002

Cellulose enrichment factor
Training set 0.994 0.61 1.83E+ 00 1.35E+ 00 1.28E+ 00
Testing set 0.992 0.71 2.43E+ 00 1.56E+ 00 1.49E+ 00
Total set 0.994 0.64 1.98E+ 00 1.41E+ 00 1.34E+ 00

International Journal of Chemical Engineering 7



models in terms of generalizability, validity, and accuracy.
Finally, the suggested method can be an efficient tool to
analyze and design more effective related units.
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[24] P. J. Garćıa Nieto, E. Garcı́a–Gonzalo, F. Sánchez Lasheras,
J. P. Paredes–Sánchez, and P. Riesgo Fernández, “Forecast of
the higher heating value in biomass torrefaction by means of

8 International Journal of Chemical Engineering



machine learning techniques,” Journal of Computational and
Applied Mathematics, vol. 357, pp. 284–301, 2019.

[25] T. Onsree and N. Tippayawong, “Machine learning applica-
tion to predict yields of solid products from biomass torre-
faction,” Renewable Energy, vol. 167, pp. 425–432, 2021.

[26] X. Chen, H. Zhang, Y. Song, and R. Xiao, “Prediction of
product distribution and bio-oil heating value of biomass fast
pyrolysis,” Chemical Engineering and Processing-Process In-
tensification, vol. 130, pp. 36–42, 2018.

[27] L. Wang, F. Long, W. Liao, and H. Liu, “Prediction of an-
aerobic digestion performance and identification of critical
operational parameters using machine learning algorithms,”
Bioresource Technology, vol. 298, p. 122495, 2020.

[28] X. Zhu, Y. Li, and X. Wang, “Machine learning prediction of
biochar yield and carbon contents in biochar based on bio-
mass characteristics and pyrolysis conditions,” Bioresource
Technology, vol. 288, p. 121527, 2019.

[29] J. Li, L. Pan, M. Suvarna, Y. W. Tong, and X. Wang, “Fuel
properties of hydrochar and pyrochar: prediction and ex-
ploration with machine learning,” Applied Energy, vol. 269,
p. 115166, 2020.

[30] A. Pathy, S. Meher, and P. Balasubramanian, “Predicting algal
biochar yield using extreme gradient boosting (XGB) algo-
rithm of machine learning methods,” Algal Research, vol. 50,
p. 102006, 2020.

[31] H. Xu, Y. Kong, J. Peng et al., “Multivariate analysis of the
process of deep eutectic solvent pretreatment of lignocellu-
losic biomass,” Industrial Crops and Products, vol. 150,
p. 112363, 2020.

[32] T. Hastie, R. Tibshirani, and J. Friedman, 0e Elements of
Statistical Learning, Springer, Berlin, Germany, 2001.

[33] J. H. Friedman, “Stochastic gradient boosting,” Computa-
tional Statistics & Data Analysis, vol. 38, no. 4, pp. 367–378,
2002.

[34] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, Berlin, Germany, 2006.

[35] D. G. Whiting, J. V. Hansen, J. B. McDonald, C. Albrecht, and
W. S. Albrecht, “Machine learning methods for detecting
patterns of management fraud,” Computational Intelligence,
vol. 28, no. 4, pp. 505–527, 2012.

[36] A. Rostami, A. Baghban, A. H. Mohammadi, A. Hemmati-
Sarapardeh, and S. Habibzadeh, “Rigorous prognostication of
permeability of heterogeneous carbonate oil reservoirs: smart
modeling and correlation development,” Fuel, vol. 236,
pp. 110–123, 2019.

[37] A. Bahadori, A. Baghban, M. Bahadori et al., “Computational
intelligent strategies to predict energy conservation benefits in
excess air controlled gas-fired systems,” Applied 0ermal
Engineering, vol. 102, pp. 432–446, 2016.

[38] N. Nabipour, R. Daneshfar, O. Rezvanjou et al., “Estimating
biofuel density via a soft computing approach based on in-
termolecular interactions,” Renewable Energy, vol. 152,
pp. 1086–1098, 2020.

[39] A. Baghban and A. Khoshkharam, “Application of LSSVM
strategy to estimate asphaltene precipitation during different
production processes,” Petroleum Science and Technology,
vol. 34, no. 22, pp. 1855–1860, 2016.

[40] A. Baghban, T. Kashiwao, M. Bahadori, Z. Ahmad, and
A. Bahadori, “Estimation of natural gases water content using
adaptive neuro-fuzzy inference system,” Petroleum Science
and Technology, vol. 34, no. 10, pp. 891–897, 2016.

[41] Z. Liu and A. Baghban, “Application of LSSVM for biodiesel
production using supercritical ethanol solvent,” Energy

Sources, Part A: Recovery, Utilization, and Environmental
Effects, vol. 39, no. 17, pp. 1869–1874, 2017.

[42] M. H. Ahmadi, A. Baghban, M. Sadeghzadeh et al., “Evalu-
ation of electrical efficiency of photovoltaic thermal solar
collector,” Engineering Applications of Computational Fluid
Mechanics, vol. 14, no. 1, pp. 545–565, 2020.

International Journal of Chemical Engineering 9


