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,e inadequacy of worldwide fossil fuel resources, combined with increasing energy demands, encourages global attention to
either using alternative energy resources or improving the recovery factor and produce larger quantities from present reservoirs.
Among all enhanced oil recovery (EOR) methods, surfactant injection is a well-known technique that reduces the interfacial
tension (IFT) between oil and water and increases oil production. Despite numerous advantages of using surfactants, there are also
a few obstacles like environmental impacts, high cost, effect on humans and other organisms due to toxicological potential, and
availability from nonrenewable resources. Biosurfactants are microbial surface-active agents that decrease the surface tension (ST)
of a liquid phase and the IFT of two diverse phases. ,ey are biotechnological products of high value owing to their widespread
applications, low toxicity, relatively easy preparation, and specific performance, applied in different industries like organic
chemicals and fertilizers, agrochemicals, metallurgy and mining, cosmetics, foods, medical and pharmaceuticals, beverages,
environmental management, and petroleum and petrochemical applications in emulsifying and demulsifying wetting agents,
detergent spreading and foaming agents, and functional food ingredients. Biosurfactants are synthesized by microbes; therefore,
various genetic diversities of microorganisms provide the considerable capability to produce new types of biosurfactants, which
can develop EOR technology. Biosurfactants are classified into ex situ and in situ MEOR processes. ,e genera Pseudomonas,
Bacillus, Sphingomonas, andActinobacteria are the foremost biosurfactant-producing bacteria.,is paper reviews relevant reports
and results from various presented papers by researchers and companies on applications of microorganisms and biosurfactant
technology with specific emphasis on EOR and MEOR processes, based on recently published articles since 2010 until now.

1. Introduction

,ese days, human life is highly dependent on fossil fuel and
its related products such as kerosene, gas, petrol, and diesel
[1, 2]. Among the various fossil fuel types, crude oil plays an
essential role in the industrial revolution since the beginning
of civilizations to provide global energy supplies [1, 3].
Statistics of global oil resources consumption exhibit an
increasing trend from the last century until 2019. As a
primary energy source, oil consumption was about 36390.5
Mbbl in 2019, and much increase has been assumed for the
future, which would increase oil prices [4]. Figure 1 shows
the global crude oil consumption trend from 1980 until now
and predicts growing consumption demand in the future.

,e graph experienced a reduction in 2020 due to the
worldwide coronavirus pandemic and widespread shut-
downs; however, an increase in worldwide energy demand is
expected in the approaching decades [5]. Rising universal
energy demands, in addition to limited fossil fuel resources
across the world, require a robust response to energy supply.
Development and improvement of the oil recovery tech-
nique yield from the existing reservoirs; furthermore,
identifying alternative resources is the best way to reduce
dependence on fossil fuels in the future [6–9].

Various alternatives have been developed and suggested,
including wind energy, solar energy, nuclear energy, and
different biomass-converted products such as firewood,
biogas, fuel pellets, biodiesel, bioethanol, bio-oil, and

Hindawi
International Journal of Chemical Engineering
Volume 2021, Article ID 5477185, 10 pages
https://doi.org/10.1155/2021/5477185

mailto:yuanyeping@126.com
mailto:m.aghaalikhani@ut.ac.ir
mailto:m.aghaalikhani@ut.ac.ir
https://orcid.org/0000-0003-4734-6108
https://orcid.org/0000-0002-4118-0787
https://orcid.org/0000-0003-4305-9873
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5477185


biohydrogen [10–14]. Despite the availability and advantages
of renewable resources, their technology and investigations
are in the initial stages, also requiring fossil fuel-based in-
frastructure changes [15, 16]. Some cases are not cost-ef-
fective in comparison with fossil fuels; therefore, fossil fuels
remain the essential energy resource, applied for household
and industrial purposes, power generation, and trans-
portation [17–20].

,ere are a number of considered techniques for en-
hancing oil recovery from depleted reserves [21]. ,e pro-
cedure of recovering oil from reservoirs includes primary,
secondary, and tertiary recovery phases [22–24]. In the first
recovery phase, oil production is driven by the reservoir’s
initial pressure energy, which can produce just 10–20% of
the present oil in the reservoir [25, 26]. In the second re-
covery phase, either gas or water will be injected to the
reservoir to maintain both reservoir and oil pressures during
production, and the final oil recovery phase increases
20–40% [21, 26–28]. To determine the amount of relative oil
and water saturation, choosing appropriate injection fluid,
chemical factors, and reservoir conditions such as pressure,
temperature, brine characterization, pollution levels, rock
type and sizes, and distribution of pores structure infor-
mation is essential [29–31]. If the injected fluid’s viscosity is
lower than the displacing fluid, the injected compound may
flow faster than the initial compound’s flow across the
porous media [32, 33]. Depending on oil properties, geo-
graphic difficulties, and reservoir conditions, initial and
secondary oil production methods are capable of producing
40–60% of the original oil in place (OOIP), while residual oil
saturation (Sor) is a target for EOR [21, 26, 28, 34]. ,e most
economically viable time to apply EOR methods in a field
seems to be at the early stages after primary recovery;
however, the best time usually depends on the economic
factors of the production process [34, 35]. Figure 2 repre-
sents an overview of the field development program and
three production stages.

High IFT between oil and water combined with high
capillary force and electrostatic charge causes a large amount
of unrecovered oil to be trapped in the pores [3, 36, 37]. To
decrease residual oil value and improve oil recovery yields,
improved and upgraded technologies such as enhanced oil
recovery (EOR) have been employed in secondary or tertiary

stages [26, 37]. A significant difference between EOR and
conventional reservoir recovery techniques like water and
gas injection is that EOR mobilizes the remaining oil in the
porous media for more economical outcomes, further
extending the lifetime of reservoirs and prolonging crude oil
production [38–41]. IFT of the injecting fluid has a crucial
role in EOR. ,e high value of IFT between injected water
and the oil prevents oil displacement, resulting in a high
amount of unrecovered oil in reservoirs. Meanwhile, de-
crease in IFTcaused by the EOR fluid reduces and mobilizes
the unrecovered oil value and enhances microscopic sweep
efficiency [32, 33, 42–44]. ,e second reason for low oil
recovery and oil remaining in the pores is capillary forces,
which can be overcome by using the EOR methods [33, 45].

To demonstrate the effect of capillary forces, the non-
dimensional capillary number has been considered as the
ratio of fluid viscosity (μ) to velocity (V), IFT (σ) between oil
and water, and contact angle (θ) [46–48]. As this ratio in-
creases by four or five orders in the magnitude of an EOR
process, the residual oil volume will reduce, which requires
either an IFT decline or adjusting the contact angles for a
moderate wettability, which is nearly 90 degree of interphase
(θ) [46, 48].

2. A Review of EOR and MEOR Methods

,e EORmethods mainly include injecting a particular fluid
with chemical, thermal (in situ combustion, injecting
steam), or microbial characteristics into the reservoir
[21, 23, 37, 49–53].,omas provided a detailed classification
of EOR methods [54]. MEOR (microbial enhanced oil re-
covery) is an EOR technique that utilizes microorganisms
and their metabolic products, which can produce nearly 30%
of the remaining oil in the reservoir [55]. A considerable
number of EOR techniques employ chemical methods due
to their easy applicability and easy access to various chemical
compounds. Meanwhile, the MEOR methods continue to
gain attention because of their improved applicability, en-
vironmental friendly nature, and competitive prices
[21, 56–58]. ,e existence of various microorganisms with
different metabolite productions and growing properties
affects the used recovery method. ,ere are three feasible
mechanisms to use biosurfactants in the MEOR processes:
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(1) Injecting biosurfactant-producing microorganisms
from wells toward the reservoir and consequent in
situ diffusion by the reservoir rock

(2) Injecting appropriate nutrients inside the reservoir
to stimulate the reservoir’s biosurfactant-producing
endemic microorganisms to grow

(3) Producing biosurfactants in ex situ bioreactors and
injecting them subsequently into the reservoir
[59, 60]

Chemical EOR, a highly effective EOR method, includes
surfactant injection, polymer injection, acid and alkaline
flooding, and injecting other suitable chemical compounds
within the reservoir to alter the interactions between crude
oil/brine/rock (COBR) and properties and enhance oil re-
covery [53, 61, 62]. In polymer injection for enhanced oil
recovery, polymers are dispersed into water to increase water
viscosity and then injected into the reservoir in order to
reach a greater capillary number, higher vertical sweep
power, and also increased upward-moving control [63, 64].
Alkaline flooding is another powerful EOR method to re-
cover heavy oil, which has been used in many projects since
1970 [42, 65, 66]. Notwithstanding other methods, this
method has no limitation about depths or formation
thicknesses and needs no high-cost surface equipment. ,e
reaction between alkali and the acidic compound of heavy oil
forms surface-active materials, which reduces IFT by ioni-
zation at the water-oil interface by several orders of mag-
nitude [67].

Various experiments have been performed in other
branches of chemical EOR, using alkaline surfactants (ASs),
alkaline polymers (APs), and alkaline surfactant polymers
(ASPs), which has attracted interest as one of the most
effective techniques [47, 68]. Delshad et al. [69] simulated
Chinese onshore oil reservoir characteristics using a specific
method to measure the amount of recovered oil. Surfactant
polymer, alkaline, and ASP flooding methods were exam-
ined where the alkaline surfactant polymer flooding method
increased 24% of OOIP further recovery in comparison with
using only water and produced the least value for residual
oil. Synthetic chemicals are generally derived from fossil
fuels, have high prices, and cause inappropriate

environmental influences. Surfactant flooding includes
injecting either chemical surfactants or biosurfactants and
natural surfactants into the reservoir [9]. Both biosurfactants
and chemical surfactants decrease IFT at the interface and
surface tension at the surface by accumulating between the
liquid phases [70, 71]. Chemical surfactants and polymers
are generally expensive, hazardous, and subtend several
obstacles, such as undesirable residues that are hard to
dispose, environmental impacts, and linking with fossil
fuels.,e natural surfactants are classified in the same way as
chemical surfactants into amphoteric, nonionic, cationic,
and anionic types, and they have a nature-based source, for
example, saponin derived from Zizyphus spina-christi leaves,
nonionic surfactants derived from Glycyrrhiza glabra, and
cationic surfactants from olive, Prosopis, spistan, and
Seidlitzia rosmarinus [70–72]. Several articles have investi-
gated the application of chemical surfactants and their effect
on the water and oil IFT in EOR projects, due to relatively
lower costs. Biosurfactants have been reviewed for their
potential to be used in petroleum production, especially to
achieve eco-friendly biodegradable surfactants.

3. Surfactants

,e use of surfactants dates back 2,800 years in soap pro-
duction [73].,e global production of surfactants has grown
to over 13 million tons every year as one of the most widely
used industrial chemicals, half of which is used as laundry
and household detergents [74, 75]. Surfactants include both
hydrophilic and hydrophobic domains as a group of am-
phiphilic chemical compounds, which makes it an essential
component in most modern industries like agriculture (i.e.,
organic chemicals and fertilizers), agrochemicals, metal-
lurgy, mining, cosmetics, foods, paper, public health and
pharmaceuticals, beverages, environmental management,
textiles, petroleum, petrochemicals, and bioremediation
[72, 74, 76, 77].

Taking advantage of petrochemical and oleochemical
resources, organochemical synthesis produces most of the
surfactants used in the industry today. Hence, most of the
surfactants used today are petroleum-derived, which is
problematic due to environmental incongruity and toxic
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effects on humans and the environment, leading to major
ecological problems since they inevitably enter the envi-
ronment after use [74]. Use of surfactants is an increasing
concern due to their biodegradability, toxicity, bio-
accumulation, and phosphate releases [78]. ,e environ-
mental community should make efforts to decrease
detergent loads and biodegradable use since detergents re-
lease phosphates. ,e extensive diversity and large volumes
of applications have been a significant drive to move for-
wards in producing surfactants from natural and renewable
feedstock, which are biosurfactants. An extended genetic
variety of microorganisms provides the substantial capa-
bility of forming new sorts of biosurfactants from the natural
fermentation process instead of organochemical-synthesized
surfactants. ,e following section discusses microbially
produced biosurfactants and effective parameters in the
EOR process.

4. Biosurfactants

Biosurfactants are a group of amphiphilic compounds with
antiviral, hemolytic, insecticidal, and antimicrobial biolog-
ical activities. ,ey are applicable in numerous industries,
including foods, cleaning products, pharmacology (drug
solvents), cosmetics, pesticides, textiles, fungicides on dif-
ferent organic surfaces, medicine, and oil and gas fields as
essential biotechnology products [7, 79]. ,e growing in-
terest in biosurfactants is because of their low environmental
impacts, low toxicity, and biodegradability [80]. ,e global
market for biosurfactants reached 1.5 billion USD until 2019,
which is assumed to experience over a 5.5% CAGR by 2026,
of which over half of it belongs to Europe [7]. Household
detergents, cosmetics, personal care, and the food industry
account for the highest application market [7, 81].

By 1960, the first biosurfactants were synthesized via
microbes throughout hydrocarbon fermenting in the form
of extracellular compounds [82]. ,ey are generated on
living surfaces and can reduce ST as well as IFT. ,e best
production grounds for them are extracellular hydrophilic
and hydrophobic moieties or surfaces of microbial cells [83].
Due to growing awareness of the adverse effects of chemical
surfactants on the environment, interests have shifted to-
ward environment-friendly surfactants [80, 84]. Affective
factors in producing biosurfactants are carbon content, pH,
the type of the nitrogen source, temperature, aeration, and
carbon-to-nitrogen Ratio [74, 76]. Evonik, Jeneil Biotech,
Biotensidon, and Ecover are the major biosurfactant-pro-
ducing companies; also, genera Pseudomonas, Bacillus,
Sphingomonas, and Actinobacteria include the foremost
biosurfactant-producing bacteria. Desai and Banat [80]
provided a detailed review of biosurfactants, and we will only
focus on biosurfactants that may be useful for improving oil
recovery such as glycolipids, rhamnolipids, lipopeptides, and
sophorolipids.

Özdemir et al. [83] compared the interfacial tension
reduction in two pure rhamnolipid solutions. ,ey found
that molecules of rhamnolipids have strong intermolecular
interactions, thus resulting in excellent foam-formation
properties even at a narrow air flow rate. However, other

yeast biosurfactants, including sophorolipids and glyco-
lipids, had moderate foaming abilities.

Joshi-Navare et al. [85] produced and investigated
sophorolipids (SLs) from nonedible Jatropha oil and realized
their effectiveness in removing stains. ,ey optimized fer-
mentation parameters to maximize Jatropha oil-derived SL
yield (SLJO), which demonstrated a significant ability to
decrease the ST in distilled water, coupled with antibacterial
and stain-removing capabilities, in addition to good
emulsion stability under pH stress and temperature. Re-
duced immersion time during the washing process ac-
companying their antibacterial activity, biodegradability,
and skin-friendly properties make them ideal alternatives for
synthetic surfactants in household detergents to reduce their
adverse effects.

Sajna et al. [86] studied a Pseudozyma sp. NII08165
biosurfactant containing a combination of some unknown
glycolipid and three mannosylerythritol lipid (MEL) iso-
mers. ,eir stability over the alkaline pH range and high
temperatures make them suitable as laundry detergent ad-
ditives to remove stains efficiently. Figure 3 compares the
yield of various biosurfactant-producing microorganisms.
Some biosurfactant yields are not exactly presented in
reviewed articles, and we did not mention them in the figure
and used accurate data.

5. Application of Biosurfactants in
EOR Methods

,e foaming property of biosurfactants allows use of them in
various sectors, such as reducing oil viscosity and cleaning
crude oil storage tanks as detergents. Several researchers
have been investigating the usage of biosurfactants in EOR
operations. ,e cost of biosurfactants is generally higher
than chemical surfactants, making EOR less viable com-
mercially, but they perform better than their chemical
counterparts due to higher environmental compatibility,
reduced toxicity, and ability to be generated from renewable
sources [87]. Utilizing cheaper raw materials, optimizing
media components, hyperproduction, or using fermentation
extracts that contain significant amounts of biosurfactants
can reduce the cost [2, 57]. Biosurfactant use for EOR can be
divided into ex situ and in situ MEOR procedures, called
biosurfactant-mediated MEOR (BS-MEOR) [59]. In the
former, laboratory-produced biosurfactants are injected into
the reservoir, while the in situ process identifies proper
microorganisms present in the reservoir and supports their
growth to synthesize needed metabolites, for instance,
surfactants or polymers that provide favorable factors for
EOR [88]. Following this phase, wells are shut in and
monitored for microbial activity and metabolite production.
,ere has been a successful substantial increase in oil
production resulting fromMEOR field-scale in situ research
projects.

Lal [89] constructed a combined microbial consortium
consisting of three hyperthermophilic, acidogenic, and
barophilic anaerobic strains to improve oil recovery from oil
reservoirs under 70°C to 90°C temperature, resulting in
various metabolic outputs like alcohols, biosurfactants,
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methane, volatile fatty acids, and CO2 under the specially
designed nutrient medium. In situ application of the mi-
crobial consortium provided an oil-improving recovery
process and increased the efficiency of sweeping crude oil
from oil-bearing poles of rock formations. Studies of the
MEOR applications mainly focus on two types of bio-
surfactants: glycolipids and lipopeptides [90]. Lipopeptides
show greater efficacy in reducing IFT and ST [90, 91].

Cooper et al. [92] studied surfactin production on a large
scale by Bacillus subtilis. ,ey discovered that surfactin was
recoverable from collapsed foam through acid precipitation.
Glucose substrate fermentation by sequential product re-
moval by foam fractionation resulted in a good yield, which
also increased via the application of iron or manganese salts.
B. subtilis completely stopped producing surfactin when
hydrocarbon was added to the medium, which regularly
improves biosurfactant production. By reducing the pH to
2.0, the surfactin precipitates from Bacillus subtilis culture
spent media, and after extracting dichloromethane and
reprecipitating it with acid, it can be better purified.

Biochemical investigation on one of the JF-2 proteins
exhibited a similar amino acid composition and infrared
spectrum to surfactin but the JF-2 acid precipitate has other
components that may be necessary for interactions between
all components and JF-2 as full activity surfactant. Following
this, required solvents have been developed for complete
activity and interaction among these compounds. Among
four present components in the crude extract, chloroform,
dichloromethane, andmethanol could extract sequentially 1,
2, and 4 components with 23%, 56%, and 94% values of
activity recovery, respectively. Reconstituted surfactant
preparation was performed more actively than preparation
of individual extracted components in experiments [92, 93].

Cooper and Goldenberg [94] obtained that the mono-
glyceride biosurfactant produced by B. cereus increased the
polyhexosamine emulsifier activity by this organism.

Investigations of McInerney et al. [93] and Jenneman
et al. [95] on the JF-2 surfactant revealed promising prop-
erties for enhanced oil recovery.,ose concentrations where
NaC1 was at least 5% (w/v) provided the lowest IFT; thus,
the JF-2 biosurfactant is more effective when the NaC1

concentration is high. Oil reservoirs have high levels of salt,
which are the ideal conditions for the organism to grow.
Very low CMC of JF-2 makes it an effective biosurfactant in
dilute concentrations; the IFT was obtained less than
0.1mN/m. High biosurfactant concentrations or cosurfac-
tants may result in lower IFT.

McInerney et al. [93] studied anaerobic biosurfactant
production from Bacillus licheniformis strain JF-2 growing
in a medium consisting of glucose-mineral salts, NaNO3,
and yeast extract. By decreasing the pH to 2.0, an anionic
biosurfactant precipitated from the spent medium, which
resulted in a substantial decline of the ST in the medium
from 70 to 74mN/m to as low as 28mN/m. Both JF-2 and
surfactin biosurfactants reduced water surface tension by
27mN/m, the lowest determined surface tension for bio-
surfactants. B. subtilis completely stopped producing sur-
factin when hydrocarbon was added to the mechanism,
which normally boosts biosurfactant production. By re-
ducing the pH to 2.0, the surfactin precipitates from Bacillus
subtilis culture spent media, which can be further purified by
dichloromethane extraction and reprecipitation with acid.

Arima et al. [96] characterized surfactin, an efficient bio-
surfactant synthesized from Bacillus strains, as it possesses high
surface activity and a low critical micelle concentration (CMC)
comparable to synthetic surfactants. Lipopeptide surfactin
inhibits fibrin clot formation and induces lowered surface
tension and reduced interfacial tension against a hexadecane
concentration of less than 1mN/m. It is stable under high pH
conditions, high salinity conditions, and high temperatures.
Furthermore, low CMC characteristics may be advantageous
for EOR applications since they impact the economy of EOR
development [97, 98].

McInerney et al. [93] grew and synthesized bio-
surfactants using Bacillus mojavensis JF-2 anaerobically
along with other competing organisms in a sand environ-
ment. Bacillus mojavensis JF-2 grew fastest on glucose;
besides, monosaccharides tended to be the preferred sources
of carbon generally. ,e highest growing yield was observed
with fructose. Under anaerobic conditions, the presence of
peptone #2 (PP2) in themedium enhanced the production of
biosurfactants.
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,e microbial formulation consists of four microor-
ganisms (NIPER Bac 1) that have been injected into four
wells of the Delaware–Childers field in Oklahoma, pro-
ducing primarily surfactants, alcohols, and acids, followed
by regular injections of molasses used as a nutrient [99].
Applied microorganisms and their products are classified
separately in Table 1. After core waterflooding, laboratory
microbial tests recovered 28% of the residual oil.

Bryant et al. [99] performed micromodels to reveal if oil
could be mobilized via the microbial formulation in the
porous environment and related oil mobilization with oil
recovery efficiency in Berea sandstone cores. After micro-
model waterflooding, about 60% of the oil has been mo-
bilized. When the micromodel was incubating, gas bubbles
were observed, as well as crude oil emulsification. NIPER
Bac 1 mobilizes oil primarily through gas production,
surfactants, and solvents. ,e initial results showed a 13%
sustainable increase in oil recovery along with decreased
surface tension of produced brine, revealing the effectivity of
in situ microbial biosurfactant production in recovering
additional petroleum. As a definite record that strain JF-2
can grow and manufacture its surfactants all over an oil
reservoir, strain JF-2 was detached from the produced brine
30weeks after injection.

In another study on micromodels, Bryant and Douglas
[100] noticed that microorganisms that have a high recovery
efficiency in a core flood also perform better in mobilizing
crude oil. As microorganisms grow and produce CO and
chemicals, they can significantly enhance oil recovery in
reservoirs under suitable salinity and temperature condi-
tions. A microbial study of Berea sandstone cores revealed
that ability of bacteria in recovering remaining oil after
waterflooding varies widely, ranging from 7.5 to 71%; the
type of core encapsulation had no effect on the recovered oil
amount. Studies using a wide permeability range (134–1,920)
showed that some microorganisms might be more efficient
at recovering oil in lower-permeability cores. As a result,
some surfactant-producing bacteria enhance oil recovery in
ways that no gas-producer microorganisms can do; as a
result, gas production is not the only affecting factor. It is
also vital to consider the kind of surfactant; two microor-
ganisms can produce surfactants that differ in their recovery
capacity. Improving the areal sweep efficiency (EA) of mi-
croorganisms appears to be a beneficial mechanism in
microbially mobilizing oil. Comparing two heavy oil and
medium-to-light-gravity oil recovery yields showed that the
MEOR method might be appropriate for both light and
heavy oils.

,e work of McInerney et al. [93, 101] and other papers
[102, 103] indicated lower than 0.1mN/m interfacial tension
between water and oil while using lipopeptides. Lipopeptide

surfactants have a poor yield and high manufacturing costs
when produced through fermentation; therefore, they are
rarely applied in field-scale EOR projects, and utilizing them
is limited to industries like paper, health care, pulp, and
foods [104].

Long et al. [105] conducted a study on the pH-regulated
emulsifying activity of surfactin and its possible application
in separating oil in EOR. ,e results demonstrated that
surfactin is able to effectively stabilize emulsions over pH 7.4,
which allows easy oil separation by adjusting pH when using
surfactin as an emulsifier. ,e surfactin-based EOR tech-
nique has great application potential since it can be reused
multiple times and sustains its activity after demulsification.

6. Conclusions

In this study, applied microorganisms on oil fields were
explored. Although biosurfactants tend to be more expen-
sive than chemical surfactants, they are preferred due to their
environmental compatibility, reduced toxicity, and ability to
be produced from renewable resources. Utilizing cheaper
raw materials, optimizing media components, hyperpro-
duction, or using fermentation extracts that contain sig-
nificant amounts of biosurfactants can reduce the cost. Oil
recovery can be improved using both in situ and ex situ
microorganisms. Utilizing in situ microbial EOR-produced
metabolic products such as biosurfactants, alcohols, meth-
ane, volatile fatty acids, and CO2 improved oil recovery and
sweep efficiency. ,e effect of different parameters, in-
cluding pH, concentration, and components, on the be-
havior of different kinds of Bacillus microorganisms was
investigated. An efficient biosurfactant synthesized with low
CMC, surfactin, was examined to achieve a low interfacial
tension. By optimizing microbial mobilization in the porous
environment, oil recovery efficiency was maximized.

Abbreviations

AS: Alkaline surfactant
ASP: Alkaline surfactant polymer
AP: Alkaline polymer
BS-
MEOR:

Biosurfactant-mediated microbial enhanced oil
recovery

B. subtilis: Bacillus subtilis
CMC: Critical micelle concentration
COBR: Crude oil/brine/rock
EA: Areal sweep efficiency
EOR: Enhanced oil recovery
IFT: Interfacial tension
OOIP: Original oil in place
MELs: Mannosylerythritol lipids

Table 1: Utilized microorganisms and their products.

Microorganisms Growth requirement Microbial products
Clostridium sp. Anaerobic Acids, surfactants, gases, alcohols
Bacillus licheniformis Facultative Acids, surfactants
Bacillus sp. Facultative Acids, surfactants
Gram-negative rods Facultative Acids, gases
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MEOR: Microbial enhanced oil recovery
PP2: Proteose peptone #2
ST: Surface tension
Sor: Residual oil saturation
SLs: Sophorolipids
SLJOs: Jatropha oil-derived sophorolipids.
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