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+is paper deals with modeling hydrogen contents of bio-oil (H-BO) as a function of pyrolysis conditions and biomass
compositions of feedstock. +e support vector machine algorithm optimized by the grey wolf optimization method has been used
in modeling this end. Comprehensive data for this purpose were aggregated from previous sources and reports. +e results of
various analyses showed that this algorithm has a high ability to predict actual results. +e calculated values of R2, MRE (%), MSE,
and RMSE were obtained as 0.973, 1.98, 0.0568, and 0.241, respectively. According to the results of various analyses, the high
performance of this model in predicting the output values was proved. Also, by comparing this model with the previously
proposed models in terms of accuracy, it was observed that this model had a better performance. +is algorithm can be a good
alternative to costly and time-consuming laboratory data.

1. Introduction

Consumption of fossil fuel-based energy is increasing be-
cause of several developing economies and a rise in the
population.+is causes a rise in emissions of greenhouse gas,
a reduction in the amount of fossil fuel in several countries,
and an increase in the fuel price in the market [1, 2]. Re-
newable energy resources can be substituted with fossil fuel-
based energy to manage the aforementioned issues and
decrease fossil fuel geographical reliance [3]. Different
sustainable energy resources such as the energy of wind,
solar, geothermal, hydro, and biomass are possible alter-
natives [4, 5]. Among these renewable energy resources,
bioenergy (biomass energy) is the most sustainable and

promising one, which could be substituted with old fuels for
chemical and energy applications. Biomass is mostly pro-
duced from plants, involvingmunicipal solid wastes, forestry
and agriculture remain, sewage sludge, and food waste [6, 7].
It could be transformed into liquid, gaseous, and solid
products through thermochemical and biochemical con-
version procedures. Due to the substantial progress in the
past years, researchers can devise thermochemical proce-
dures and propose comparatively great conversion perfor-
mance with easy pretreatment and low cost [8, 9].

One of the procedures in which thermal decomposition
of materials has taken place to create noncondensable gas,
biochar, and BO in the absence of oxygen is pyrolysis. +e
BO, liquid product or pyrolysis oil, is a viscous dark
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brownish fluid commonly comprised of 350 greatly oxy-
genated composites [10, 11]. Mostly, the yield or quantity of
BO relies on the conditions of pyrolysis and the composition
of biomass feedstock [12]. +e composition of biomass
feedstock is generally described by ultimate and proximate
analysis.

To obtain the biomass elemental composition com-
prising H, O, C, and N contents, the ultimate analysis is
employed, while the quantitative analysis is implemented to
obtain ash, volatile, the fixed carbon, and moisture sub-
stances of organic matter. Different factors like heating rate,
pyrolysis temperature, residence time, and biomass particle
size can affect the pyrolysis procedure [13, 14]. Several in-
vestigations have been performed about the effect of the
composition of biomass’s raw material and state of pyrolysis
on the BO generation. For example, Gholizadeh et al.
conducted a study about the production of BO from twenty
various biomass feedstocks and found that the mean pro-
duced BO was greater from the woody biomass (52 percent
wet wt.) in comparison with the herbaceous biomass (38
percent wet wt.) [15]. Also, Sarkar and Wang used slow
pyrolysis of waste coconut shells to investigate the effect of
temperature on the yield of BO and found that the highest
BO production (48.7% wt.%) was obtained at 600 degrees
Celsius [16]. Hao et al. discovered that, at 500°C, the BO
produced from the UPM (Ulva proliferamacroalgae) and RS
combination (rice straw) generated themaximum amount of
BO (46.68wt.%) [17]. Hanif et al. also investigated the effect
of reaction temperature on BO output and discovered that a
300–350°C average temperature resulted in the highest BO
output from algal biomass (48 wt.%) [18]. Traditional
methods for determining the yield of BO and its relationship
to influential parameters such as conditions of pyrolysis and
composition of biomass need extensive testing, which is
labor-intensive, costly, and time-consuming. +erefore,
using data mining, machine learning, and deep learning
approaches, it is necessary to analyze the behavior of bio-
mass pyrolysis in terms of feedstock composition and py-
rolysis process parameters in order to assess their cumulative
influence on the efficiency of BO production. Several unique
and advanced methods have been coupled with traditional
methods to improve performance with both linear and
nonlinear problems as a result of AI (artificial intelligence)
advancement [19–23]. In comparison to traditional
methods, ML (machine learning), a subset of artificial in-
telligence, and procedures such as random forest (RF),
multilinear regression (MLR), decision tree (DT), and
support vector machine (SVM) have shown significant
performance in biomass pyrolysis due to their high ability to
predict the results [24, 25]. On datasets exhibiting a linear
relationship between the input variables and the target,
linear regression analysis is widely used. Hussain and
Mustafa developed a model of linear regression for the
production of BO from biomass by fast pyrolysis by cor-
relating retention time, biomass content, and reaction
temperature with BO output [26]. +e determination co-
efficients for different models were in the range of 0.81–0.99,
according to the findings. At the same time, a linear re-
gression-based methodology was utilized to investigate the

relationship between 20 different biomass feedstock samples
and the distribution of BO components [27]. +e BO
components and biomass composition were discovered to
have a strong relationship. Although more phenols were
produced by woody biomass, more ketones were yielded
from straw, more fatty acids were produced by algal biomass,
and more furans were yielded from shell biomass. However,
linear regression models only consider linear relationships
between variables and are ineffective for complex processes
that need nonlinear correlations. Furthermore, these models
with linear regression were typically developed with a re-
stricted number of empirical results and based on some
effective factors, which reduces the model’s applicability and
reliability.

+us, it is important to perform a comparative exami-
nation of various predictive machine learning models. In the
current research, a new machine learning model involving
support vector machine hybridized with a novel algorithm
called grey wolf optimizer is utilized for the BO yield pre-
diction using the composition of biomass (proximate and
ultimate analysis) and conditions of pyrolysis. In this paper,
a wide range of experimental input data and various sta-
tistical based analyses have been used to evaluate the ac-
curacy of this model. +e uniqueness of the proposed model
lies in the intriguing trait of model performance indepen-
dence from outliers.

2. Experimental Database

A sum of 116 experimental biodiesel of output values is
gathered to provide a forecasting tool for predicting the
hydrogen content values of bio-oil. +ese database details
are accessible elsewhere [20]. For teaching and testing, the
dataset of experimental outputs is randomly broken down
into two 82 and 34 points datasets for the training and
testing phases, respectively. +e function of the testing
dataset, on the contrary, is to assess the model’s general-
ization or ability to predict unknown data.

3. Model Statement

3.1. SVM. SVM (support vector machine) may be used as a
regression method, being referred to as the approach of
statistical learning theory regression. +e main feature of
this approach is that, by utilizing the proper covariance
function (F), linear regression is achieved by transferring
the inputs from a low-dimensional (D) area to a high-
dimensional area. +e input data is described as
(x

(m)
i , yi) i � 1, 2, . . . , N; m � 1, 2, . . . , n , where x

(m)
i and

yi are the output scalar and the scalar m-D input, re-
spectively. +e regression of support vector was described
as follows [28]:

f(x) � 〈λ, x〉 + b, (1)

where λ and b indicate regression F’s weight vector and
deviation word. By minimizing the regularized hazard F,
that issue could be changed to an optimization process il-
lustrated as follows:
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Vapnic (1995) has established the above-mentioned
equation and the equation is famous for the ε-insensitive loss
F [29]. +e role of ε in the equation is to restrict the re-
gression’s range. It might be observed that if the forecasted
and real value deviation is less than ε, loss F would equal 0;
contrariwise, the loss is equivalent to the model absolute
deviation and ε. +e following is the definition of the op-
timization object:
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1
2

‖λ‖
2

+ C 
N

i�1
ξ + ξ∗( ,

subject to

yi + f xi, λ(  − b≤ ε + ξ∗i ,

f xi, λ(  + b − yi ≤ ε + ξi,

ξ∗i , ξi ≥ 0,
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(3)

where C is a penalty factor or a regularization parameter and
is a slack variable that may be used to adjust the teaching
collection of data bias. +e present situation may be de-
scribed as a dual issue.+e issue is explained in the following
sections:

maximize −
1
2



n

i,j�1
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n

i�1
αi + α∗i(  + 

n

i�1
yi αi − α∗i( ,

subject to 

n

i�1
αi − α∗i(  � 00≤ αi, α

∗
i ≤C,

(4)

where α∗i and αi, respectively, refer to the hyperplane best
weight vector and multiplier of Lagrange. +e hyperplane F
formula is defined as follows:

f(x) � 

n

i�1
αi − α∗i( 〈xi, xj〉 + b. (5)

+e final version of regression F is as follows:

f(x) � 
n

i�1
αi − α∗i( K〈xi, xj〉 + b, (6)

where K〈xi, xj〉 refers to covariance F that is specified by
scalar product of φ (xi) and φ (xj). +e Gaussian radial basis
F, which is employed in this work, is a prevalent type of
covariance Fs:

K xi, xj  � exp −c xi, xj

�����

����� , (c> 0), (7)

where c is the covariance parameter [30]. It is noteworthy
thatC, ε, and c are the SVMmodel key regressed parameters.

3.2. GWO. Mirjalili proposed GWO, a novel metaheuristic
method [31]. +is approach, which used a new swarm in-
telligence methodology, was centered on the haunting be-
havior of grey wolves and a naturally occurring hierarchical
connection. +e GWO outperforms other metaheuristic
approaches, for example, Particle Swarm Optimization [32],
Ant Colony Optimization [33], and Genetic Algorithm [34].
+e algorithm of GWO is usually comprised of four various
parts: hierarchy, chasing, surrounding, and assaulting.

+ese wolves are mainly gregarious, as the peak of the
food hierarchy. α is considered to be the best answer.+en, β
is considered to be the second-best option; likewise, δ
specifies the third-best option, and ω denotes the rest of the
best solutions. Here, α, β, and δ wolves are in charge of
steering the optimization and the other wolves would
comply. In the surrounding hunt, the conduct is specified as
follows:

D
⇀

� C
⇀

.X
⇀

p(t) − X
⇀

(t)



,

X
⇀

(t + 1) � X
⇀

p(t) − A
⇀

.D
⇀

,

(8)

where X
⇀
denotes the current position vector and X

⇀
p refers to

the current hunt location. A
⇀
and C
⇀
represent the coefficient

vectors, calculated as follows:

A
⇀

� 2α⇀. r
⇀
1 − α⇀,

C
⇀

� 2. r
⇀
2,

(9)

where α⇀ ranges from 2 to 0. r
⇀
1 and r

⇀
2 are random vectors

with values varying between 0 and 1 and A
⇀

ranges acci-
dentally between −α and α. If A

⇀
| | value is less than 1, the

prey will be attacked by wolves and the wolves would get the
current prey position. In nature, the influence of impedi-
ments around the prey might be evaluated in the vector of C

⇀
.

+is parameter’s random value generates unpredictable prey
weights, which might limit local optimal stagnation, par-
ticularly during the last rounds. Grey wolves are capable of
locating and pursuing the prey. α, β, and δ and wolves of
various iterations can lead this process. ω agents’ F is to
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update the position depending on the other three current
ideal positions. +is part can be defined as follows:

D
⇀

i � C
⇀

j.X
⇀

i − X
⇀

 (i � α, β, δ; j � 1, 2, 3),

X
⇀

j � X
⇀

i − A
⇀

j.D
⇀

i,

X
⇀

(t + 1) �
X
⇀
1 + X
⇀
2 + X
⇀
3

3
.

(10)

In conclusion, this algorithm begins with several grey
wolves randomly generated so that the wolves of α, β, and δ
are achieved according to related finesses determination and
the likely prey location. In the optimization process, A

⇀
and C
⇀

govern the attack and exploration operations. Finally, once
the desired criterion is reached, this process will be
terminated.

4. Accuracy Evaluation of Dataset

+eprecision of applied data is one of the significant subjects
in a forecasting appliance preparation; thus, evaluating the
dataset’s accuracy is vital. As a result, leverage analysis is
conducted.+e following is an explanation of the hat matrix,
an important notion in this method [35]:

H � X X
T
X 

−1
X

T
. (11)

+e matrix shown above is X function, that is, an m× n
matrix.+e valuesm and n denote the number of actual data
points together with prediction tool parameters,
accordingly.

+e matrix’s primary diagonal is utilized to calculate
each real point’s hat value. William’s plot is presented re-
garding hat values on the x-axis (x-A) and standardized
residuals on y-A to better discern outliers from the reliable
limit.

+e primary diagonal of the matrix is utilized to define
each actual point’s hat value. To discern outliers from valid
points, William’s plot is presented concerning hat values on
x-A and standardized residuals on y-A.

Figure 1 shows that X suspicious points are out of the
designated sound zone of [−3, 3]. In the preceding figure, a
crucial leverage value, denoted by H∗, is also provided, seen
as follows:

H
∗

�
3(n + 1)

m
. (12)

On the basis of the established zone for outlier detection,
it can be said that the majority of the output data points have
adequate and reliable validity for the construction of a
forecasting tool.

5. Sensitivity Analysis

Sensitivity analysis was performed on the input data to
determine the effect of each of them on the target parameter.
More details about this method are given elsewhere [36, 37].
Figure 2 shows the results of this analysis for the proposed

model. Accordingly, H and O have the most and the least
effect on the target parameter, respectively, which have
relevancy factors equal to +0.73 and −0.63, respectively.

6. Parameters of Model Evaluation

For quality assessment of agreement between values of es-
timated and actual output values, the statistical parameters,
listed as follows, are used:
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7. Modeling Results

+e support vector machine method was adjusted and pa-
rameterized using the teaching data following grey wolf
optimization.

+e forecasting tool’s performance assessment is crucial
after determining the optimum SVM structure. To that
purpose, Figure 3 shows a visual analogy between biodiesel
determined and the actual output values for testing and
training data collection. One of the common tools for model
evaluation is the concurrent representation of model outputs
and real output data. As demonstrated in this illustration,
the determined and the real target values overlap with each

–10

–8

–6

–4

–2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St
an

da
rd

 re
sid

ua
l

Hat value

Valid data
Suspected data

Leverage limit
Standard residual limit

Figure 1: Determining reliable and suspicious data usingWilliam’s
plot.
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other with a high rate of precision. +e proximity of the
value of forecasted output values to the actual one proves the
model’s correctness.

In Figure 4, the actual and anticipated cross-plot of
output values is shown for both the teaching and testing
stages. By representing actual values versus estimated ones,
the cross plot is specified. +e precision of the model will be
increasingly obvious when the obtained points are closer to
the bisector line. Furthermore, in these locations, the fitting

line can aid in accurate judgment. As demonstrated, there is
a high degree of agreement between biodiesel estimated and
real values, by R2 values of 0.9722 and 0.977 for the teaching
and testing stages, respectively. +ese values indicate how
well the suggested line fits. Put differently, these fitting line
values address the correlation between the expected and
actual output values. +ese findings in both training and
testing stages show that this model is qualified for predicting
biodiesel characteristics.
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Furthermore, Figure 5 depicts the relative divergence of
calculated values from true ones. +e discrepancy between
determined and actual target levels is explained by the
relative deviation. For the biodiesel output, these values
are accurate to within 10%. A good explanation for the
suggested model’s accuracy might be deviation’s low
value.

A statistical analogy is helpful after a visual comparison.
Table 1 provides a concise overview of the previously dis-
cussed parameters (MSE, RMSE, MRE, and R2 stated in
equations (13)–(16)). +ese parameters are set to demon-
strate the capabilities of this model to reproduce the bio-
diesels’ real output values. In the training stage, R2 � 0.972,
MRE� 1.98, MSE� 5.64E-02, and RMSE� 2.37E-01; in the
testing stage, R2 � 0.977, MRE� 1.97, MSE� 5.81E-02, and
RMSE� 2.41E-01. Because of the training findings, the
GWO-SVM algorithm has an excellent performance in
accurately predicting the biodiesel output values in the
training dataset.+ey indicate that in this domain the GWO-
SVM algorithm is well taught.

Tang et al. used similar data to this paper to estimate the
hydrogen contents of bio-oil by two models, MLR and RF
[20], and concluded that their models had the ability to
predict the target parameter with R2 and RMSE equal to
0.352 and 1.41 and 0.84 and 0.56, respectively.

Together with the training assessment, the model’s ef-
fectiveness in predicting unobserved output values of bio-
diesel must be investigated. Based on the findings obtained
during the testing stage, it is clear that GWO-SVM has
sufficient generality in evaluating the distinct biodiesel target
values.

8. Conclusion

Because biodiesel is a clean fuel form for producing energy,
the necessity of study on biodiesel qualities is obvious for all
researchers and authors working in this subject. A novel
prediction technique based on GWO-SVM was created in
this study to assess the hydrogen contents of bio-oil as a
function of pyrolysis conditions and biomass compositions
of feedstock. As previously stated, the uniqueness of this
model lies in the intriguing trait of model performance
independence from outliers. To check the correctness of the
databank, the leverage methodology was employed on
output data points first-ever in the writings, and this in-
vestigation proved the reliability of the utilized databank.
Contrasting model outputs with 116 values of experimental
target values yielded R2 � 0.973, MRE� 1.98, MSE� 5.68E-
02, and RMSE� 2.41E-01, as well as good visual accord
between experimental values and value of GWO-SVM
output data. SVM-based model was proved to be the best
forecasting tool, as shown by this analysis, with no re-
strictions in accurately predicting the target values of bio-
diesel in various operational settings. Furthermore, the
effects of various input parameters on output were deter-
mined. According to the model and sensitivity analysis
results, this research might be useful for scientists working
on biodiesel and nature-friendly production challenges. In
generating clean fuels, the studied tools are useful for
stimulating various processes. As a result, they have the
opportunity to support the resolution of global warming
issues.
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