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­is work aims to develop a robust machine learning model for the prediction of the relative viscosity of nanoparticles (NPs)
including Al2O3, TiO2, SiO2, CuO, SiC, and Ag based on the most important input parameters a�ecting them covering the size,
concentration, thickness of the interfacial layer, and intensive properties of NPs. In order to develop a comprehensive arti�cial
intelligence model in this study, sixty-nine data samples were collected. To this end, the Gaussian process regression approach
with four basic function kernels (Matern, squared exponential, exponential, and rational quadratic) was exploited. It was found
that Matern outperformed other models with R2� 0.987, MARE (%)� 6.048, RMSE� 0.0577, and STD� 0.0574. ­is precise yet
simple model can be a good alternative to the complex thermodynamic, mathematical-analytical models of the past.

1. Introduction

Nanoscience researchers have been recently interested in the
viscosity and thermal conduction of nano�uids [1, 2]. ­e
lubrication and thermal performances of a nano�uid are
dependent on its viscosity [3, 4]. To use a nano�uid for
thermal management purposes, it is required to bring a
trade-o� between a low viscosity level and a high thermal
conduction level [5–7]. Temperature, �uid form, and the
shape, size, and the load of nanoparticles are determinants of
such a trade-o� [8, 9].

Research has shown that viscosity strongly in�uences
nano�uids in solar energy systems through a direct e�ect on
the pump work and pressure drop [10–12]. ­ese �uids can
be more e£ciently used in solar energy systems through
detailed knowledge of their viscosity [3, 13]. Accurate ex-
perimental works have been conducted on the viscosity
evaluation of hybrid nano�uids [14–16]. However, experi-
mental evaluation is expensive and time-consuming. Re-
searchers have introduced approaches to estimate nano�uid
viscosity [17, 18]. Additionally, in recent years, newmethods
of modeling based on arti�cial intelligence such as ANFIS,
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SVM, and ANN have been used in a wide variety of sciences
[19–22]. ,ese approaches are mostly based on soft com-
puting and theoretical calculations [23]. Einstein theoreti-
cally developed a framework to estimate nanofluid viscosity
at small volume fractions [24].

Traditional correlation-based methodologies have also
been developed for nanofluid viscosity prediction [25].
However, such methodologies have been found to under-
estimate nanofluid viscosity as there are lack of important
parameters playing key roles in the nanofluid rheology
[18, 26]. Data mining and machine learning have been
widely employed for the relative viscosity estimation of
hybrid nanofluids in a variety of empirical conditions
[23, 27, 28]. Artificial neural networks (ANNs), support
vector machines (SVMs), and ANFIS-GA are among the
common machine learning techniques [29–32]. Researchers
have introduced generic machine learning algorithms in
recent years to estimate the viscosity of nanofluids based on
data mining of the synthesis of nanofluids. Alrashed et al.
introduced the ANN and ANFIS algorithms for the viscosity
estimation of C-based nanofluid [33]. A total of 129 ex-
perimental data samples were exploited to implement op-
timized viscosity estimation through the ANN.

Likewise, Bahrami et al. proposed twenty-four ANN
structures to estimate non-Newtonian hybrid Fe-Cu nano-
fluids within a mixed water-ethylene glycol base fluid [34].
Bayesian regularization (BR) outperformed the other methods
in the prediction of viscosity. ,ey argued that a rise in the
number of neurons in the hidden layer led to a slight per-
formance improvement. Ahmadi et al. comparatively studied a
number of machine learning algorithms in the dynamic vis-
cosity prediction of the CuO-water nanofluid [35]. ,ey
proposed ANN-MLP, MARS, MPR, M5-tree, and GMDH
algorithms based on the nanofluid concentration, temperature,
and nanostructure size. ,e ANN-MLP was found to have the
highest predictive performance. Amin et al. developed a
GMDH-ANN method to estimate the viscosity of Fe2O3
nanoparticles. ,e RMSE was obtained to be 0.0018 [35, 36].

,is study aims to describe an artificial intelligence-based
model for accurately predicting the relative viscosity of
nanoparticles. For this purpose, the GPRmodel has been used
considering its four main function kernels, including Matern,
squared exponential, exponential, and rational quadratic.
,ese kernel functions were selected because of their high
ability to predict and model the various data observed in the
literature [37–41]. ,is model was proposed since it was
newer and less complicated than analytical mathematical
models. Furthermore, this problem can be solved more ef-
fectively by offering an accurate model to accommodate the
limitations such as cost and time associated with accurate
measurement and monitoring of laboratory data. ,is study
employed these strategies and used various statistical methods
to analyze and predict the target data.

2. GPR

GPR is an efficient probabilistic model developed based on
kernels [42]. Gaussian processes include random variables of
a multivariate Gaussian distribution [43, 44]. Let x and y

denote the input and output domains. ,en, the sphere of
influence with n (xi, yi) pairs is obtained. ,e sphere do-
mains have an equal distribution and independence. It is
assumed that the average function μ�Y⟶ Re defines the
Gaussian process for the variables [45, 46]. ,e covariance
function k: X∗X⟶ Re is then performed. GPR is capable
of recognizing the random variable of f (x) for supplied
predictors (x), representing randomly featured function f
[47, 48]. ,e present work assumed an independent ob-
servation error with a mean value distribution of zero (i.e.,
μ (x) � 0), zero variance, and f (x) of the Gaussian process at
x (represented by k) [49–51]:

y � y1, . . . , yn( 􏼁 ∼ N o, K � σ2I􏼐 􏼑, (1)

where I is the identity matrix, and Kij � k(xi, xj). As
(y/x) ∼ N(o, K + σ2I) is normal, the conditional distribu-
tion of the conditional distribution of the test label with the
condition of a testing-training pair of ((Y∗/Y), X, X∗) is
((Y∗/Y), X, X∗) ∼ (μ, σ). As a result [52, 53],

μ � K X0, X( 􏼁 K(X, X) + σ2I􏼐 􏼑
− 1

Y, (2)

σ � X0, X0( 􏼁 − σ2IK X0, X( 􏼁 K(X, X) + σ2I􏼐 􏼑
− 1

K X, X0( 􏼁,

(3)

where K(X, X′) is the n × n∗ matrix of the covariance ex-
amined in each training-testing pair. ,e other
K(X, X), K(X, X∗), and K(X∗, X∗) values have a similar
matrix [54–56]. Also, X denotes the training vector label, Y
stands for the training data label, and X∗ represents the
testing data [57]. ,e specified covariance function for the
creation of a semifinite positive covariance matrix of
Kij � k(xi, xj). equations (2) and (3) is quantified by
specified kernel k and noise degree σ2 for deduction. Effi-
cient GRP training requires the selection of a suitable co-
variance function and parameters; the actual GFRP model
function is determined by the covariance function [58, 59]. It
contains the geometric structure of training samples. ,us,
the mean and covariance functions should be estimated
from the data (hyperparameters), so that prediction could be
performed accurately [60]. As this model has been used in
many recent studies in different fields of science, more
details are available elsewhere [61–65], so there is no need to
repeat them here.

3. Preprocessing Procedure

As mentioned, GPR was used to estimate the relative
viscosity of nanoparticles through the size, concentration,
thickness of the interfacial layer, and intensive properties of
NPs. A total of sixty-nine data samples were exploited [66].
MATLAB 2014 has been used to model these data. ,e
input data were classified into a training subset (75%) and a
testing subset (25%). Data normalization was carried out as
[67–69]

Dk � 2
x − xmin

xmax − xmin
− 1, (4)
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Figure 1: Continued.
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Figure 1: Simultaneous observation of modeled and real data to visually observe the accuracy of the model in di�erent phases of modeling:
(a) Matern, (b) exponential, (c) squared exponential, and (d) rational quadratic.
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Figure 2: Continued.
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Figure 2: Linear regression on the models proposed in this research: (a) Matern, (b) exponential, (c) squared exponential, and (d) rational
quadratic.
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Figure 3: Continued.
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Figure 3: Relative deviation values obtained by statistical analysis to determine the accuracy of the proposed models: (a) Matern,
(b) exponential, (c) squared exponential, and (d) rational quadratic.

8 International Journal of Chemical Engineering



where D denotes the parameter. Furthermore, subscriptions
n, max, and min represent the normalized, maximum, and
minimum values, respectively. ,e normalized data varied
from −1 to 1. ,e relative viscosity of nanoparticles was the
output obtained through the size, concentration, thickness
of the interfacial layer, and intensive properties of NPs.

4. Models’ Evaluation

Model performance could be evaluated using the percentage
of average relative deviation (ARD%), mean squared error
(MSE), coefficient of determination (R2), root mean square
error (RMSE), and standard deviation (STD) [70–73]. ,ese
evaluation indices are written as

STD �
1

N − 1
􏽘

N

i�1
(error − error)⎛⎝ ⎞⎠

0.5

,

RMSE �

������������������������

1
N

􏽘

N

i�1
X

actual
i − X

predicted
i􏼐 􏼑

2
􏼒 􏼓,

􏽶
􏽴

MARE �
100
N

􏽘

N

i�1

X
actual
i − X

predicted
i

X
actual
i

⎛⎝ ⎞⎠,

R
2

� 1 −
􏽐

N
i�1 X

actual
i − X

predicted
i􏼐 􏼑

2

􏽐
N
i�1 X

actual
i − X

actual
􏼐 􏼑

2 ,

MSE �
1
N

􏽘

N

i�1
X

actual
i − X

predicted
i􏼐 􏼑

2
,

(5)

where N denotes the number of data samples, while sub-
scriptions cal and exp represent the calculated and experi-
mental quantities, respectively [74]. Also, H

exp denotes the
experimental relative viscosity of nanoparticles.

5. Results and Discussion

,e models were evaluated using a variety of graphical
techniques. Figure 1 shows the evaluation results of the
models. As can be seen, all kernel functions of the GPR

model showed higher accuracy in the estimation of the
relative viscosity of nanoparticles.

Figure 2 shows the regression diagram. ,e highest fit
was obtained through linear regression between the ex-
perimental data and model estimates.

Figure 3 shows the errors of the models in the estimation
of the relative viscosity of nanoparticles (i.e., the difference
between the estimates and experimental data). As can be
seen, this model had the smallest error as a majority of the
data samples were distributed around the zero line.
According to our calculations, all kernels had an average
relative deviation of less than 30%.

Moreover, the predictive performance of the models in
the estimation of the relative viscosity of nanoparticles was
evaluated statistically. Table 1 provides the comparison of
the models in the statistical errors of the training data,
testing data, and input dataset.

5.1. Outlier Detection. ,e experimental data utilized to
develop a model strongly influence its reliability. It is re-
quired to detect and exclude outlier data as they have a
different behavior from other data samples. ,is enhances
the reliability of the model. To detect outliers, standardized
residuals and leverage analysis were employed. ,e candi-
date outliers were evaluated using theWilliams plot [75, 76].
It plots the standard residuals versus hat values. Further-
more, to identify the feasible region, hat values are obtained
as the diagonal elements of the hat matrix [76]:

H � X X
T
X􏼐 􏼑

− 1
X

T
, (6)

where X is a matrix with a size of n × k, where n is the
number of data samples, and k is the number of inputs. ,e
feasible region is represented by a square within the cutoff
and warning leverage value. ,e warning leverage value is
quantified as [77, 78]

H
∗

�
3(p + 1)

N
. (7)

It is worth mentioning that the cutoff is typically set to
3 for standardized residuals [79, 80]. ,e data samples that
are not positioned within the feasible region are assumed
to be outliers. Figure 4 shows theWilliams plot. According

Table 1: Different statistical parameters of the proposed models in order to determine their accuracy in predicting the target parameter.

Model Phase R2 MARE (%) MSE RMSE STD

Matern
Train 0.983 1.939 0.003870406 0.0622 0.0585
Test 0.993 18.614 0.003334471 0.0577 0.0554
Total 0.987 6.048 0.003738364 0.0577 0.0574

Exponential
Train 0.982 1.996 0.004097029 0.0640 0.0603
Test 0.989 22.547 0.004983314 0.0706 0.0678
Total 0.985 7.059 0.004315389 0.0706 0.0617

Squared exponential
Train 0.982 2.185 0.004142107 0.0644 0.0597
Test 0.990 22.587 0.004904529 0.0700 0.0664
Total 0.985 7.211 0.00432995 0.0700 0.0609

Quadratic
Train 0.972 3.027 0.006638142 0.0815 0.0740
Test 0.988 23.527 0.005520366 0.0743 0.0697
Total 0.978 8.078 0.006362748 0.0743 0.0725
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Figure 4: Continued.
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Figure 4: Analysis to determine the e�ective suspicious points on the proposed models: (a) Matern, (b) exponential, (c) squared ex-
ponential, and (d) rational quadratic.
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to this figure, Matern, exponential, squared exponential,
and rational quadratic were found to have only two
outliers.

6. Conclusions

,is study adopted the GPR approach to estimate the rel-
ative viscosity of nanoparticles based on the size, concen-
tration, thickness of the interfacial layer, and intensive
properties of NPs. ,e Matern kernel was found to out-
perform exponential, squared exponential, and rational
quadratic in the estimation of outputs. MARE was calculated
to be 6.048%, 7.059%, 7.211%, and 8.078% for them, re-
spectively. Moreover, the dependence of the target values on
the inputs was measured using a sensitivity analysis. ,e
proposed model could be significantly helpful in mechanical
and chemical applications, particularly in heat transfer
evaluation for heat exchangers where a nanofluid (e.g., CNT-
water nanofluid) is employed.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, “,e
viscosity of nanofluids: a review of the theoretical, empirical,
and numerical models,” Heat Transfer Engineering, vol. 37,
no. 5, pp. 387–421, 2016.

[2] L. Cheng, E. P. Bandarra Filho, and J. R. ,ome, “Nanofluid
two-phase flow and thermal physics: a new research Frontier
of nanotechnology and its challenges,” Journal of Nanoscience
and Nanotechnology, vol. 8, no. 7, pp. 3315–3332, 2008.

[3] S. M. S. Murshed and P. Estellé, “A state of the art review on
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