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Copyright © 2022 R. M. Fonseca-Pérez et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Harmony search algorithm and its variants have been used in several applications in medicine, telecommunications, computer
science, and engineering.�is article reviews the global andmulti-objective optimization for chemical engineering using harmony
search. �e main features of the HS method and several of its popular variants and hybrid versions including their relevant
algorithm characteristics are described and discussed. A variety of global and multi-objective optimization problems from
chemical engineering and their resolution using HS-based methods are also included. �ese problems involve thermodynamic
calculations (phase stability analysis, phase equilibrium calculations, parameter estimation, and azeotrope calculation), heat
exchanger design, distillation simulation, life cycle analysis, and water distribution systems, among others. Remarks on future
developments of HS and its related algorithms for global and multi-objective optimization in chemical engineering are also
provided in this review. HS is a reliable and promising stochastic optimizer to resolve challenging global and multi-objective
optimization problems for process systems engineering.

1. Introduction

Optimization problems are inherent for the process systems
engineering of almost all units and operations associated to
chemical engineering industry [1, 2]. Chemical engineers
frequently face the scenario of identifying the best condi-
tions to operate, for example, chemical reactors, mixing and
separation equipment, polymerization systems, waste
treatment and depollution processes, conventional and in-
tensi�ed separation sequences, mass-energy integration
schemes, and supply chains. �e resolution of these opti-
mization problems allows to increase the economic pro�t, to
reduce the energy consumption and its related environ-
mental impacts, and to improve the sustainability and other
target metrics/characteristics of the process under analysis.
�erefore, the development and application of reliable
numerical procedures for achieving the optimal process

design and operation play an important role in the modern
chemical engineering [2, 3].

Formally, the optimization refers to the implementation
of mathematical and numerical procedures to calculate the
best values of the decision variables (also known as opti-
mization variables) that maximize or minimize one or more
objectives of the analyzed system under the restrictions
generated from a given scenario [4]. �e optimization
problems can be classi�ed considering the characteristics of
their objective function(s), decision variable(s), and con-
straint(s). For example, a problem is known as discrete,
continuous, or combinatorial depending on the mathe-
matical nature of variables that integrate the solution vector.
�e objective function properties determine if a given op-
timization problem can be classi�ed as convex or non-
convex, which can be also constrained by the restriction(s) of
the search space via equality and inequality equations [5].
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Chemical engineering optimization problems usually
involve systems that are represented by non-linear complex
(analytical and/or differential) equations derived from the
mathematical models employed to describe the thermody-
namics, transfer phenomena, and performance metrics.
Several decision variables (discrete and continuous) that
correspond to the degrees of freedom (i.e., independent
variables) of the system can be involved in the problem
solving. /ese optimization problems usually imply non-
convex objective functions with several optimum values
including the possibility of trivial and non-physical solu-
tions. /is context generates a continuous demand of reli-
able and effective optimization approaches to resolve
challenging problems from chemical engineering
applications.

Optimization techniques can be broadly classified as
stochastic and deterministic [6–9]. Deterministic procedures
like interval-based methods [10, 11], branch and bound
[12, 13], primal-dual [14], and outer-approximation ap-
proaches [15] can guarantee theoretically the global opti-
mum solution for some types of chemical engineering
problems. However, they may require an extensive com-
putational time to find the global solution (which is usually
higher than those of stochastic optimization methods);
besides, specific properties of objective functions and
mathematical reformulations are needed to ensure the global
optimum, thus limiting the resolution of complex problems
[6, 16]. Alternatively, stochastic optimization methods can
outperform several limitations of deterministic ones via the
utilization of random search sequences coupled with heu-
ristics and metaheuristics to generate a solution to the
optimization problem [17, 18]./ese optimizers are useful to
resolve a variety of complex problems such as black-box
algorithms, thus implying no restrictions in terms of the
characteristics of objective function(s), problem dimen-
sionality, and presence of constraints [19, 20]. A balance
between diversification (i.e., exploration that is the ability of
discovering promising areas to find the global optimum in
the search space) and intensification (i.e., exploitation that
utilizes the available information to guide the search process
for improving the solution quality) is of great importance in
these optimization algorithms [17, 21, 22]. A wide spectrum
of stochastic optimization methods has been proposed and
applied to solve chemical engineering problems [17, 23–26].
Some well-known techniques are cuckoo search (CS) [27],
differential evolution (DE) [28], particle swarm optimization
(PSO) [29], ant colony optimization (ACO) [30], tabu search
(TS) [31], simulated annealing (SA) [32], genetic algorithm
(GA) [33], and harmony search (HS) [34]. Novel strategies
have been also introduced like grey wolf optimization
(GWO) [35], flower pollination algorithm (FPA) [36], water
cycle algorithm (WCA) [37], stochastic fractal search (SFS)
[38], water wave optimization (WWO) [39], elephant
herding optimization (EHO) [40], crow search algorithm
(CSA) [41], sine cosine algorithm (SCA) [42], salp swarm
algorithm (SSA) [43], butterfly optimization algorithm
(BOA) [44], emperor penguins colony (EPC) [45], group
teaching optimization algorithm (GTOA) [46], and smart
flower optimization algorithm (SFOA) [47].

Since its publication, HS has been considered as a core
reference method for researchers from different research
and science fields. Several variants of this optimizer as well as
its hybrid versions have been proposed and tested to solve a
variety of global and multi-objective engineering problems
[48, 49]. Results of these numerical studies have proved that
key advantages of HS rely on its capability to handle discrete
and continuous variables, its ability to escape from local
minima, its independency of initial values for the decision
variables, and its straightforward algorithm that utilizes
simple operators and calculations [22, 48, 50]. Different
reviews on HS have been published covering the following
topics: HS algorithm and its most relevant variants, im-
provements, and hybridizations with other metaheuristics
including applications in robotics, medicine, electrical en-
gineering, image processing, data mining, civil engineering,
power systems, manufacturing and design, scheduling,
networking, agriculture, and water resource management
[16, 48, 49, 51–54]. For example, Yoo et al. [55] published an
overview about the application of HS in civil engineering.
Askarzadeh [50] and Nazari-Heris et al. [56] carried out a
literature review on HS-based methods to optimize electrical
system problems. Yi et al. [57] presented a survey on HS and
its applications on intelligent manufacturing. Zhang and
Geem [58] provided a detailed study on the historical de-
velopment of HS where the discussion focused on selected
variants and hybridizations of this algorithm and their
parameters, alternative initialization procedures, and con-
straint handling and multi-objective optimization tech-
niques. Abualigah et al. [59] reviewed HS and its variants on
clustering applications, while Nasir et al. [60] focused on the
potential use of this stochastic optimization method for
mathematics, computer science, and several engineering
areas in three particular countries (i.e., China, South Korea,
and Japan). Nasir et al. [61] presented a detailed overview
about the combination and application of fuzzy logic theory
within HS. However, the application of HS for global and
multi-objective optimization in chemical engineering has
not been covered in the available reviews despite its suc-
cessful results in this engineering field.

/e aim of this review is to provide the readers a broad
perspective on the use of HS in a diverse set of optimization
problems from the chemical engineering. Section 2 of this
document briefly covers the ideas behind the development of
HS, thus providing a comprehensive description of its al-
gorithm and relevant variants. A discussion on HS algo-
rithms for multi-objective optimization including a rich
collection of algorithms is also provided in this section.
Section 3 provides information on the application of HS to
resolve optimization problems from chemical engineering
such as the phase stability analysis and Gibbs free energy
minimization of both reactive and non-reactive systems, the
parameter identification of classical thermodynamic models
like equations of state and local composition models, the
calculation of azeotropes, critical points, and saturation
conditions, the design of shell and tube heat exchangers and
heat exchanger networks, the design and optimization of
distillation sequences including intensified equipment (e.g.,
dividing wall column and thermally coupled reactive

2 International Journal of Chemical Engineering



distillation), the life cycle analysis of energy generation
systems, the design and optimization of water distribution
systems, the multi-objective optimization of pump sched-
uling, the resolution of chemical equation balance, the pa-
rameter estimation in reaction kinetics, the chemical reactor
design, the optimization and design of thermal cracking, and
the resolution of optimal control problems. An overview of
opportunities areas and current challenges to improve the
performance of HS-based optimizers is given in Section 4.
Finally, this review indicates that HS is a reliable and
competitive algorithm to resolve a wide spectrum of global
and multi-objective optimization problems from chemical
engineering.

2. Fundaments of Harmony Search

2.1. Description of Basic Algorithm. In the musical impro-
visation, each musician plays his/her instrument sponta-
neously in a possible range of musical notes to achieve
harmony together. When the musicians improvise, they
could play a previously learned note, play something similar
to that note and adjust it to the desired pitch, or play a new
note. /e quality of the improvised harmony is evaluated via
an aesthetic standard, thus looking for quality and perfection
in the performed musical piece. /is music conception
inspired Geem et al. [34] to develop the metaheuristic of HS.
By comparing the musical improvisation with the optimi-
zation process, each decision variable (i.e., degree of freedom
from the process under analysis) corresponds to a musician,
the range of musical notes of an instrument refers to the
range (i.e., search space) of the optimization variables, and,
finally, the improvised harmony represents the solution
vector for a given iteration [34] (see Figure 1). Just as the
musical harmony is enhanced continuously, the improve-
ment of the objective function value is expected at each
performed iteration.

Mathematically speaking, an unconstrained single-ob-
jective (global) optimization problem can be defined as

Optimizef(x), (1)

subject to

LBi ≤xi ≤UBi, i � 1, 2, . . . , n, (2)

where f(x) is the objective function, x � (x1, x2, . . . , xn) is
the solution vector, xi is a decision variable subject to lower
and upper bounds LBi and UBi, respectively, and n is the
problem dimension (i.e., number of decision variables). For
the case of constrained problems, the optimization of ob-
jective function given by equation (1) must satisfy the fol-
lowing restrictions:

gi(x) ≤ 0, i � 1, . . . , p, (3)

hi(x) � 0, i � 1, . . . , q, (4)

where q and p are the number of equality hi(x) and in-
equality gi(x) constraints, respectively.

Herein, it is convenient to note that constraints given by
equations (3) and (4) can be easily handled by HS using a

penalty approach [63, 64]. Constrained and unconstrained
global optimization problems are commonly formulated
during the chemical engineering practice and they include
the parameter identification of thermodynamics, kinetic and
transfer phenomena models [1, 65–67], phase equilibrium
calculations [68, 69], and design of purification systems
using a single objective or target metric [70–72], among
others. HS is an effective optimizer to resolve a wide
spectrum of global optimization problems from chemical
engineering [49, 73]. /is method has four parameters to
control the search process to minimize or maximize the
tested objective function [34]: pitch bandwidth (bw), pitch
adjusting rate (PAR), harmony memory considering rate
(HMCR), and harmony memory size (HMS). HS optimizer
comprises four main steps: (1) initialize the harmony
memory (HM), (2) improvise a new harmony, (3) update
HM, and (4) perform the iterative cycle until the stopping
condition is satisfied. A brief description of these steps is
provided below.

Step 1. Initialize HM. In this stage, each decision variable of
the solution vectors is randomly generated and stored in HM
with their respective objective function values

HM �
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. (5)

Each candidate solution vector is evaluated and sorted in
HM according to its value of objective function:
f(x1)<f(x2)< · · · <f(xHMS).

Step 2. Improvise a new harmony. In this stage, a new
harmony (i.e., new solution vector) xnew � [xnew

1 ,

xnew
2 , . . . , xnew

n ] is obtained using three numerical operators:
random selection, pitch adjustment, and memory consid-
eration. /is improvisation process is mainly controlled by
two probabilistic parameters, PAR and HMCR, where
0≤HMCR, PAR≤ 1, that are applied sequentially in the
algorithm to generate a new set of candidate solutions. First,
the new values of decision variables xnew

i are obtained
according to

x
new
i �

x
j

i ∈ x
1
i , x

2
i , . . . , x

HMS
i􏽮 􏽯, with probability HMCR,

rand LBi,UBi( 􏼁, with probability(1 − HMCR),

⎧⎨

⎩

(6)

where rand is a random number within the variable bounds.
In the memory consideration mechanism, HMCR is the
probability of selecting one element from HM as the new
decision variable value. /e random selection occurs with
probability (1 –HMCR) and the new decision variable value
is calculated randomly. If xnew

i is obtained via the memory
consideration, the pitch adjustment procedure is performed
according to the following operator:
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x
new
i �

x
new
i ± rand0 ∗ bw, with probability PAR∗HMCR,

x
new
i , with probability (1 − PAR)∗HMCR,

⎧⎨

⎩

(7)

where rand0 is a random number between 0 and 1. /e
improvisation step considers all the harmonies stored in
HM.

Step 3. Update HM. /e objective function is evaluated
using xnew

i ; if its value is better than the worst stored in HM,
f(xnew)<f(xHMS), the new solution vector will substitute
its place in HM.

Step 4. Iterative cycle. Steps 2 and 3 are repeated until the
specified termination criterion is satisfied.

Illustratively, Figure 2 presents a simplified diagram of
the HS algorithm. It is convenient to recall that the per-
formance of a stochastic optimization algorithm relies on the
trade-off between exploration and exploitation stages
[74, 75]. HMCR and PAR affect the success rate during the
global optimization. PAR parameter controls the local
search where a low value with a narrow bw can delay the
algorithm convergence since the exploration is limited to a
small region of the search space. In contrast, a high PAR
value with a large bw enables HS to escape from areas
potentially close to the local optimal solutions [53]. /e
exploitation stage is mainly governed by HMCR, which has
been considered as a key parameter that determines the level
of elitism. A low value of this parameter implies a slow
convergence to the optimal solution. On the contrary, a high
HMCR value favors the algorithm convergence but at the
same time generates the possibility that HS could be trapped
in a local solution [53]. Both parameters influence the
performance of HS to find global or local solutions, and an
adequate balance between exploitation and exploration
stages should be obtained via their tuning [21, 22]. /e
determination of the best HS algorithm parameters has

proved to be problem dependent. /erefore, previous
studies and preliminary calculations are useful as a starting
point to define these values for solving the optimization
problem at hand. Some authors have indicated that HS
effectiveness could not be very sensitive to the values of these
parameters for some optimization problems and, under
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Figure 1: Illustration of the analogy between musical improvisation and optimization concepts [62].

Start

End

Iteration = 1

Iteration =
iteration + 1 

No

Yes

Yes

No

Set values of HS
parameters 

Random initialization and fitness
evaluation of HM harmonies 

Improvise a new
harmony xnew

f (xnew)< f(xHMS) 

Update HM

Termination criterion
satisfied? 

Figure 2: Flowchart of harmony search algorithm.
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these circumstances, it is not necessary to perform an ex-
haustive adjustment of them [76, 77].

2.2. Variants of Harmony Search. Since the initial version of
HS algorithm was introduced [34], a large number of var-
iants have been developed by different researchers with the
aim of improving its performance. From a general per-
spective, the modifications of this optimization method are
usually made in the algorithm structure or in the way that its
parameters are determined. Also, a wide variety of hybrid
HS-based approaches can be found in the literature. A brief
description of relevant HS variants is provided below.

2.2.1. Improved Harmony Search. Mahdavi et al. [78] de-
veloped the improved harmony search (IHS). /e main
difference between HS and IHS relies on the improvisation
step. HS uses fixed PAR and bw parameters, while IHS
calculates them dynamically according to the iteration
number via

PAR(iter) � PARmin +
PARmax − PARmin

itermax
∗ iter, (8)

bw(iter) � bwmax exp
ln bwmin/bwmax( 􏼁

itermax
∗ iter􏼢 􏼣, (9)

where subscripts min and max indicate the minimum and
maximum values of bw and PAR parameters and iter is the
actual iteration. PAR increases linearly with the maximum
number of iterations (itermax), while bw decreases exponentially.

2.2.2. Global-Best Harmony Search. /e global-best har-
mony search (GHS) was introduced by Omran andMahdavi
[79]. /is method incorporates the concept of swarm in-
telligence used in PSO. A swarm is a set of particles in PSO
where each solution vector is presented by a particle. /e
location of the vector in the search space is given by its best
fitness and the best global solution found by all the swarm
particles [29]. In GHS, the improvisation step was modified
implying that xnew

i will take the value of the corresponding
element of the best harmony in HM in case of pitch ad-
justment./e bw parameter is omitted and PAR is calculated

according to equation (8). A comparison of GHS and HS
improvisation procedures is provided below (see Table 1).

2.2.3. Novel Global Harmony Search. A new HS algorithm
called the novel global harmony search (NGHS) was re-
ported by Zou et al. [80]. Based on swarm intelligence,
NGHS adds two relevant features to the improvisation
step: genetic mutation and position updating. /e original
HS parameters (i.e., HMCR and PAR) are substituted by a
genetic mutation probability pm to avoid local solutions
caused by premature convergence. Also, xnew replaces
xHMS even if it has worst fitness when updating HM. /e
improvisation step of NGHS is described below (see
Table 2).

2.2.4. Self-Adaptive Global-Best Harmony Search. /e self-
adaptive global-best harmony search (SGHS) was based on
GHS [81] and incorporates a dynamic parameter adjustment
mechanism to define bw, PAR, and HMCR. Since defining
these algorithm parameters is problem dependent, its
adaptative adjustment makes SGHS suitable to solve opti-
mization problems with different characteristics. Initially,
PAR and HMCR are calculated based on a fixed mean value
and standard deviation assuming a normal distribution.
After certain number of iterations, these mean values are
recalculated and HMCR and PAR are updated. Regarding
bw, its value is dynamically reduced as the iterations
increase:

bw(iter) �

bwmax −
bwmax − bwmin

itermax
∗ 2 · iter, if iter<

itermax

2
,

bwmin , if iter≥
itermax

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

2.2.5. Improved Global-Best Harmony Search. El-Abd [82]
introduced an enhanced version of GHS, which was called
the improved global-best harmony search (IGHS). In the
improvement step, the memory consideration is performed
as follows:

x
new
i �

x
j
i ∈ x

1
i , x

2
i , . . . , x

HMS
i􏽮 􏽯 + G(0, 1)∗ bw, with probability HMCR,

rand LBi,UBi( 􏼁, with probability(1 − HMCR),

⎧⎨

⎩ (11)

where a Gaussian distribution with mean 0 and standard
deviation of 1 is used to calculate the random number
G(0, 1). On the other hand, the pitch adjustment mechanism
is given by

x
new
i �

x
best
i + ϕ∗ bw, with probability PAR∗HMCR,

x
new
i , with probability(1 − PAR)∗HMCR,

⎧⎨

⎩

(12)

where ϕ ∈ [− 1, 1]. In this algorithm, PAR decreases linearly
over iterations, while HMCR remains constant during the
optimization process.

2.2.6. Improved Differential Harmony Search. Wang et al.
[83] developed the improved differential harmony search
(IDHS) algorithm. IDHS integrates two solution vector
generation strategies commonly used in DE: DE/best/1/bin
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and DE/rand/1/bin. /e former is incorporated in memory
consideration and the second is applied to random selection.
bw is removed in the pitch adjustment to include a swarm
intelligence concept where xnew

i takes the value of xbest
i as in

GHS. HMCR and PAR are dynamically adapted according to

HMCR(iter) � HMCRmin + HMCRmax − HMCRmin( 􏼁∗
iter

itermax
,

PAR(iter) � PARmin + PARmax − PARmin( 􏼁∗
iter

itermax
.

(13)

2.2.7. Enhanced Self-Adaptive Global-Best Harmony Search.
Luo et al. [84] developed the enhanced self-adaptative
global-best harmony search method (ESGHS). A parameter-
free scheme was proposed where HMCR can be updated
dynamically according to a normally distributed random
number in a problem dimension dependent range. PAR is
calculated using the current and maximum number of it-
erations and bw is defined by

HMCR(iter) ∈ rand
n

1 + n
,

1
1 + n

􏼒 􏼓,

PAR(iter) � 1 −
iter − 1
itermax

,

bwi �

x
h
i − x

m
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, if x
h
j ≠ x

i
j,

UBi − LBi( 􏼁∗ exp − UBi − LBi( 􏼁∗
iter

itermax
􏼢 􏼣, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where superscripts h and m refer to random integers within
[1, HMS]. /e pitch adjustment mechanism of ESGHS is
given by

x
new
i � x

h
i + ϕ∗ x

m
i − x

h
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (15)

If xm
i � xh

i at any point, the following equation is used for
the pitch adjustment:

x
new
i � x

h
i + ϕ∗ UBi − LBi( 􏼁∗ exp − UBi − LBi( 􏼁∗

iter
itermax

􏼢 􏼣.

(16)

In the random selection (1 − HMCR), the new harmony
element is obtained as follows:

x
new
i � randG μi, σ( 􏼁, (17)

where a Gaussian distribution with mean μi � xbest
i and

standard deviation σ � 1 − [(iter − 1)/(itermax)]
2 is used to

calculate the random number randG.

2.2.8. Selective Acceptance Novel Global Harmony Search.
/e selective acceptance novel global harmony search
(SANGHS) was proposed by Li et al. in [85] which is among
the latest published articles regarding the development of HS
variants. In this algorithm, an additional selective acceptance
mechanism is incorporated besides the two mechanisms
involved in NGHS (i.e., position updating and genetic
mutation), which is inspired by the SA concept. An ac-
ceptance probability APiter is calculated at each iteration to
decide if the new solution is accepted or rejected following
the next criterion:

Table 1: Comparison of the improvisation step in HS and GHS.

Step 2: HS algorithm Step 2: GHS algorithm
(1) for each i ∈ [1, n]do
(2) if rand1 ≤HMCR then
(3) xnew

i � x
j
i where j ∈ [1, HMS]

(4) if rand2 ≤PAR then
(5) xnew

i � xnew
i ± rand∗ bw

(6) end if
(7) else
(8) xnew

i � rand(LBi,UBi)

(9) end if
(10) end for

for each i ∈ [1, n]do
if rand1 ≤HMCR then

xnew
i � x

j
i where j ∈ [1,HMS]

if rand2 ≤ PAR then
xnew

i � xbest
k where k ∈ [1, n]

end if
else

xnew
i � rand(LBi,UBi)

end if
end for

Superscript best corresponds to the index of the best harmony in HM.

Table 2: Improvisation step of the NGHS algorithm.

Step 2: NGHS algorithm
(1) for each i ∈ [1, n]do
(2) xR � 2∗xbest

i − xworst
i

(3) if xR >UBi then
(4) xR � UBi

(5) else if xR < LBi then
(6) xR � LBi

(7) end if
(8) xnew

i � xworst
i + rand∗ (xR − xworst

i )

(9) if rand≤pm then
(10) xnew

i � rand(LBi,UBi)

(11) end if
(12) end for
x R is the value of the decision variable with adaptative step. Superscript
worst corresponds to the index of the worst harmony in HM.
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APiter
�

1, if f xnew( 􏼁≤f xHMS
􏼐 􏼑,

f xHMS
􏼐 􏼑 − f xbest􏼐 􏼑

f xnew( 􏼁 − f xbest􏼐 􏼑
, if f xnew( 􏼁>f xHMS

􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

2.2.9. Other Recent HS Algorithm Developments. /e im-
proved differential-based harmony search algorithm with
linear dynamic domain (ID-HS-LDD) was introduced by
Zhu et al. [86]. Two novel strategies are used in this algo-
rithm: an improved differential-based technique (DE/best/2/
bin) that replaces the original bw parameter and a dynamic
change in the search space to avoid stagnation in local
optima regions. /ese authors also introduced an additional
parameter that modifies the scheme to generate new har-
monies with the aim of enhancing the convergence speed.

Zhao et al. [87] developed a new adaptive HS algorithm
(aHSDE) based on periodic learning, differential mutation,
and linear population size reduction. /is algorithm con-
siders all the solutions stored in HM, including the best
solution, to generate the new harmony elements using a
differential mutation operator (DE/best/2). In order to
balance the convergence rate and diversity, a linear re-
duction strategy is applied to handle HMS in terms of the
maximum and minimum values of HMS and iterations.
Also, the concept of period learning was used to dynamically
adjust PAR and F (a scaling factor in the differential mu-
tation operator) with the objective of improving the algo-
rithm adaptability.

Jeong et al. [88] presented an advanced-parameter-set-
ting-free strategy to handle HS parameter definition. HMCR
parameter was calculated with respect to the maximum and
current numbers of iterations, as well as the number of
optimization variables. A sigmoid function was involved in
HMCR calculation to maintain its value within 0.5 and 1.
PAR parameter was calculated with respect to HMCR, and
the sigmoid function was also applied to a dimensionality
dependent term.

/e most relevant features of HS variants reviewed in
this paper are summarized in Tables 3–5. In particular,
Table 3 contains those algorithms based on the HS pa-
rameter modifications, and Table 4 includes algorithms
based on the HS structure modification, while Table 5
provides information on HS hybridizations. Figures 3 and
4 provide the grouping of different HS-derived algorithms
according to the changes in algorithm structure, parameter
determination, hybrid techniques, and those techniques to
address optimization problems with discrete variables.

2.2.10. Multi-Objective HS Algorithms. Several chemical
engineering problems can involve several objectives that are
usually in conflict and should be optimized simultaneously
[1, 190]. /e optimal design of conventional and intensified
separation sequences to maximize the purity of target
compound(s) and to minimize the energy consumption

[191, 192], the integration of mass and energy in different
processes [193–195], and the simultaneous minimization of
economic (i.e., capital and operating costs) and environ-
mental objectives [196] are examples of multi-objective
optimization problems in the context of chemical engi-
neering. /e resolution of these problems can be performed
using multi-objective HS algorithms. Formally, an optimi-
zation problem with two or more objectives can be defined
as

Optimize f1(x), f2(x), . . . , fm(x)􏼈 􏼉, (19)

where m is number of objective functions to optimize si-
multaneously. /is multi-objective problem can be also
subject to inequality and equality constraints given by
equations (2)–(4). /e determination of Pareto front(s) is
the main characteristic of the resolution of multi-objective
optimization problems, which are used to analyze the re-
lationships between conflicting objective functions and the
corresponding values of decision variables [197].

Stochastic multi-objective optimization methods have
been of great interest in process systems engineering due to
their advantages to handle both linear and non-linear
equality and inequality constraints and their capabilities to
escape from local solutions and to employ any type of
objective functions and decision variables [198].

/e first applications of HS to solve multi-objective op-
timization problems were carried out by Geem [199] and
Gemm and Hwangbo [200] for the scholar bus routing
problem and satellite heat pipe design, respectively. After-
wards, Sivasubramani and Swarup [201] developed the multi-
objective harmony search (MOHS) algorithm. In thismethod,
the PAR and bw parameters change at each generation
according to a fixed maximum and minimum values and the
current andmaximum number of iterations. To update HM, a
non-dominated sorting and ranking mechanism and a dy-
namic crowding distance strategy are used [202, 203]. /e
fuzzy membership approach is employed to find a balanced
Pareto front solution between the conflicting objectives.

Ricart et al. [204] presented two algorithms to solve
optimization problems with two ormore objectives: MOHS1
and MOHS2. /e first method employs a ranking assign-
ment method proposed by Fonseca and Fleming [205] where
the best trade-off solutions are stored in HM by considering
their rank. MOHS2 algorithm utilizes an alternative memory
at each iteration, which is combined with the original
memory, to select a limited number of solutions for the next
iteration. Both algorithms were compared with the non-
dominated sorting genetic algorithm II (NSGA-II) on ZDT
functions.

Pavelski et al. [206] proposed a series of multi-objective
optimization algorithms based on HS, IHS [78], GHS, and
SGHS. /ese methods were based on the NSGA-II concept,
so the novel algorithms were called non-dominated sorting
harmony search (NSHS), NSIHS, NSGHS, and NSSGHS,
respectively. For all the methods, the quantity of solution
vectors in the memory is duplicated, and the non-dominated
sorting with elitism and crowding distance is applied to
update HM. /e performance of these algorithms was
assessed according to the Friedman test via the solving of the
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Table 3: Harmony search variants based on the operators to calculate the algorithm parameters.

Algorithm Remarks Reference

HS∗ Based on a detailed mathematical analysis of the HM variance, the bw parameter was defined as the
population standard deviation. Mukhopadhyay et al. [89]

HS∗
Self-adaptive HS./e bw parameter is replaced into the new harmony calculations considering the
minimum and maximum values in HM. Furthermore, low-discrepancy sequences are used to

initialize HM in place of random number generation.
Wang and Huang [90]

HS∗ Adaptive HS. Dynamical adjustment of PAR andHMCR by a probabilistic selection based onmean
values of the HM matrix. Hasançebi et al. [91]

PSF-HS

Parameter-setting-free HS. /ree steps were proposed to avoid the tuning of HS parameters: (1) a
random tuning where HM is filled with random solution vectors, (2) a rehearsal step where a
certain amount of solution vectors is generated and an additional HMS size memory keeps track of
harmony source, and (3) a performance step where HMCR and PAR are used for each decision

variable.

Geem and Sim [92]

PHS

Proposed HS. /e bw parameter is calculated using derivatives (finite difference method) and
lower and upper variable bounds. /e probability of pitch adjustment is modified. An

improvement to PHS was also presented where two bw definitions are used in the improvisation
step. New decision probabilities are employed.

Jaberipour and Khorram
[93]

EHS Explorative HS. /e standard deviation of the current population defines the value of bw. Penalty
strategy is used for constraint handling. Das et al. [94]

NGHS
A NGHS adaption to solve large-scale knapsack problems. /e removal of HMCR and PAR is
proposed to introduce a genetic mutation concept. A strategy from PSO is used to guide the worst

solutions to global-best surroundings.
Zou et al. [95]

DHS Discrete HS. It is designed to handle discrete variables. PAR and bw are set considering the defined
bounds as well as the current and maximum number of iterations. Askarzadeh [96]

NSHS Novel self-adaptive HS. HMCR and bw are fixed according to the problem dimension and decision
variable bounds. Luo [97]

LAHS Learning automata-based HS. Smart parameter setting of HMCR, PAR, and bw through a learning
automata implementation [98]. Enayatifar et al. [99]

DSHS

Dynamic self-adaptive HS. It is based on the implementation of the best-to-worst ratio (BtW)
concept in HM. PAR is dynamically adjusted in terms of BtW. Two bandwidth parameters are
used, active bw and dynamic bandwidth value dbw. /ese parameters are calculated for each
decision variable and are dynamically adjusted according to its standard deviation in all the HM.

Kattan and Abdullah
[100]

ABHS

Adaptative binary HS. New harmonies are created based on single or multiple vectors in HM. PAR
is modified according to the best HM vector. HMCR and PAR are obtained using several

mechanisms: linear decrease, linear and non-linear increase, and random, where all are calculated
as a function of current and total iterations. ABHS can generate one or more harmonies at each
generation. HM update is performed in serial or parallel according to the number of generated new

candidates.

Wang et al. [101]

ABHS
Adjustable bandwidth HS. Minimum and maximum values for PAR and HMCR are defined.
Additionally, a saturation parameter (SP) is proposed to control bw parameter. An alternative

version of ABHS with changes in bw calculation is also presented.
Contreras et al. [102]

GDHS Global dynamic HS. It is based on a dynamic change in bw, PAR, and HMCR parameters, as well as
in the domain of HM variables. Khalili et al. [103]

PAHS Parameter adaptive HS. Four dynamic change strategies for PAR and HMCR in terms of the
number of iterations were implemented. Kumar et al. [104]

SFHS Self-regulated fretwidth HS. It considers changes in bw (also called fretwidth parameter) at each
iteration based on several criteria. Amaya et al. [105]

SBHS
Simplified binary HS. It focuses on changes to the improvisation step./emethod is parameter free
(i.e., PAR and bw were removed), and HMCR is dynamically adjusted. It incorporates greedy local

search. SBHS was used to solve large-scale knapsack problems.
Kong et al. [106]

HS∗ Dynamic adjustment of bw. For a particular decision variable, bw is defined according to the
current iteration and its maximum and minimum values. Kalivarapu et al. [107]

GGHS Gaussian GHS. HM is initialized based on a Gaussian distribution and it is adjusted considering a
dynamic bw. /e best harmony is also adjusted using a dynamic standard deviation.

Keshtegar and Sadeq
[108]

ImHS
Improved HS. /e bw parameter decrements according to an exponential function in terms of the

number of iterations. A selection scheme based on a proposed parameter called rate of
improvement adjustment is applied.

Portilla-Flores et al. [109]

8 International Journal of Chemical Engineering



Congress on Evolutionary Computation 2009 multi-objec-
tive benchmark set.

Nekooei et al. [207] developed an improved version of
NGHS called improved multi-objective harmony search
(IMOHS). /is multi-objective method was based on the
combination of all the objective functions involved in the
problem into a single objective through a weighted sum
following the approach of previous works [208, 209]. As in
MOHS, the search process is governed by non-dominated
ranking and sorting. An additional memory known as ar-
chive is implemented to keep a record of non-dominated
harmonies at each iteration; meanwhile, the dominated
harmonies are stored in HM. An update process based on a
specified rank of dominated harmonies is considered to
maintain an adequate relationship between exploitation and
exploration stages of the algorithm.

Sabarinath et al. [210] proposed the multi-objective pa-
rameter adaptative harmony search (PAHS). PAHS algorithm
was adapted to handle multi-objective optimization problems
using the weighted sum approach. On the other hand, Prajapati
and Chhabra [211] developed the many-objective discrete HS
(MaDHS) algorithm. /ey proposed to solve discrete opti-
mization problems with more than three objectives based on
non-dominated solution ranking instead of the Pareto ap-
proach. Molina-Pérez et al. [212] developedmulti-objective HS
(MOHSg). /is method includes a modification in the pitch
adjustment step using a crowding distance by genotype to
improve the exploration/exploitation balance. Hesar et al. [213]
developed a quantum multi-objective harmony search algo-
rithm (QMOHSA) based on HS, evolutionary concepts (i.e.,
non-dominated sorting and elitism), and quantum computing.
/e exploration/exploitation balance of this algorithm is
handled using quantum computing concepts such as qubits
and quantum gates and HS operators (i.e., PAR and bw). /is
multi-objective algorithm was compared with other three
multi-objective techniques on several benchmark functions
and results showed its better performance. Figure 4 summa-
rizes the multi-objective methods based on HS metaheuristic.

3. Applications of Harmony Search in Chemical
Engineering Optimization

/e process systems engineering deals with chemical en-
gineering problems that can be resolved using global and
multi-objective optimization approaches. HS has been
widely utilized in this field, and this section aims to provide a
broad perspective on its chemical engineering applications.
For illustration, Figure 5 shows the number of articles found
per year on the development of HS variants as well as on its
application in chemical engineering. A concise description
of the optimization problem, involved variables, problem
constraints, and relevant remarks of representative appli-
cations is provided in the following sections where the
summarized information is given in Tables 6–12 for an easy
reference for interested readers.

3.1. <ermodynamic Calculations for Process Systems
Engineering. Several thermodynamic calculations for the
process systems engineering of reactors, separation and
purification units, and processes can be formulated as op-
timization problems. /ey include the parameter estimation
of thermodynamic models, phase equilibrium calculations
and stability analysis in non-reactive and reactive systems,
and prediction of azeotropes, saturation conditions, and
critical points [69, 253]. A brief description of those ther-
modynamic problems solved with HS-based methods is
provided below.

3.1.1. Phase Stability Analysis. /is analysis allows to
identify if the thermodynamic state of a mixture is stable at
given operating conditions. A given mixture at certain feed
composition z, pressure, and temperature is stable if the
Gibbs free energy surface lies above the tangent plane to such
surface at z for all other composition points [254–256]. /is
calculation is a fundamental stage to be performed prior to
the phase equilibrium calculations of non-reactive and

Table 3: Continued.

Algorithm Remarks Reference

SSaHS
Semi-self-adaptive HS. /e bw parameter is updated according to a self-adaptative rule, which
considers the information about the current population. Two new parameters are stablished by an

empirical analysis.
Zhao et al. [110]

PSFHS
Modified parameter-setting-free HS. /e number of harmonies in HM is modified by a positive

integer coefficient. PAR and HMCR domains are redefined considering the minimum and
maximum values, respectively. Recommended limits for HMCR and PAR were provided.

Shaqfa and Orbán [111]

BWM_HS
Best-worst-mean HS. It considers the replacement of HMCR for three novel criteria to enhance
exploration/exploitation balance. A self-adaptative probabilistic factor is incorporated to choose

between rules.
Talaei et al. [112]

FHS Fuzzy HS. A fuzzy system is used to handle HMCR and PAR throughout iterations. Peraza et al. [113]

EHS Enhanced HS. It considers dynamic adjustment of PAR and bw. PSO strategy is implemented in
new harmony generation. Niu et al. [114]

AHS Adaptative HS. Parameters HMCR and bw are defined as function of current and total number of
iterations. Yücel et al. [115]

SIHS Self-adaptative improved HS. It considers the dynamic modification of bw starting with a large
value and adjusting it at each generation. Houari et al. [116]

∗Variant of HS.
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Table 4: Harmony search variants based on the algorithm structure modification.

Algorithm Remarks Reference

HS∗
Algorithm for structural optimization. It implies the initialization of HM memory
using the finite element method considering problem’s constraints. /is approach is

also used during the improvisation step to assess new harmonies.
Lee and Geem [117]

HS∗
It was proposed to solve discrete variable optimization problems employing a
stochastic derivative formulation based on several probability criteria using HS

parameters. It was tested on benchmark and real-world problems.
Geem [118]

HS∗
HS with SA concept. It is based on the modification of PAR and bw. Starting from a
maximum initial value, the parameters are slowly reduced imitating the cooling

concept of the SA algorithm.
Taherinejad [119]

IHS
Improved HS. It considers the dynamic modification of PAR based on dispersed
particle swarm optimization (DPSO) [120]. /e information index, which relates the

difference of the particles according to its fitness value, is incorporated.
Coelho and Bernert [121]

DHS Differential HS. DE mutation strategy is implemented in the improvisation step. Chakraborty et al. [122]

PSHS Particle swarm HS. A concept of particle swarm optimization is used in the
improvisation step. Geem [123]

CHS
It uses chaotic maps (e.g., logistic, tent, Gauss, and so on) to substitute generally
employed random numbers in HS operators./e algorithmwas tested inmulti-modal

benchmark functions.
Alatas [124]

GHS+LEM

Machine learning tools are employed to create new populations in HS according to the
learnable evolution model (LEM) [125]. Also, an evolutionary related method called
the Darwinian is used to decide which members of the population are better to fulfil

certain tasks.

Cobos et al. [126]

ITHS

Intelligent tuned HS. HM is divided in two groups in order to balance exploration and
exploitation./e first one contains those solutions with an objective value less or equal
to the mean value in HM, and the second group includes the rest of solution vectors.

PAR is dynamically adjusted.

Yadav et al. [127]

NDHS

A tournament selection rule is used to choose the candidate harmony from the HM.
/e solution vectors with a better objective function value will be more likely to be
used to generate new solutions. Also, the PAR and bw parameters are dynamically

adjusted.

Chen et al. [128]

HSTL

HS based on teaching-learning. It was proposed to solve complex high dimension
optimization problems. It considers the introduction of a teaching-learning concept
into the improvisation step and a dynamical adjustment of all parameters (i.e., HMCR,

PAR, bw, and TLP) in terms of generations.

Tuo et al. [129]

IGHS

Improved GHS./e opposition-based learning (OBL) [130] was used as an alternative
initialization procedure to improve the quality of the initial memory vectors. In

addition, a mutation strategy was implemented in place of the GHS pitch adjustment.
/e random selection step was substituted for a modification used in artificial bee

colony (ABC) algorithm [131].

Xiang et al. [132]

IGHS Intelligent global HS. In the improvisation step, the new harmony mimics an element
of the best solution vector stored in HM. Valian et al. [133]

GSHS
Geometric selective HS. Two harmonies are combined to create the ith element of the

new harmony using a tournament selection strategy. A mutation operator is
implemented using PAR.

Castelli et al. [134]

OHS Opposition-based HS. OBL strategy is incorporated in the HM initialization and
update steps. Banerjee et al. [135]

HS∗ Several mutation strategies are incorporated in the random consideration process (i.e.,
random, boundary, non-uniform, MPT, power, and polynomial). Hasan et al. [136]

QOHS

Quasi-oppositional HS. It considers the introduction of the quasi-oppositional-based
learning strategy in HS and the application of the quasi-opposition concept for HM
initialization. PAR and bw are obtained according to current generation. It also

implies the improvisation of new harmonies and populations on quasi-oppositional
basis and jumping probability according to search space bounds.

Shiva et al. [137]

iHS Island HS. It considers the incorporation of the island model [138] in the HM
memory. Al-Betar et al. [139]
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Table 4: Continued.

Algorithm Remarks Reference

DH/best
Random initialization of HM is replaced by a new technique, which reduces

randomness. /e conventional pitch adjustment method is substituted by a DE
mutation strategy.

Abedinpourshotorban
et al. [140]

MHS
Modified HS. /e bw parameter is removed. An intersect operation considering PAR
is included, and after each improvisation, the algorithm performs a cellular local

search.
Yi et al. [141]

LHS Improved HS. It considers three main modifications: an adaptative global pitch
adjustment, incorporation of an OBL technique, and a competition selection strategy. Ouyang et al. [142]

SRHS

Selective refining HS. /e best harmony is considered as a representation of the
current experience and knowledge of the HM. A tournament selection scheme is used.
Instead of taking decisions based only on the value of the objective function, the value

of every decision variable is considered.

Shabani et al. [143]

GOGHS Global HS with generalized OBL. Relevant information from the global-best harmony
is extracted to create new candidate solutions. OBL is employed. Guo et al. [144]

TPHS
Two-phase HS. /e algorithm is divided in two phases, the first is highly focused in
exploration by the implementation of the catastrophic mutation concept used in GA,

and the second phase uses local search to improve exploitation.
Assad and Deep [145]

DSAHS

Enhanced HS with dual strategies and adaptive parameters. An improved pitch
adjustment operation with dual strategies is incorporated to enhance the exploitation
ability of the algorithm./e operationmay use a best harmony or a random harmony-

guided search strategy according to a probability decision. Furthermore, the
parameters of the algorithm are self-adjusted according to the new candidate fitness.

Wang et al. [146]

HS-SA
Inspired by the SA concept, a new parameter called temperature is used so that
inferior harmonies could also be considered. Two additional SA parameters are

employed.
Assad and Deep [147]

DHS
Differential-based HS. It considers the introduction of a position indicator to enable
continuous HS to solve the discrete job shop scheduling problem. It also includes the

incorporation of the DE mutation concept into the pitch adjustment step.
Zhao et al. [148]

CIHS
Chaotic improved HS. /e concept of chaos is introduced into improved HS using
logistic map to calculate PAR and bw. /e best solutions are refined using a chaotic
local search. New harmonies emulate the best harmony employing a PSO concept.

Shafaati and
Mojallali [149]

ABHS

Adaptative HS with best-based search strategy. It employs a best-based search
strategy, which makes use of the global-best solution to enhance the search. HMCR
and PAR are self-tuned based on information from the evolutionary search. /e bw

parameter is not considered in this algorithm.

Guo et al. [150]

DANGHS
Dynamic adjusting NGHS. Several dynamic parameter adjustment strategies to

calculate the genetic mutation probability were used: linear, threshold, exponential,
and concave-convex.

Chiu et al. [151]

AHS

Amended HS. Two perturbation strategies are used: stochastic differential and OBL.
/e bw parameter is dynamically adjusted in terms of the mean value of a particular

decision variable. A global dimension selection to balance exploration and
exploitation is used.

Ouyang et al. [152]

MHS-PCLS
Parallel chaotic local search enhanced HS. It considers an initial point modification in
PCLS to improve the performance of HS. It also uses MHS intersect mutation

operation.
Yi et al. [57]

IHS

Global learning and a modified random selection operation are proposed. A new
improvement scheme based on the iteration modes (i.e., dimension-to-dimension,
stochastic selection, vector, and matrix) is proposed. A total of four IHS variants were

developed.

Ouyang et al. [153]

PHSβ-HC and imp.
PHSβ-HC

Best polynomial HS algorithm with best β-hill climbing. Two variants of the proposed
method were introduced: PHSβ-HC and Imp. PHSβ-HC. /e random selection step
in HS is replaced by roulette wheel and tournament selection. A highly disruptive
polynomial mutation replaces the pitch adjustment and random selection steps.

Doush and Santos [154]
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reactive multi-component mixtures. /e tangent plane
distance function (TPDF) is the objective function to be
globally minimized to resolve this thermodynamic problem
[255]. /is optimization problem is constrained by the
material balance restrictions and non-negative bounds on
the compositions that are the corresponding decision var-
iables (see Table 7). /e identification of the global mini-
mum of TPDF is the correct solution of this thermodynamic
problem to avoid improper conclusions on the phase
equilibria behavior of analyzed mixtures, which directly
affect the process design of separations systems and multi-
phase units.

3.1.2. Phase Equilibrium Calculations. /ey are relevant for
the modeling of separation processes (e.g., distillation and
extraction) and multi-phase reactors. /e objective in phase
equilibrium calculations is to establish the correct type,
number, and composition of phases present at thermody-
namic equilibrium. /e Gibbs free energy minimization is
the optimization problem that is resolved for non-reactive
and reactive systems [69]. It is a constrained global opti-
mization problem due to the mass balance restrictions where
the decision variables are the number of phases and their
compositions. /e chemical reactions increase the dimen-
sionality and complexity of the optimization problem for
reactive mixtures where additional constraints related to the
chemical equilibrium should be considered [257]. /e lo-
cation of the global minimum of Gibbs free energy function
is essential for phase equilibrium calculations because it
corresponds to the only correct and desirable solution for

performing reliable process design and modeling [256].
Dohrn and Pfohl [258] illustrated the significant impact that
small uncertainties in phase equilibrium calculations could
have on the distillation column design. For instance, 5%
underestimation of the separation factor generated 100%
overestimation of the column height, thus significantly in-
creasing the equipment cost and energy requirements.
Hence, the phase equilibrium calculations must be per-
formed efficiently and reliably to avoid process design errors.

3.1.3. Parameter Identification of <ermodynamic Models.
In general, the thermodynamic models have adjustable
parameters that must be obtained in order to perform the
calculation and estimation of properties of pure components
and mixtures [67, 259]. /ese model parameters can be
estimated from the minimization of an objective function
that usually is defined in terms of available experimental
information (e.g., equilibrium compositions and saturation
pressures) for the system (e.g., pure component or mixture)
under analysis. Different objective functions can be for-
mulated for this optimization task where the error-in-var-
iable and the classical least-squares formulations are the
common ones [224]. /ese objective functions are usually
non-convex where unconstrained and constrained global
optimization problems should be resolved.

3.1.4. Estimation of Azeotropes, Critical Points, and Satu-
ration Conditions. Special phase equilibrium calculations
are also required for the process systems engineering of
separation systems. /ey include the calculation of

Table 4: Continued.

Algorithm Remarks Reference

EHS-CRP

Enhanced HS with circular region perturbation. A global and local dimension
selection is used by considering the global-best solution vector, and also local partial
dimension variables are randomly selected./e selection operation is based on several
PSO concepts. /e circular region perturbation method is employed to improve

search efficiency.

Wu et al. [155]

IMGHSA

Intersect mutation global HS algorithm. Two methods were combined: intersect
mutation and global HS. It considers the introduction of a new operator to reinforce
exploration. HM is divided in two and a new operator considers both parts to generate

new harmonies.

Gholami et al. [156]

SLHS
Sequence learning HS. It was adapted to solve the combinatorial flexible process
planning problem. /e optimal sequence is stablished by finding a proper successor

for each operation.
Luo [157]

AHS-HCM

Ameliorated HS with hybrid convergence mechanism. New harmonies are calculated
through a convergence coefficient and concepts of PSO and DE based on the number
of iterations. Non-linear dynamic domain in terms of current and maximum number

of iterations when 1-HMCR.

Zhu and Tang [158]

MHSA

Modified HS algorithm. It considers the HM initialization by means of opposition
numbers. Two new parameters inspired by the GWO method were introduced to
calculate new harmonies. HMCR is calculated based on a Gaussian distribution. PAR

is formulated as a non-linear exponential function.

Gupta [159]

AHS-DE-OBL

Adaptative HS using DE and OBL. It includes the generation of new harmonies with
OBL approach and the dynamic adjustment of HMCR, PAR, and search domain
according to current and maximum number of iterations. /e best and worst

harmonies are used within a DE concept to calculate bw.

Kang et al. [160]

∗Variant of HS.
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Table 5: Harmony search variants based on hybridization with other metaheuristics.

Algorithm Remarks Reference

SA-HS

Nelder–Mead simplex algorithm HS./e simplex method is incorporated in HM update using
the n best HM vectors + 1. /e n best HM harmonies are kept in memory and the next vector is
updated with the simplex solution. /e HS improvisation stage considers these vectors along

with the remaining harmonies in HM.

Jang et al. [161]

HHSA

Hybrid HS algorithm. Sequential quadratic programming (SQP) is used to enhance the local
search performance. Two strategies are proposed: use of best harmonies in HM as initial points
for the local search; performing a local search for each improvised solution vector. /e strategy

selection is based on a probabilistic parameter.

Fesanghary et al. [162]

HTHSA
Hybrid Taguchi HS algorithm. Two optimization phases are considered: (1) the Taguchi

method is used to fine-tune decision variables intervals and to generate initial solutions and (2)
HS is used to perform the global search.

Yildiz [163]

HS-DE DE is used to fine-tune HM elements considering all solution vectors as the individuals of the
population. Gao et al. [164]

HS-CSA /e clonal selection algorithm is used to improve the elements of the HM. Wang et al. [165]

HS-solver

Integration of HS with non-linear excel solver algorithm. Two optimization approaches were
proposed./e first one consists of the use of the local method once the HS solution is obtained.
In the second approach, the algorithms operate simultaneously and new HS solutions are

optimized with the local method at each iteration.

Ayvaz et al. [166]

HMGHS
Hybrid modified GHS. It was proposed to solve the block permutation flow shop scheduling
problem. Continuous variables were coded to binary using the largest position value rule. HM

initialization is based on problem’s heuristic rule. It includes a local search feature.
Wang et al. [167]

DMS-PSO-HS
HS is incorporated into each subswarm of the dynamic multi-swarm particle swarm optimizer
algorithm [168], in order to benefit from the particular exploration capabilities of the PSO

technique and the exploitation abilities of HS.
Zhao et al. [169]

DCHSSA
Discrete chaotic HS-based simulated annealing. New solutions of the SA algorithm are

generated using HS parameters (HMCR and PAR). Chaotic mapping is used to generate new
solutions when the probability is within HMCR.

Askarzadeh [170]

HS/BA Hybridization of HS with the bat algorithm (BA) [171] where the mutation operator is modified
by applying the concept of pitch adjustment to improve convergence. Wang and Guo [172]

HS/FA
HS and firefly algorithm (FA) [173]. Hybrid method that combines HS for exploration and FA
for exploitation. It also incorporates HMCR and PAR to perform a pitch adjustment in FA

mutation step.
Guo et al. [174]

AntHS HS and ACO. It considers the addition of two ACO concepts to HS: pheromone values and
heuristics. Amini and Ghaderi [175]

GHSACO GHS with ACO. A probabilistic factor is added to switch between using GHS or ACO for the
improvisation step. /e use of ACO was proposed to enhance exploitation. Fouad et al. [176]

CPSO-MHS
Cooperative particle swarm optimizer-modified HS. It is a hybrid algorithm comprising a PSO
variant (CPSO) and a modified HS version. MHS is employed for exploration and CPSO for
exploitation. Note that PAR and bw parameters were removed using CPSO for local search.

Zhang and Li [177]

HS/CS
HS with CS. It applies HS strategy in CS in order to increase diversity of cuckoo populations in
the optimization process. Specifically, the HS improvisation strategy is used in the mutation

stage of CS.
Wang et al. [178]

HSTLBO

HS with teaching learning-based optimization [179]. A dynamic selection strategy is used to
determine which algorithm will perform the search for a given iteration is used. It also includes
a dynamic change of PAR and bw. In the improvisation step, a dynamic strategy considering

elements of the worst harmony is implemented.

Tuo et al. [180]

MBHS
Mine blast HS. It employs MBA and HS for the exploration and exploitation phases,

respectively. HS uses concepts from IHS [78] and PSF-HS to calculate PAR and HMCR in
terms of iterations. A new iteration-dependent dynamic harmonic memory is used.

Sadollah et al. [181]

HS-GWO HS with grey wolf optimizer. GWO is used to control PAR and bw parameters during the
search, and OBL enhances the improvisation step. Alomoush et al. [182]

H-TS HS with TS. /e neighborhood search capabilities of TS are exploited after HS improvisation
step. It was applied to the dynamic parallel row ordering problem. Gong et al. [183]

HHSDE
Hybrid harmony DE algorithm. It improved mutation operation in DE making use of HS
improvisation step. HMS is dynamically updated according to current iteration. Use of a self-

parameter adjustment strategy to control method’s parameters.
Fu et al. [184]
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homogeneous and heterogeneous azeotropes [260, 261],
critical transitions [262], and bubble and dew points
[263, 264]. For instance, the azeotropes occur in a boiling
mixture with one or two liquid phases when the composition
of the vapor is the same as the overall composition of the

liquid phase(s). When one liquid phase is at equilibrium
with a vapor phase, the azeotrope is called homogeneous
azeotrope. In case of two liquid phases at equilibrium with a
vapor phase, the azeotrope is known as heterogeneous [261].
/ese special phase equilibrium cases can also occur in

Table 5: Continued.

Algorithm Remarks Reference
HABC-HSA-
MA

Hybrid ABC and HS algorithm-based metaheuristic approach. /ese algorithms are used
sequentially, and the final output of HS optimization process is the input for the ABC method. Jayalakshmi et al. [185]

HS∗ HS combined with L-BFGS. After generating HS initial population, a local search using the
quasi-Newton method is performed for each harmony, keeping record of the best value in HM.

Sorokovikov and Gornov
[186]

UKF-HS Unscented Kalman filter HS. It was developed to solve the finite-element model updating using
single and multi-objective optimization.

Naranjo-Pérez et al.
[187]

AHHS Adaptive-hybrid HS. /e Java algorithm is used in HS improvisation step. HMCR and bw are
randomly defined at the beginning of the algorithm. Yücel et al. [115]

HSCAHS Hybrid sine-cosine approach HS. HS is used in parallel with SCA to improve solution quality.
HS generates a new population seeking to improve the worst harmonic in HM. Singh and Kaur [188]

RDEGA-HS

Reward population-based differential genetic HS. It combines two algorithms proposed by the
authors./e first, reward-populationHS (RHS), works with a set of independent subharmonies
and a reward harmony. /e second, differential genetic HS (DEGA-HS), removes the bw
parameter and employs two DE mutation strategies and a concept of the parthenogenetic

algorithm in HS improvisation stage.

Zhang et al. [189]

∗Variant of HS.

Harmony Search
[33]

Inspired by Particle Swarm Optimization
- GHS, Omrand and Mahdavi [78].
- IHS, Coelho and Bernert [120].
- PSHS, Geem [122].
- SGHS, Pan et al. [80].
- NGHS, Zuo et al. [79].
- IGHS, El-Abd [81].
- IGHS, Valian et al. [132].
- DANGHS, Chiu et al. [150].
- CIHS, Shafaati and Mojallali [148].
- EHS-CRP, Wu et al. [154].

Inspired by Differential Evolution
- DHS, Chakraborty et al. [121].
- DH/best, Abedinpourshotorban et al. [139].
- DHS, Zhao et al. [147].
- IDHS, Wang et al. [82].
- ID-HS-LDD, Zhu et al. [85].
- aHSDE, Zhao et al. [86].
- AHS-HCM, Zhu and Tang [157].
- AHS-DE-OBL, Kang et al. [159].

Inspired by Simulated Annealing
- HS*, Taherinejad [118].
- HS-SA, Assad and Deep [144].
- SANGHS, Li et al. [84].

Inspired by Genetic Algorithm
- GSHS, Castelli et al. [133].
- TPHS, Assad and Deep [144].

Others
- CHS, Alatas [123].
- GHS+LEM, Cobos et al. [125].
- ITHS, Yadav et al. [126].
- NDHS, Chen et al. [127].
- HSTL, Tuo et al. [128].
- IGHS, Xiang et al. [131].
- OHS, Banerjee et al. [134].
- QOHS, Shiva et al. [136].
- iHS, Al-Betar et al. [138].
- MHS, Yi et al. [140].
- LHS, Ouyang et al. [141].
- SRHS, Shabani et al. [142].
- GOGHS, Guo et al. [143].
- DSAHS, Wang et al. [145].
- ABHS, Guo et al. [149].
- AHS, Ouyang et al. [151].
- ESGHS, Luo et al. [83].
- MHS-PCLS, Yi et al. [306].
- PHSβ-HC, Doush and Santos [153].
- IMGHSA, Gholami et al. [155].
- SLHS, Luo [156].
- MHSA, Gupta [158].
- HS*, Lee and Geem [22], Geem [122],

Hasan et al. [135], Ouyang et al. [152].

Structure modifications

* variant of HS.

Figure 3: Harmony search variants grouped by the structure-based modifications.
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systems where chemical reactions take place and they are
called as reactive azeotropes [260]. /e azeotropy is relevant
for the operation of separation systems based on vapor-
liquid equilibrium and, consequently, it can occur in many
industrial applications. One well-known example is the
ethanol +water distillation process. /e homogeneous
azeotrope of this mixture imposes a limit to the purity degree
that can be reached via distillation. /e capability to predict
this condition reliably in multi-component mixtures is es-
sential for the separation process design [260]. On the other
hand, the calculation of critical transitions of multi-com-
ponent mixtures is also relevant for the operation and design
of separation systems [262], while the bubble and dew point
calculations are required for the analysis of phase diagrams
of mixtures [265]. All these calculations are usually per-
formed by solving a set of non-linear equations that define
the thermodynamic equilibrium condition to be satisfied,

which usually corresponds to the equality of chemical po-
tentials [263, 266]. /erefore, a global optimization ap-
proach can be used to resolve this set of non-linear
equations. For example, the optimization variables for
azeotrope calculations are the azeotrope composition and its
temperature or pressure. However, it should be noted that
these thermodynamic calculations are characterized by the
presence of several solutions (stable and unstable from the
perspective of phase stability analysis) or even no solutions
for the problem at hand [267]. Interested readers can consult
the studies of Henderson et al. [268]; Bonilla-Petriciolet et al.
[263]; Bonilla-Petriciolet et al. [269]; and Nakazawa et al.
[270] for more details on the formulation of these optimi-
zation problems.

HS-based algorithms have been applied to resolve some
of these thermodynamic calculations. In particular, Bonilla-
Petriciolet et al. [218] carried out the parameter estimation

Harmony Search
[33]

- IHS, Mahdavi et al. [77].
- PSF-HS, Geem and Sim [91].
- PHS, Jaberipour and Khorram [92].
- EHS, Das et al. [93].
- NGHS, Zou et al. [94].
- DHS, Askarzadeh [95].
- NSHS, Luo [96].
- LAHS, Enayatifar et al. [98].
- DSHS, Kattan and Abdullah [99].
- ABHS, Wang et al. [100].
- ABHS, Contreras et al. [101].
- GDHS, Khalili et al. [102].
- PAHS, Kumar et al. [103].
- SFHS, Amaya et al. [104].
- SBHS, Kong et al. [105].
- GGHS, Keshtegar and Sadeq [107].
- ImHS, Portilla-Flores et al. [108].
- SSaHS, Zhao et al. [109].
- PSFHS, Shaqfa and Orbán [110].
- BWM_HS, Talaei et al. [111].
- FHS, Peraza et al. [112].
- EHS, Niu et al. [113].
- SIHS, Houari et al. [115].
- AHS, Yücel et al. [114].
- HS*, Mukhopadhyay et al. [88], Wang and 

Huang [89], Hasançebi et al. [90], 
Kalivarapu et al. [106], Jeong et al. [87].

- SA-HS, Jang et al. [160].
- HHSA, Fesanghary et al. [161].
- HTHS, Yildiz [162].
- HS-DE, Gao et al. [163].
- HS-CSA, Wang et al. [164].
- HS-Solver, Ayvaz et al. [165].
- HMGHS, Wang et al. [166].
- DMS-PSO-HS, Zhao et al. [168].
- DCHSSA, Askarzadeh.
- HS/BA, Wang and Guo [169].
- HS/FA, Guo et al. [173].
- AntHS, Amini and Ghaderi [174].
- GHSACO, Fouad et al. [175].
- CPSO-MHS, Zhang and Li [176].
- HS/CS, Wang et al. [177].
- HSTLBO, Tuo et al. [179].
- MBHS, Sadollah et al. [180].
- HS-GWO, Alomoush et al. [181].
- H-TS, Gong et al. [182].
- HHSDE, Fu et al. [183].
- HBAC-HAS-MA, Jayalakshmi et al. [184].
- HS*, Sorokovikov and Gornov [185].
- UKF-HS, Naranjo-Pérez et al. [186].
- AHHS, Yücel et al. [114].
- HSCAHS, Singh and Kaur [187].
- RDEGA-HS, Zhang et al. [188].

* variant of HS.

- MOHS, Sivasubramani and Swarup [198].
- MOHS1, MOHS2, Ricart et al. [201].
- NSHS, NSIHS, NSGHS, NSSGHS, Pavelski et al. [203].
- IMOHS, Nekooei et al. [204].
- PAHS, Sabarinath et al. [207].
- MaDHS, Prajapati and Chhabra [208]. 
- MOHSg, Molina-Pérez et al. [209]. 
- QMOHSA, Hesar et al. [210]. 

Parameter modifications Hybrid approaches

Multi-objective methods

Figure 4: Harmony search variants grouped by the parameter-based modifications, hybrid approaches, and multi-objective methods.
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of local composition models for calculating VLE in binary
systems. HS was used to minimize an objective function
defined in terms of activity coefficients following the least-
squares formulation./e activity coefficients were calculated
using several local composition models: Wilson, UNI-
QUAC, and NRTL. /e global optimization of these pa-
rameter identification problems was performed using the
following HS algorithm parameters: PAR� 0.75,
HMCR� 0.25, and HMS� 10∗ nvar, where nvar was the
number of decision variables. /e decision variables were
the binary interaction parameters of Wilson, UNIQUAC,
and NRTL models. A quasi-Newton method was incorpo-
rated at the end of HS optimization to improve the final
solution accuracy. According to several performance met-
rics, these authors concluded that HS was a promising
metaheuristic for the VLE modeling.

In other study, Bonilla-Petriciolet et al. [220] compared the
performance of GHS, IHS [78], and HS in the phase equi-
libriummodeling of systems without chemical reactions. Phase
equilibrium calculations and stability analysis were performed
via the globalminimization of the Gibbs free energy and TPDF,
respectively. Both calculations were resolved as unconstrained
optimization to reduce the problem dimension [271] (see
Table 7). Nine mixtures from two to ten components showing
LLE andVLEwere analyzed using NRTL and SRKmodels./e
following parameters were used for HS-based algorithms:
bw�UBi − LBi, PAR� 0.75, and HMCR� 0.5 for HS and GHS
and bwmin� 0.001, bwmax�UBi − LBi, PARmin� 0.5,
PARmax� 0.95, and HMCR� 0.5 for IHS. For all cases, HMS
was defined as 10∗ nvar. Two termination criteria were used: a
maximum number of iterations without improvement and
itermax. A quasi-Newtonmethod was incorporated to GHS and
IHS to assess their performance. A detailed analysis based on
performance profiles [272] was provided for these HS algo-
rithms. In general, IHS and GHSweremore reliable thanHS to
resolve these thermodynamic calculations.

Merzougui et al. [222] compared the performance of HS
and GA to estimate NRTL binary interaction parameters.

Twenty-one ternary LLE mixtures were studied. /e pa-
rameter estimation problem was formulated via the mini-
mization of the squared error sum between calculated and
experimental compositions of all components in both liquid
phases. A local search based on a quasi-Newton method was
implemented to improve the accuracy of the final solution
found by HS. /e parameters of HS were determined by a
sensitivity analysis and they were defined as HMCR� 0.9,
PAR� 0.4, HMS� 10, and itermax � 16,000. /e authors
concluded that the binary interaction parameters found
using HS will provide more accurate phase equilibrium
results than those obtained using GA.

Bonilla-Petriciolet et al. [223] assessed the performance
of GHS, IHS [78], andHS algorithms in the solution of phase
equilibrium problems of reactive systems using the Gibbs
free energy minimization approach. /e constraints of this
optimization problemwere handled using a formulation that
reduces the number of decision variables and numerical
effort. /e penalty function approach was utilized to handle
these constraints. Eight reactive mixtures with LLE and VLE
were studied using several thermodynamic models (i.e.,
NRTL, Wilson, ideal gas, UNIQUAC, and Margules). /e
parameters of all optimization methods were set according
to results from previous studies [220]. IHS and GHS were
able to escape from the infeasible zones easier than HS, and
they also showed better exploitation characteristics. /ese
authors concluded that the performance of HS and its
variants was problem dependent, but they were reliable to
solve this type of thermodynamic problems.

Bonilla-Petriciolet [224] employed HS to perform the
parameter estimation of UNIQUAC, Wilson, and NRTL
models for VLE modeling of binary mixtures. Isothermal
and isobaric data were used to formulate the error-in-var-
iable and least-squares objective functions. /e least-squares
formulation was based on activity coefficients, and the de-
cision variables corresponded to the binary interaction
parameters of NRTL, UNIQUAC, and Wilson models. On
the other hand, the Wilson model was utilized in the error-
in-variable formulation where the decision variables cor-
responded to the true values of the liquid composition and
temperature to carry out the corresponding data reconcil-
iation. bwi �UBi − LBi, PAR� 0.75, HMCR� 0.25, and
HMS� 10∗ nvar were the parameters used for HS. /is
author concluded that HS showed a better performance in
comparison with other stochastic algorithms like GA and
PSO in terms of its success rate for the phase equilibrium
data correlation using the least-squares formulation.
However, the reliability of HS was reduced in the parameter
estimation with the error-in-variable objective function due
to its problem complexity. /erefore, a hybrid HS variant
(HHS) incorporating SA and DE operators was introduced
and compared with HS, GHS, and IHS [78], thus improving
the performance of original HS.

Other studies have published the application of HS on
the modeling of ionic liquid properties, which are consid-
ered as outstanding solvents for extraction operations and
other processes [273, 274]. Ionic liquids (ILs) are electrolyte
solutions with interesting physicochemical properties like
very low vapor pressures, high conductivity, and thermal
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stability [275]. Bonilla-Petriciolet et al. [225] carried out the
evaluation and comparison of several stochastic global op-
timization techniques including HS to model the mean ac-
tivity coefficients of different ammonium electrolytes in
aqueous solution using the eNRTL model proposed by Chen
et al. [276]. /e modeling of activity coefficients of electrolyte
solutions using this local composition model is a challenging
global optimization problem [277]. A least-squares formu-
lation in terms of activity coefficients was defined to deter-
mine the binary interaction parameters of these
thermodynamic model via global optimization. /e

performance of HS was assessed using performance profiles,
success performance, success rate, and global success ratio.
Results with and without a local optimizer were presented. HS
algorithm was implemented with HMCR� 0.25, PAR� 0.75,
and different stopping conditions. /e parameter estimation
process for this application was found to be challenging due to
the presence of comparable optimums, local minimums, and
saddle points. HS showed a success rate from 0 to 100% for
finding the global optimum in this application.

/ermodynamic systems containing biofuels can show
different types of phase equilibrium (e.g., LLE, VLE, and

Table 6: Harmony search applications in chemical engineering optimization.

Algorithm Application Reference
HS Combined heat and power economic dispatch problem Vasebi et al. [214]
HS Design of shell and tube heat exchangers Fesanghary [73]
IHS Air cooled heat exchanger design Doodman et al. [215]
HS Water distribution system design Geem [216]

HS-SQP Heat exchanger network design Khorasany and Fesanghary
[217]

HS Parameter estimation for phase equilibrium modeling Bonilla-Petriciolet et al.
[218]

NGHS Chemical equation balance problem Zou et al. [219]
HS, IHS,
GHS Phase stability analysis and phase equilibrium calculations in non-reactive systems Bonilla-Petriciolet et al.

[220]
HS Distillation sequence design Cabrera-Ruı́z et al. [221]
HS Parameter estimation for phase equilibrium modeling Merzougui et al. [222]
HS, IHS,
GHS Phase equilibrium calculations in reactive systems Bonilla-Petriciolet et al.

[223]
HS, IHS,
GHS Parameter estimation for phase equilibrium modeling Bonilla-Petriciolet [224]

HS Life cycle cost analysis Fesanghary et al. [197]

HS Parameter estimation for the modeling of electrolyte solutions Bonilla-Petriciolet et al.
[225]

IHS Design of plate-fin heat exchangers Yousefi et al. [226]
APF-HS Ground water pollution problem Jiang et al. [227]
HSAEA Reaction kinetic parameter estimation Ma et al. [228]
I-ITHS Design of shell and tube heat exchangers Turgut et al. [229]
HS Life cycle cost analysis Asadi [230]
HS Parameter estimation for the equilibrium modeling of biofuel-based systems Merzougui et al. [231]
HS Water distribution system design Yoo et al. [232]
HS Parameter estimation for the phase equilibrium modeling Merzougui et al. [233]

HS Phase stability analysis, reactive and non-reactive phase equilibrium calculations, and
parameter estimation

Fernández-Vargas et al.
[234]

IHS Heat integrated distillation system design in olefin production Lashkajani et al. [235]
DHS Life cycle cost analysis Maleki et al. [236]
HSMO Pump scheduling problem De Paola et al. [237]
HyHS Water distribution system design Jung et al. [238]
HS /ermal cracking process Boto et al. [239]
HS Water distribution system design Yoo et al. [240]
HS Heat integrated distillation system design Sukpancharoen et al. [241]
CHS Diesel blending problem Gao et al. [242]
SFHS Parameter estimation for the phase equilibrium modeling of supercritical fluids Amaya et al. [243]
HS Separation cascade distillation design Mansourzadeh et al. [244]

HS Reactive azeotrope calculation and prediction of dew point pressures in binary double
retrograde vaporization systems Platt et al. [245]

HS-GWO Phase stability analysis Hernández-Pérez et al. [246]
HS Parameter estimation for phase equilibrium modeling Reggab et al. [247]
HS Phase stability analysis Smejkal et al. [248]
HS Phase stability analysis Fonseca-Pérez et al. [249]
HS Multi-effect evaporator design Yadav et al. [250]
HS-GS Inverse chemical kinetic problem Enikeeva et al. [251]
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VLLE) due to the chemical nature of their components. /e
parameter estimation problem for this type of systems is a
challenging global optimization problem [231]. /erefore, a
comparative study on the performance of HS, GA, and
backtracking search optimization algorithm (BSOA) for the
binary interaction parameter identification of NRTL and
UNIQUAC models using thirty LLE ternary systems rele-
vant in biodiesel production was carried out by Merzougui
et al. [231]. /e objective function was defined in terms of
calculated and experimental compositions of these LLE
systems. In other study, Merzougui et al. [233] analyzed the
numerical performance of HS, SA, flower pollination al-
gorithm (FPA), a FPA variant, GA, and BSOA in the pa-
rameter estimation of NRTL and UNIQUAC binary
interaction parameters in several relevant mixtures from the
food industry. /e global optimization was performed via
theminimization of an objective function defined in terms of
LLE concentrations of ternary and quaternary mixtures.

Fernández-Vargas et al. [234] studied the effect of six
termination criteria in the performance analysis of different
stochastic methods, including HS, in the global minimiza-
tion of thermodynamic problems./irty-two problems from
local composition model parameter estimation, Gibbs free
energy minimization with and without chemical reactions,
and phase stability analysis were studied. An unconstrained
approach for the global minimization of TPDF and the
Gibbs free energy for non-reactive systems with LLE and
VLE was used. On the other hand, a constrained approach
for the Gibbs free energy minimization with chemical
equilibrium was applied, while the parameter estimation
problems were formulated using least-squares for VLE data.
/e parameters of HS for resolving these problems were as
follows: HMS� 10∗ nvar, HMCR� 0.5, PAR� 0.5, and
itermax � 20000∗ nvar. Results showed that the success rate of
each algorithm can change significantly according to the
termination criterion utilized in these thermodynamic cal-
culations. /e error-based stopping criterion showed the
best results followed by the improvement-based termina-
tion. Gibbs free energy minimization with chemical equi-
librium and the parameter estimation problem were the
most challenging calculations for tested stochastic optimi-
zation methods. /ese authors recommended the study of
other termination conditions to improve the performance of
stochastic optimizers in thermodynamic calculations, par-
ticularly in the parameter estimation problem.

GWO, WCA, and a combined algorithm from HS and
GWO were employed for the global minimization of TPDF
[246]. Several mixtures with LLE and VLE modeled using
SRK, UNIQUAC, and NRTL were employed in this study.
/e incorporation of PAR parameter improved the explo-
ration stage of GWO, thus allowing the identification of
promising areas to find the TPDF global optimum. /is
study proved that the numerical operators of HS can be
incorporated in the algorithm of other metaheuristics to
enhance their numerical performance in thermodynamic
calculations.

Supercritical fluid extraction is used as an alternative
attractive approach for the decaffeination of coffee and tea
leaves and extraction of essential oils and flavors from

species and herbs, among other industrial applications [278].
A fluid is in a supercritical state when its temperature and
pressure are above its critical value and the generated fluid
shows interesting thermodynamic properties [279]. An
adequate understanding of phase equilibrium and solubility
data of supercritical fluids is essential for extraction pro-
cesses [280]. Amaya et al. [243] performed the parameter
estimation of Peng–Robinson (PR), Van Laar, NRTL, and
UNIQUAC models for the VLE of supercritical-CO2 + α-
pinene system using the SFHS algorithm. /is global op-
timization problem was resolved using the following SFHS
parameters: HMS� 5, PAR� 0.8, HMCR� 0.9, bwini � 0.5,
bwmin � 1000, bwmax � 2, bwsat � 1000, and amplitude con-
stant Cbw � 1. Results showed that SFHS was a promising
technique for phase equilibrium modeling with supercritical
fluids.

Dew point calculations in binary systems with double
retrograde vaporization are characterized by the presence of
three or four dew point values for a single composition [281].
/is phenomenon only occurs in conditions near the critical
temperature of the system and its calculation is challenging.
/is problem is particularly difficult to solve because several
local optimums exist including trivial solutions with no
physical meaning [282]. /e system of non-linear equations
derived from the isofugacity criterion was integrated in an
objective function to perform the global optimization where
the decision variables were the composition and pressure.
Platt et al. [245] employed HS and DE to calculate dew point
pressures in binary double retrograde vaporization systems
and reactive azeotropes. /e authors mentioned that solving
a non-linear system of equations via an optimization ap-
proach is also challenging. /e control parameters of both
metaheuristics were tuned to achieve reliable results. /is
parameter tuning is relevant because the numerical per-
formance of each algorithm is problem dependent and it
should be performed in detail for some challenging opti-
mization problems [69].

Reggab et al. [247] regressed NRTL and UNIQUAC
binary interaction parameters for the modeling of
hexane + 1-propanol +water mixture using HS and other
metaheuristics. /e objective function was defined in terms
of mass fractions of every component on each phase. /e
performance of these metaheuristics was compared with and
without a local solver (i.e., quasi-Newton or Nelder–Mead).
/e incorporation of a local optimization method reduced
the average root mean squared deviation by 20%.

Smejkal et al. [248] carried out the performance analysis
of several metaheuristics (HS, DE, CS, covariance matrix
adaptation, and elephant herding optimization) and the
Newton–Raphson method in phase stability analysis. TPDF
in terms of the Helmholtz free energy density was minimized
as an unconstrained problem. TPDFminimization was done
with the following HS parameters: itermax � 5E104,
bw� 0.001, PAR� 0.5, HMCR� 0.85, and HMS� 6. Re-
cently, Fonseca-Pérez et al. [249] proposed a benchmark set
of phase stability problems to properly evaluate the per-
formance of current and newmetaheuristics. A classification
of phase stability problems was proposed via a numerical
analysis on the performance of several stochastic
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optimization methods including HS to globally minimize
TPDF. /is minimization problem was solved as an un-
constraint problem employing HS with the following pa-
rameters: PAR� 0.75, HMCR� 0.5, and HMS� 10∗ nvar.
Global performance results placed HS in the third position
of tested stochastic optimizers.

3.2. Design of Heat Exchangers. Heat exchangers refer to
equipment that allows heat transfer between two or more
fluids at different temperatures where different equipment
can be used [283–286]. For example, the plate-fin heat
exchangers (PFHEs) are compact instruments mainly
composed of a set of stacked flat plates with corrugated fins
[287]. /e heat exchange takes place through the transition
of a fluid between the corrugated fins. PFHE design in-
volves an integrated analysis based on thermodynamics,
mechanical design, transport phenomena, and cost esti-
mation. Another example of this design problem is related
to the shell and tube heat exchangers (STHEs) (see Fig-
ure 6). /is equipment is commonly utilized in industrial
processes due to its variety of architectures for heat transfer
operations involving steam generators, evaporators, con-
densers, or water boilers. STHEs are able to operate at high
temperature conditions and pressures. Its large heat
transfer surface increases the equipment efficiency; besides,
its installation, cleaning, and maintenance are relatively
easy to perform [289]. STHE design also involves several
variables that are defined considering the physical prop-
erties and geometric configuration of the exchanger. /e
main objective of exchanger design is to obtain a heat
transfer coefficient that contributes to an efficient operation
besides optimizing other attributes of the equipment op-
eration. /is analysis entails a variety of possible objective
functions to be optimized where the minimization of the
capital cost is the most common. Several studies have
defined different design targets (e.g., the weight of the heat
exchanger) for the heat exchanger design that can be
handled via a multi-objective approach such as maximizing
the effectiveness and simultaneously minimizing the an-
nual cost [290, 291]. Overall, the optimum design of this

type of equipment implies to minimize its operating cost,
which involves the exchanger energy consumption and the
capital cost including the design, materials, installation,
testing, manufacturing, and shipping costs. /is design
problem has usually equality and inequality constraints
that increase the complexity of problem resolution and
equipment design [292]. Hence, reliable numerical tools
are required to obtain an optimal design for heat ex-
changers where HS has proved to be useful.

Fesanghary et al. [252] compared the STHE design with
HS and GA via the minimization of an objective function
based on the capital and operating costs of the equipment for
a required thermal load. /is case of study considered the
cooling of an oil through a water flow. First, a global sen-
sitivity analysis was performed to identify the parameters with
the highest impact on the STHE cost. It was determined that
the inside shell and outside tube diameters were the main
parameters. /e number of sealing strips was discarded be-
cause it had the minor impact on the exchanger cost.
/erefore, the objective function was formulated considering
nine discrete and continuous variables (e.g., inside shell and
outside tube diameters, type of material, and baffle cut). /e
parameters used for HS were as follows: bw ∈ (0.01 – 4),
PAR ∈ (0.2 – 0.85), HMCR� 0.6, and HMS� 10. /e evalua-
tion of several configurations of the exchanger geometry was
carried out. HS and GA found solutions near to the optimum
value where the difference between the global optimum and
the solution found by HS was 0.2%, while GA obtained a 0.7%
deviation.

Khorasany and Fesanghary [217] developed a two-level
hybrid approach using HS and SQP to minimize the total
annual cost of a heat exchanger network. /e objective
function involved several terms associated to the utility and
capital costs. /e optimization variables were defined as the
heat load of each exchange unit and the stream split
fractions. Several constraints were considered in this
problem: the overall heat balance for every stream, mini-
mum temperature change, mole fraction constraints, and
non-negative bounds on the optimization variables. /e
penalty functionmethod with a static penalization was used
to manage these constraints. /e first stage of this hybrid
approach was to determine the structure of the heat ex-
changer network (i.e., the number of heat exchangers and
branches in each stream). Discrete variables were involved
in this stage, and HS was used to handle them. In the second
stage, the stream split fractions and the heat load of the
exchangers (which were continuous variables) were opti-
mized using HS with SQP to obtain the minimum total
annual cost. A probability parameter was defined to decide
whether to perform or not the SQP-based local search
during the improvisation step using the new harmony as
starting point. Once the termination criterion was satisfied,
local optimization was performed to improve the solution
quality. /is algorithm was tested on benchmark and real-
world problems. /ese calculations showed stable con-
vergence and high efficiency of this algorithm.

Doodman et al. [215] evaluated the IHS [78] perfor-
mance to minimize the total design cost of air-cooled heat
exchangers. A sensitivity analysis was carried out to identify
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Figure 6: Illustration of shell and tube heat exchanger diagram
[288].
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the influence of design parameters on the equipment cost
and to reduce the optimization problem dimension. /e fin
number, fan type, and tube pattern were eliminated from the
optimization process since they did not show a significant
influence on the exchanger cost./e optimal geometry of the
exchanger was described by the air velocity, tube outer
diameter, tube material and length, number of tube passes,
number of tubes per row, and fin height./e performance of
IHS was compared with GA, thus finding similar results./e
main differences between these optimizers were observed in
the number of tubes passes and tubes per row, as well as in
the tube length (i.e., 2 and 3 tube passes with 24 and 20 tubes
per row for GA and HS, respectively). However, the solution
precision of HS was better than GA.

Yousefi et al. [226] proposed an improved HS algorithm
to optimize PFHE design. IHS [78] was used as base to
develop this optimization algorithm. In the improvisation
step, a roulette selection scheme was introduced where the
selection probability of an individual is proportional to its
fitness. /is modification allows to consider the best indi-
vidual in the evolutive process with a higher possibility. /e
independent minimization of the heat transfer area and the
total pressure drop was performed where seven decision
variables were considered: number of hot side layers, fin
height, thickness, frequency and strip length, and hot and
cold flow lengths. Discrete variables such as the number of
hot side layers were handled as continuous, and their values
were rounded up to evaluate the objective function. An
adaptative penalization method was employed to transform
the optimization problem from constrained to uncon-
strainted one. Algorithm parameters were as follows: bwi
minimum and maximum values were defined in terms of the
optimization variables bounds, PARmin � 0.1, PARmax � 0.99,
HMCR� 0.9, and HMS� 5. Results showed that the pro-
posed method was effective for PFHEs design and also
highlighted the benefits of using a self-adaptative penali-
zation mechanism to resolve this design optimization
problem.

Turgut et al. [229] studied the thermal design of STHE
using a proposed enhanced version of the intelligent tuned
harmony search algorithm (I-ITHS). In this method, a
perturbation mechanism adopted from ABC is incorporated
to enhance ITHS search capabilities. To improve the solution
accuracy, OBL was used. Also, the chaos theory (i.e., Henon
equation) was employed to increase the solution diversity
inside the improvisation step. /e total cost of the heat
exchanger was minimized considering the capital invest-
ment and annual and total discounted operation costs. A
detailed description of the STHE mathematical model was
provided. /e shell diameter, baffle spacing, number of
passes, and outside tube diameter were the design variables.
I-ITHS was successful to reduce the total cost employing less
computational resources in comparison with previous
studies. /e authors concluded that I-ITHS showed a
promising performance in engineering design problems,
thus suggesting its use in the thermal system design and heat
exchanger optimization.

3.3. Distillation Design and Optimization. Distillation is the
main separation process in chemical engineering industry. A
significant amount of fluids in the chemical industry (∼95%)
is separated by this process, which is related to around 3% of
global energy consumption [71]. /is separation system has
been studied for decades to select its optimal configuration
and operating conditions to reduce costs, energy con-
sumption, and environmental impacts [293–295]. /e op-
timal design of distillation sequences for the separation of
multi-component system is still one of the challenging
design problems in process systems engineering [296]. /e
global and multi-objective optimization of a distillation
system is known to be a problem involving discrete and
continuous variables, as well as equality and inequality
constraints that must be satisfied [297]. HS-based methods
have been also applied in the distillation design.

Cabrera-Ruiz et al. [221] studied the performance of HS,
SA, and GA in the design of three distillation sequences:
conventional, dividing wall column, and thermally coupled
reactive system with side stripper. It has been reported that
the last two sequences can be more efficient (with up to 30%
energy cost reduction) in comparison with the conventional
scheme [297, 297]./e heat load was minimized considering
both continuous and discrete variables. For the conventional
distillation applied to a hydrodesulfurization process, the
objective function was defined in terms of the feed tem-
perature, reflux ratio, column pressure, feed stage, and total
number of stages. For the dividing wall distillation column,
the objective function was minimized with respect to the
reflux ratio, column pressure, distillate flux, liquid and vapor
interconnection flows, side fluxes, side stream tray location,
first and last prefractioner tray location, feed stage, and total
number of stages. /is sequence was used for the purifi-
cation of a mixture of alcohols. Finally, the thermally
coupled reactive distillation sequence was used to obtain
biodiesel from lauric acid and methanol. In this case, the
optimization variables were the reflux ratio, column pres-
sure, value and location of the interconnection flow, number
of stages of the main column and stripper, first and last
reaction tray location, stream vapor tray location, distillate
and side fluxes, feed stage, and total number of stages. /e
optimization methods were coupled with the Aspen Plus
simulator to carry out the minimization of objective func-
tions of these processes./e bounds of the decision variables
were defined based on preliminary calculations, and the HS
parameters were PAR= 0.4, HMCR= 0.8, and HMS= 10. SA
showed better results for the conventional and thermally
coupled reactive distillation sequences in comparison to HS
and GA, while HS was the best method for the design of
dividing wall distillation column design.

/e optimal design of heat integrated distillation systems
is a relevant subject focused on thermal efficiency im-
provement via several techniques, which seek to effectively
use heat from distillation columns to reduce the energy input
requirements [71]. /e synthesis of heat integrated systems
requires optimizing three main interrelated aspects: the
number and sequence of separation units, the individual
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design of the columns, and the heat exchanged network
design [235] (see Figure 7 for an illustrative example).
Several techniques have been used to solve this design
problem including stochastic global optimization algo-
rithms. Lashkajani et al. [235] developed a methodology to
optimize the total annual cost of different heat integration
distillation sequences involved in the olefin production
using IHS [78]. First, the best separation sequence was found
considering all flow rates, compositions, and several spec-
ifications for the whole separation network. /is sequence
was used as reference to evaluate the effect of heat inte-
gration in the total annual cost. /e decision variables of the
problem were the condenser and reboiler heat flows and
temperatures, pressures, diameters, reflux ratios, cooling
rates, actual plates, and heating rates. /ree examples were
analyzed to evaluate and compare the proposed method-
ology versus the results obtained by Isla and Cerda [301]. For
all tested problems, IHS obtained the best performance.
Additionally, an olefin production problem from a seven-
hydrocarbonmixture was also solved where IHS results were
compared with those obtained with GA. /e final heat in-
tegrated sequence design proved to be an economical and
competitive solution. /e addition of heat integration
techniques reduced the total annual cost by 44.64 and
35.37% using IHS and GA, respectively.

Boto et al. [239] applied HS and GA to minimize the
energy and water consumption in a thermal cracking pro-
cess. /e mass flow rates of naphtha into the furnaces, steam
dilution ratio, temperature, induction to turbines, and the
distillate to feed ratio in the demethanizer column were
defined as the optimization variables. /ese variables were
selected using a sensitivity analysis to identify those with the
highest impact on the energy and water reduction. /e
cracking process was constrained by the conditions of
equipment performance, resource specifications, production
requirements, and quality properties, which were considered
in the optimization problem formulation. HS parameters
used in the resolution of this problem design were
HMCR� 0.7 and PAR� 0.5, and bwi was defined in terms of
a constant parameter and the lower and upper bounds of
decision variables. HS achieved the best performance where

40% reduction of water and energy consumption was
reported.

Sukpancharoen et al. [241] proposed a technique to
synthesize a heat integrated distillation sequence using HS.
/e objective function was the total annual cost in terms of
energy and the configuration of the separation sequence. A
variance analysis was carried out to stablish the optimal
parameters of the algorithm (i.e., PAR, HMCR, HMS, and
itermax). HS proved to be successful of solving large-scale
mixed integer linear programming problems without any
additional mathematical manipulation to suppress the non-
convexities or to divide the problem into a set of
subproblems.

Mansourzadeh et al. [244] implemented HS in a new
multi-component isotope separation cascade code (MISCC-
HS) for the calculation of optimal parameters of a centrifuge
separation cascade for multi-component systems. Cascade
optimization is considered a constrained problem where the
optimal design is a configuration with a minimum total flow
(or minimum number of gas centrifuges) for a given isotope
concentration or a maximum separation capacity for a
specific feed flow rate [244, 302]. /e objective function was
defined with respect to the stage cuts and feed location
according to a defined minimum concentration in the
distillate and a maximum concentration in the bottom.
Constraint violations (i.e., out of bound concentrations)
were managed using a penalty value. /e proposed method
was tested and compared with other strategies for the
separation of uranium and xenon isotopes. /e HS method
proved to be suitable in the cascade separation design for
mixtures.

Gao et al. [242] introduced a hybrid algorithm called
cultural harmony search (CHS) to solve a real-time diesel
mixture optimization problem, which is a complex high-
dimensional problem with non-linear and linear constraints.
/e objective was to maximize the sum of flow rates of final
products of this process subject to flow rate conservation and
quality property constraints. /e optimization variables
were the distillates from each column, flow rates of the
temporal blending tank, catalytic cracking, and cooking
units. /e variable bounds were calculated according to the
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initial feed flow rate of each column and the yield per-
centage. HS was implemented with the following parame-
ters: PAR� 0.75, HMCR� 0.95, and HMS� 50. /e
performances of HS, CHS, improved CHS (ICHS), and
simplex improved CHS (SICHS) were compared. /e
implementation of the simplex method to accelerate the
convergence by a domain reduction in the decision variables
was very effective to find better solutions to this optimization
problem.

3.4. LifeCycleAnalysis. Life cycle analysis (LCA) is a strategy
to perform a comprehensive assessment of a product from
raw material extraction to its production process, use,
recycling, and disposal. LCA provides useful information for
decision making in process design considering the envi-
ronmental impacts, economic factors, energy consumption,
and other relevant metrics [303]. For example, the con-
struction of residential buildings can involve the optimi-
zation of several design objectives such as cost reduction,
energy consumption, and environmental impact (e.g., solid
wastes) minimization. In this regard, Fesanghary et al. [197]
presented a multi-objective HS-based method to minimize
the life cycle cost (LCC) and equivalent carbon dioxide
(CO2-eq) emissions in the construction of a residential
building. /e optimization variables were treated as discrete
values, and only the market available concepts were con-
sidered in the optimization procedure (e.g., external walls,
roofs, garage doors, windows, and floors). LCC analysis
considered three phases: pre-use, use, and end of life of the
building (see Figure 8). /e first phase involved the ex-
traction and processing of raw materials, component
manufacturing, transport, and structure edification. In the
use phase, CO2 emissions related to energy consumption for
lighting, heating, and cooling, as well as those related to
maintenance were considered over a period of 25 years.
Finally, the final phase comprised demolition of the building

and transportation of residues to the landfill or recycle
centers. Initial solution vectors were randomly generated in
HS and then sent to the EnergyPlus simulator to calculate
the environmental impact, energy consumption, and life
cycle cost, which were used to evaluate the objective function
in HS (see Figure 9). Results showed that it was only possible
to reduce CO2 emissions with an increase in LCC. Asadi
[230] also minimized the LCC and CO2-eq emissions for
household design considering the whole structure life cycle
(i.e., pre-use, use, and end of life phases). In this case, the
transportation was not considered. Discrete decision vari-
ables were divided in structure-related parameters and cli-
mate regions. Results showed that there was a significant
effect of climate regions in the final designs. Further research
was suggested on the effect of different HVAC (heating,
ventilation, and air conditioning) systems on optimal
designs.

Maleki et al. [236] used DHS [96] to minimize the total
life cycle cost of a hybrid system composed of photovoltaic
panels, a diesel generator, and a storage battery in a real-
world application for a domestic house in an Iranian village.
/e total life cycle cost included the maintenance, capital,
and total annual consumption costs of the diesel generator.
/is combinatorial optimization problem involved one
continuous and two discrete decision variables: the diesel
fuel consumption and the number of batteries and panels,
respectively. /e constraints on total load demand, charge/
discharge battery power, diesel generator power, and solar
power were considered. /e parameters used for DHS were
itermax � 1,000, bwmin � 0.01, bwmax � 1, PARmin � 0.1,
PARmax � 0.7, HMCR� 0.95, and HMS� 20. Six biodiesels
were compared for the total life cycle cost analysis of the
hybrid system. /e best results were associated with the
biodiesel produced from Norouzak seed oil. Other biofuels
resulted in 9 to 43% increment of the total life cycle cost./e
optimal configuration comprised 101 photovoltaic panels, 31
batteries, and 1 diesel generator. /is study concluded that
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the proposed hybrid system was suitable and profitable to be
implemented on that geographic location.

3.5. Design of Water Distribution Systems. /e design of a
water distribution network (WDN) involves the determi-
nation of the optimal size, location, and capacity of all
operations involved in this process. WDN is composed of
interconnected hydraulic components such as pumps, res-
ervoirs, tanks, distribution pipes, and water treatment
plants. /e WDN design aims to establish the water supply
efficiency from the source to its final destination. Several
objectives such as optimal functioning assessment in terms
of electricity cost and hydraulic behavior have been studied
in WDN design. Note that the objective is to supply the
correct amount of water with an adequate pressure and
quality to the end user. /ese calculations are computa-
tionally expensive and time-consuming because of their
non-linear models and high-dimension characteristics
[305]. Generally, the liquid resource is pumped to higher
elevations to meet specified delivery pressures to ensure an
adequate water supply service. /ere are some factors to
consider in order to achieve a constant water supply, for
example, the water consumption is not uniform throughout
the day, and water pumps cannot be activated instantly. In
this regard, the water is usually stored in highly elevated
tanks to ensure the supply. /erefore, the pumping oper-
ations imply significant costs, so the design of optimal
energy-saving water supply schedules is a relevant subject
[237].

Geem [216] introduced a cost optimization method for
pumping inWDNs usingHS./e optimization variables were
the pipe diameter and pump size. HS was used as optimizer
with the following parameters for this application:
PAR∈ (0.05 – 0.2), HMCR∈ (0.95 – 0.99), and
HMS∈ (30 –100). /e maximum number of iterations was
defined based on similar works, and a penalty function was

used to handle the minimum pressure constraint. /e ob-
jective function was defined in terms of three major cost-
related terms: capital cost of pipes, capital cost of pumps, and
energy cost for pumping. WDN example presented by Costa
et al. [306] was solved using HS where a complete analysis of
this network implicates 1012 possible designs. Similar results
were found by HS and those reported from Costa et al. [306]
in terms of the optimum value. However, HS required less
numerical effort over multiple trials to resolve this design
problem.

Yoo et al. [232] presented a technique to estimate the
optimal pipe diameter of an agricultural looped water ir-
rigation network. In looped systems, the flow passing
through each pipe is unknown, increasing the resolution
complexity. /e design cost was minimized according to the
construction, pipe materials, and maintenance costs. Note
that these terms are in the function of the pipe diameter. /e
optimization problem was solved as an unconstrained
problem using the penalty method to handle the hydraulic
restrictions. WDN design involved 356 pipes (solution
variables) and 18 different diameters that were used in the
cost evaluation. HS parameters were set as PAR� 0.01,
HMCR� 0.97, and HMS� 30. Results showed that HS-based
optimization decreased the costs by 9% in comparison with
economic pipe calculations methods.

De Paola et al. [237] employed a HS multi-objective
optimization (HSMO) approach to solve the pump sched-
uling problem. /is stochastic technique was coupled with
the known hydraulic solver EPANET 2.0 to evaluate the
problem constraints and to calculate the performance of the
proposed pumping schedules. Two objective functions were
minimized: the energy cost and number of pump switches
(i.e., turning on/off a previously non-operating/operating
pump). /e main restriction of the problem was imposed by
the tank’s water level, which was bounded between storage
head values in function of pump station flows and previous
water levels. Additional constraints were also defined:
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Generate new design

Write input
file

Write output
file

Configured design:
Current building
Weather data

AssessmentSelection

Energy consumption
Environmental impact
Life cycle cost

EnergyPlus: Building Energy
simulation so�ware

Cooling load
Heating load

Figure 9: Illustration of schematic structure of the life cycle analysis [197].
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deliverable pump flows and initial water level. Usually, they
are the most common constraints in the pump scheduling
problem. Since decision variables values are 0/1, the original
pitch adjustment step was omitted, and an alternative
strategy was used to generate the corresponding integer
values.

Jung et al. [238] developed a hybrid algorithm based on
HS and a pattern recognition method (HyHS) to perform
WDN design. After 100 iterations, the solution vectors
stored in HM were used as a training set to identify
promising patters to find better solutions in future iterations.
/is algorithm was tested on the New York tunnel problem
to minimize the cost with respect to the pipe sizes con-
sidering a minimum pressure constraint. Calculations
showed that the integration of the pattern recognition
method in the HS algorithm improved its robustness
compared to IHS [78], IGA, and IGA+pattern recognition.
/e resolution of a more complex network using HyHS was
suggested to evaluate its effectiveness under other chal-
lenging scenarios.

Yoo et al. [240] employed the HS algorithm to evaluate
the optimal re-chlorination location and dosing in two real
WDNs in Korea considering current and future conditions.
In WDN design, the compliance with standard residual
chloride concentration is necessary to avoid the appearance
of diseases. /e first study analyzed eight reservoirs that
distributed 54,020m3 of water through 85 and 773 km of
transport and distribution pipes, respectively. For the second
case, WDN with 3.8 km of pipes on 44m3 surface was
studied. /e objective function for each problem was the
mass minimization of additional chlorine that would be
injected into the supply network nodes. /e decision vari-
ables were themass injection rates for all nodes./e problem
was subject to the constraints imposed by the concentration
of residual chlorine at each node, number of re-chlorination
facilities, and conservation of mass and energy at each node.
A penalty approach was employed to handle these con-
straints. A sensitivity analysis was carried out to determine
the best values for the HS parameters, which were set as
follows: bw� 0.01, PAR� 0.1, HMCR� 0.7, and HMS� 30. A
maximum number of iterations was defined as the algorithm
termination criterion. For both cases, the re-chlorination
injection at four nodes in the network was the best solution.
A comparison was made between HS and GA, and the
former algorithm showed the best performance. Results
showed that the WDN optimization complies with the re-
sidual chlorine concentration standards, so the proposed
model proved to be useful for the WDN design.

3.6. Other Applications in Chemical Engineering.
HS-basedmethods have been used to resolve a wide diversity
of other global and multi-objective optimization problems
related to process systems engineering. For example, Vasebi
et al. [214] used HS to solve the combined heat and power
economic dispatch problem. /e total power and heat
production cost was minimized in terms of heat and power
production per unit subject to several constraints such as

specific heat and power requirements. HS was applied using
the following parameters: PAR� 0.5, HMCR� 0.85, and
HMS� 6. A novel test systemwas presented and suggested as
future reference to assess the algorithm performance in
combined heat and power economic dispatch problems.

Zou et al. [219] also used the NGHS method to solve 39
chemical equation balance problems. /e reactants and
products’ stochiometric coefficients were the optimization
variables to minimize a normalized constraint value related to
the mass conservation equations. Real values were employed in
the improvisation step and then converted to discrete sto-
chiometric coefficient values. It was found that 3 of 39 chemical
equations were challenging to solve. NGHS was reported as an
efficient and robust method for chemical equation balancing.

Jiang et al. [227] proposed a HS variant called almost-
parameter-free harmony search (APF-HS) to solve a
groundwater pollution problem. /e main objective of this
problem was to identify the relevant characteristics of the
pollution source(s) such as release events or fluxes. A
weighted least-squares type objective function defined in
terms of calculated and observed pollutant concentrations
was used. One of the main features of the APF-HS method
relies on the HMCR and PAR parameters which were dy-
namically adjusted according to algorithm iterations. Spe-
cific values of HMCR and PAR were used for each
optimization variable. Regarding the bw parameter, its value
was defined according to the minimum and maximum
values in algorithm’s memory. A penalized objective func-
tion was used to handle the constraints. Comparative results
between the proposed technique and IHS were reported.

Ma et al. [228] implemented the HS method in the
Alopex-based evolutionary algorithm (AEA) [307] in order
to improve its search mechanism. /e proposed approach
(HSAEA) was tested in two reaction kinetic parameter es-
timation problems. /e first problem was related to the
heavy oil thermal cracking three-lump model where eight
parameters were estimated via the minimization of the
average self-checking relative error. In the second case of
study, ten parameters (i.e., the activation energies of the
reaction kinetic equations and the pre-exponential factors)
related to the reaction mechanism of mercury oxidation
were determined. /e average squared difference between
the experimental and calculated mercury conversion was
minimized. HSAEA parameters were bwmin = 1/(30
(UBi − LBi)), bwmax = 1/(20 (UBi − LBi)), PARmin = 0.01,
PARmax = 0.99, and HMCR= 0.95. For both cases, the
proposed HSAEA algorithm showed competitive results.

Dynamic optimization problems were solved by Fan
et al. [308] using HS hybridized with differential evolution,
which has co-evolutional control parameters. Dynamic
optimization implies the resolution of problems described
by differential equations that represent the change of design
(target) variables with respect to time [309]. In particular,
this hybrid HS method was assessed in the feeding-rate
optimization of foreign protein production and an optimal
control problem, thus concluding that this method out-
performed the results reported by other authors. /ese
results suggested that the application of HS-based method
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can be extended to the reactor network synthesis, parameter
estimation of dynamic models, and optimal control [309].

Enikeeva et al. [251] used HS and gravitational search to
solve a relevant problem in chemical rector design: the inverse
problem of chemical kinetics./is problem is characterized for
its wide search space, the presence of non-linear and non-
differentiable functions, and also for being multi-modal. /e
optimization variables were a set of activation energies and pre-
exponential coefficients for each reaction, as well as some
additional parameters included in the reaction rate expressions.
/e inverse chemical kinetics problem can become a large-scale
optimization problem due to complex chemical reactions in-
volved in industrial operations. /e proposed HS algorithm
was evaluated using 20 benchmark functions including uni-
modal and multi-modal objectives. /e performance of this
algorithm was assessed using the mean value and standard
deviation of the decision variables. /e former expressed the
quality of the obtained solution, and the second one was as-
sociated to the algorithm stability. Two chemical operations
were studied: the pre-reforming of propane into methane gas
using a catalyst and the catalytic isomerization of the pentane-
hexane fraction. HS was implemented with the following
parameters: bw� 0.25, PAR� 0.95, HMCR� 0.95, and
HMS� 100./ese authors concluded that HS performed better
in problems with low dimensionality.

Yadav et al. [250] studied the solution of a dynamic
model for multiple effect evaporators using Fourier series
and two metaheuristics, PSO and HS. Particularly, HS was
used to optimize the Fourier series coefficients employed to
solve the simultaneous non-linear ordinary differential
equations of this problem. Fourteen variables were opti-
mized with HS using the following algorithm parameters:
itermax � 1000, PAR� 0.1, HMCR� 0.9, and HMS� 30. /e
penalty method was used to handle the constraints for the
liquor concentration and vapor temperature variables.
Overall, the results showed that HS outperformed PSO.

4. Remarks on Challenges to Improve the
Performance of HS for Chemical
Engineering Optimization

HS is a metaheuristic algorithm that has drawn the attention
of the scientific community since its initial proposal. In this
review, the application of this algorithm in the chemical
engineering field has been analyzed and discussed. First, a
brief introduction covering general optimization concepts,
classification, and characteristics of optimization techniques,
previous reviews on HS, and motivating remarks for its use
on chemical engineering were presented. Next, the funda-
ments of HS have been described in detail, along with
popular variants reported in the literature. Recent devel-
opments on the algorithm, a wide variety of proposed
variants, and multi-objective adaptations were also dis-
cussed. /e applications of HS in chemical engineering were
introduced to the readers in several sections covering single
andmulti-objective optimization problems with non-convex
and non-linear behaviors subject to different types of
constraints. /is overview of the application of HS in

chemical engineering indicated that this stochastic optimizer
has been applied successfully in a wide diversity of problems.
However, there are challenges and further directions of
research that could improve the HS metaheuristic.

A great number of HS variants have been published
over the years to enhance the method performance based
on the modification/adaptation of its control parameters,
structure, or via the hybridization with other metaheuristic
operators. However, a limited number of these algorithm
variants have been extensively assessed in the literature to
characterize its reliability and efficiency to solve optimi-
zation problems with different dimensions, optimization
variables, and constraints. A numerical characterization of
existing and novel HS algorithms using a general testing
framework could provide a reliable picture of their capa-
bilities and limitations.

On the other hand, the resolution of constrained opti-
mization problems with HS algorithms is commonly based
on the penalty-based approach to handle the corresponding
restrictions. /is technique is strongly dependent on the
penalty factor values, and further insights on the use of
alternative constraint handling methods should be reported.
Some studies have also highlighted the impact that the
termination criterion could have on the algorithm robust-
ness. Consequently, a generalized analysis of different
stopping conditions for both global and multi-objective
optimization problems should be performed. Until now, this
analysis has been carried out for the application of HS in the
parameter estimation of some thermodynamic models,
Gibbs free energy minimization, and phase stability. /e
research on parameter-setting-free exploration and exploi-
tation mechanisms could be promising to enhance HS ca-
pabilities to solve diverse chemical engineering optimization
problems.

HS-based optimization methods have proved to be
competitive numerical tools to resolve challenging optimi-
zation problems from chemical engineering. /is stochastic
method has a high potential to be applied in a wide window
of other design problems like process control, supply chain
design, and other emerging areas related to chemical
engineering.
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