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It is economically and technically essential to promptly and accurately estimate the dew point pressure (DPP) of gas condensate to,
for example, characterize fluids, evaluate the performance of reservoirs, plan and develop reservoirs for gas condensates, and
design/optimize a production system. Indeed, it is difficult to experimentally explore the DPP. Furthermore, experimental tests are
time-consuming and complicated.*erefore, it is required to develop an accurate, reliable DPP estimation framework.*is paper
introduces artificial neural network (ANN)models coupled with optimization algorithms, including a genetic algorithm (GA) and
particle swarm optimization (PSO), for DPP estimation. A total of 721 data points were employed to train and test the algorithm.
In addition, the outlier data were identified and excluded. *e root-mean-squared error (RMSE) and the coefficient of de-
termination (R2) were calculated to be 230.42 and 0.982 for the PSO-ANN model and 0.0022 and 0.997 for the GA-ANN model,
respectively. *e model estimates were found to be in good agreement with the experimental dataset. *erefore, it can be said that
the proposed method is efficient and effective.

1. Introduction

A gas-liquid ratio from 3.2 to 150 MCF/STB is applied to the
reservoirs of gas condensates [1, 2]. A drip in the pressure in
the vicinity of the wellbore below the dew point pressure
(DPP) would diminish the efficiency of the reservoir [3–5].
Moreover, the transferability of gases near the well and
permeability effectiveness decline when the condensates are
partially blocked [6, 7]. Hence, the separation of the gases
within the reservoir in the vicinity of the wellbore leads to
smaller fractions of the produced gas [8, 9]. It is crucial to
accurately and promptly estimate PPD in order to, for ex-
ample, characterize fluids, evaluate the performance of a
reservoir, design and develop reservoirs for gas condensates,
and design and develop a production system [10, 11]. De-
spite significant accuracy and reliability, it is costly and time-
consuming to experimentally measure the DPP [12].

As experimental processes may be sometimes infeasible,
accurate and simple estimation models are to be developed.
*e equation of state (EoS) approach is an effective meth-
odology. However, to implement EoS models, it is required
to accurately characterize the fraction of heptane plus (C7+)

[13, 14].
Researchers introduced numerous DPP estimation

models of gas condensates, e.g., EoS, graphical, and artificial
intelligence (AI) models. Eilerts and Smith explored the
relationships of the DPP with the composition, temperature,
oil-gas volume ratio, and molal average boiling point
(MABP) [15]. Olds et al. investigated reservoir fluids of the
Paloma field and reported that the composition had a sig-
nificant effect on the DPP [16].

Reamer and Sage sought to develop a model for the
purpose of extending the formulations to larger gas-oil ratios
using a total of five sample pairs of a field in Louisiana [17].
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*ey emphasized that parameters other than the gas-oil ratio
were involved in the composition effects. Organick and
Golding introduced a straightforward model for saturation
pressure estimation of volatile oil mixtures and gas con-
densates [18]. *ey reported that the composition and
saturation pressure were directly associated. *e modified
weight average equivalent molecular weight andMABPwere
utilized as generalized characteristics of the composition
independent of hydrocarbon equilibrium constants. Nemeth
and Kennedy estimated the DPP based on the composition,
C7+, and temperature [19]. Crogh enhanced the formulation
of Nemeth et al. by relating the depleting composition of a
mixture of retrograde gas condensates to the composition at
the DPP [20].

Potsch and Braeuer graphically estimated the DPP at a
maximum error of 5 bars (<3%) [21]. Carlson and Cawston
found that the DPPwas dependent on the H2S concentration
[22]. Elsharkway used gas temperature and compositions of
routine measurement to empirically estimate the DPP of gas
condensates and demonstrated that themodel outperformed
EoS approaches [23]. Marruffo et al. introduced a DPP
estimation correlation based on eighty PVTdata points [24].
*e maximum error was found to be 5.74%. *e inputs
included the gas condensate ratio, C7+ concentration,
temperature, and API gravity. *e model was implemented
on fifty-four data points and was demonstrated to outper-
form the model of Nemeth [25]. González et al. proposed a
DPP prediction neural network for reservoirs of retrograde
gases using a total of 802 constant volume depletion data
points [26]. *e mean absolute error was calculated to be
8.74%.

In recent years, the use of new methods of modeling and
data analysis to facilitate the solution of complex problems
has attracted the attention of many researchers [27–32] and
the use of artificial intelligence andmachine learningmethods
have found many applications [33–38]. Artificial intelligence
methods have been introduced in various sciences and dis-
ciplines and have been able to answer many previously un-
resolved problems [39–42]. Jalili et al. proposed a number of
artificial neural network (AAN) models for DPP estimation
using a total of 111 data points [43]. *e highest training
performance was observed for the Levenberg-Marquardt
algorithm. Al-Dhamen and Al-Marhoun used nonlinear
multiple regression, ANN, and alternating conditional ex-
pectation (ACE) algorithms based on a constant mass ex-
pansion test dataset of fields in the Middle East [1]. *ey
found that the ANN model outperformed the nonlinear
multiple regression and ACE algorithms. Godwin developed a
model for the DPP estimation of gas condensates based on
259 data points [44]. *e model was reported to outperform
the existing approaches. Alzahabi et al. exploited a dataset of
downhole fluid analysis to develop a new correlation [45].

*e present work aims to comprehensively review and
evaluate the gas condensate DPP literature. Two newmodels
of PSO-ANN and GA-ANN are introduced to this aim and
compared to earlier studies. 721 datasets were collected from
other sources [46]. *e collected data are subjected to data
cleansing. We used 75% of them for the training stages and

the rest for the testing stages. *en, models were created.
Finally, various statistical analyzes have been used to eval-
uate the proposed models.

2. ANN

An ANN learns from experience for the purpose of perfor-
mance improvement and adaptation [47, 48]. An ANNmodel
consists of connected operating components (neurons) in a
number of layers. Radial basis functions (RBFs) and multi-
layer perceptrons (MLPs) are the most common ANN classes
[49]. An MLP includes an input layer, one or more hidden
layers, and an output layer. *e layers contain a number of
neurons. It is required to implement the optimal number of
hidden layer neurons [50]. MLP handles equivalent problem
variables, and the interconnections are employed to train the
model. It should be mentioned that an efficient MLP ar-
chitecture requires optimized interconnections [51].

A hybrid RBF-ANN algorithm would be simpler than
an MLP-ANN framework [52]. *ese models can effec-
tively respond to patterns outside the training dataset. An
RBF-ANN design is dependent on iteratively estimating
localized basis function networks [53]. *e RBF-ANN
approach is more rapid and straightforward and, there-
fore, is preferable over the MLP-ANN methodology [54].
*e RBF-ANN architecture consists of input, hidden, and
output layers. *e hidden layer nodes are subjected to
RBFs. *e nonlinear activation function serves as a
neuron. *e parameters include the RBF center, distance
scale, and precise shape. *e parameters undergo ad-
justment once it is linear. *e RBF-ANN approach could
produce an optimal solution to adaptable weights at the
minimum MSE. Let x be the input pattern. *e RBF-ANN
output is given by [55]

yi(x) � 

h

k�1
wki∅ x − xk

����
���� , (1)

where xk denotes the center archetype of hidden unit k, wki

represents the weight of the connection between hidden unit
k and output i, and symbol ‖ · ‖ represents the Euclidean
norm. In addition, RBF (φ) is the Gaussian function. For
scalar input, the Gaussian is included in equation (2) (as a
representative radial function) [56].

h(x) � exp
− (x − c)

2

r
2 . (2)

*e Gaussian RBF parameters include the radius r and
the center c. *e Gaussian RBF reduces monotonically as the
distance from the center rises. In contrast, a multiquadric
RBF monotonically increases as the distance from the center
increases (for scalar inputs) [57].

h(x) �

����������

r
2

+(x − c)
2



r
. (3)

In contrast to the universal response of multiquadric
RBFs, a Gaussian RBF is local with further common uses.
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Furthermore, in light of finite responses, Gaussian RBFs
enjoy higher biological plausibility [58].

3. GA

An initial population is created to begin the GA procedure.
*en, the individuals are evaluated using fit functions before
their compatibility measurement [59]. *e global best satis-
factory individual is identified once the error decreases below a
predefined level [60]. Weaker individuals are identified and
removed. *is process continues until the parameters have
been extracted. In order to create a new population with a
smaller error, crossover and mutation are randomly imple-
mented in the fitness evaluation phase [61, 62].

4. PSO

PSO creates an initial population of particles of random
positions and velocities. *en, the particles are evaluated in
fitness using a statistical fit function [63, 64]. *e optimal
solutions are identified once the discontinuance criteria have
been met. To handle the failure to meet the discontinuance
criteria, the particle positions and velocities are updated.
*en, the linked parameters of the globally optimal solutions
are to be updated whenever the particle has greater fitness
than the globally optimal solution [65]. *e optimal particle
parameters are updated whenever a particle has higher
fitness than the optimal one. Finally, it is required to
reevaluate the next particles in the second step [66, 67].

5. Implementation and Analyses

*is paper sought to estimate the DPP through GA-ANN
and PSO-ANN algorithms. *eoretically, it is required to
employ optimization (i.e., GA and PSO) to optimize the
ANN weight and bias terms. *en, the models are evaluated
statistically using the root-mean-squared error (RMSE),
coefficient of determination (R2), average relative deviation
(ARD), MSE, and standard deviation (STD). *ese indices
are defined as

MSE �
1
N



N

i�1
αexp − αcal 

2
, (4)
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100
N



N
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, (8)

in which N is the total number of data points, whereas
αexp and αcal are the experimental and calculated
quantities.

6. Results and Discussion

Figure 1 illustrates the experimental and estimated DPPs for
the training and testing datasets. As can be seen, the models
were satisfactorily efficient and effective in DPP estimation
for both datasets. *e proposed models seem to have high
performance. However, the superior model remains yet to be
identified.

Figure 2 plots the regression analysis of the experimental
and estimated DPPs. As can be seen, the estimates were
correlated with the experimental data. *is correlation be-
comes linear for R2 �1. *e GA-ANN model showed the
highest fitness.

As shown in Figure 3, using relative deviation analysis, a
good comparison between the accuracy of different models
in predicting the output parameter can be obtained.
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Figure 1: Simultaneous viewing of modeled and real data for (a) PSO-ANN and (b) GA-ANN models.

International Journal of Chemical Engineering 3



Table 1 reports the MSE, RMSE, STD, ARD, and R2 for
the training, testing, and total datasets.

Figure 4 depicts the Williams plot of DP estimates to
identify outlier data. *e outliers have larger hat values than
the warning leverage hat values and standardized residuals
that are not in the range of [− 3, 3].

7. Sensitivity Analysis

An ANNmodel relates input(s) to the output. *e effect of a
change in input on the output is explored using sensitivity
analysis [68]. *e GA-ANN model was identified as the
superior algorithm. Chen et al. formulated the relevancy

y = 0.9998x + 0.5224, R2 = 0.9825
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Figure 2: Linear regression on datasets modeled using (a) PSO-ANN and (b) GA-ANN.
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Figure 3: Relative deviation analysis to determine the accuracy of (a) PSO-ANN and (b) GA-ANN models in predicting the target
parameter. *e ARD, RMSE, MSE, STF, and R2 were used to evaluate the models.

Table 1: Statistical parameters calculated for the proposed models.

Model Dataset R2 MRE (%) MSE RMSE STD

PSO-ANN
Train 0.982 3.457 47383.75378 217.6781 153.9872
Test 0.981 3.484 53094.67466 230.4228 171.2903
Total 0.982 3.464 48809.5038 230.4228 158.3618

GA-ANN
Train 0.993 2.064 20449.06595 143.0002 108.1799
Test 0.992 1.980 17928.73343 133.8982 100.4504
Total 0.993 2.043 19819.85672 133.8982 106.2545
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factor r to identify the input with the largest effect on the
output and to measure the effect of each individual input.
*e relevancy factor varies in the range of [− 1, 1]. A larger
absolute relevancy factor represents a larger effect of the
corresponding input on the output [69, 70]. A positive
relevancy factor implies that a rise in the input raises the
output, while a negative factor would imply that an increase
in the input decreases the output. According to Figure 5, the
molecular weight of C7+, temperature, C1, SG C7+, and C7+
content are directly related to DPP. Furthermore, the H2S,
CO2, N2, and C2–C6 concentrations are inversely related to

the DPP.*emolecular weight of C7+ and C4 and C5 content
were found to pose the largest positive and negative effects
on the DPP with relevancy factors of 0.73 and − 0.27,
respectively.

8. Conclusions

*is study employed hybrid GA-ANN and PSO-ANN al-
gorithms to estimate the DPP. A total of 721 data points were
extracted from earlier works to develop the algorithms. *e
GA-ANN algorithm was found to outperform the PSO-ANN
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Figure 4: Williams’s analysis to determine suspicious points for models (a) PSO-ANN and (b) GA-ANN.
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framework based on mathematical leverage analysis. It effi-
ciently estimated the experimental data with an MSE of
19819.85672, an STD of 106.2545, and R2 of 0.993. *e
proposed GA-ANN model is simple and could be helpful to
petroleum and chemical practitioners in the DPP estimation
of a gas condensate reservoir.

Data Availability
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