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Dry reforming of methane has exhibited signifcant environmental benefts as it utilizes two major greenhouse gases (CO2 and
CH4) to produce synthesis gas, a major building block for hydrocarbons. Tis process has gained industrial attention as catalyst
deactivation due to coke deposition being a major hindrance.Te present study focuses on the dry reforming of methane over Ni-
supported mesoporous zirconia support. Ni metal was loaded over in-house synthesized mesoporous zirconia within the 0–15wt
% range using the wet impregnation method. Te physicochemical properties of the synthesized catalysts were studied using
various characterization techniques, namely, XRD, SEM, FTIR, TGA, and N2 adsorption-desorption techniques.Te activity of all
the catalysts was evaluated at 750°C and gas hourly space velocity (GHSV) of 72000ml/h/gcat for 9 hours (540min). Te de-
activation factor indicating a loss in conversion with time is reported for each catalyst. 10wt% Ni/ZrO2 showed the highest feed
conversion of about 68.8% for methane and 70.2% for carbon dioxide and the highest stability (15.1% deactivation factor and 21%
weight loss) for dry reforming of methane to synthesis gas.

1. Introduction

Almost 85% of the total world’s energy comes from fossil
fuels. Nevertheless, the combustion of fossil fuels has caused
numerous problems, denoted as global warming [1–3]. CH4
and CO2 are two major greenhouse gases that contribute to
global warming [4, 5]. Dry reforming of methane (DRM) is a
catalytic conversion method, utilizing these gases and
converting them to syngas (CO and H2 gas) [6, 7]. Te main
reaction is displayed in (1), whereas the side reactions are
given in equations (2)–(4) [8]. Equation (2) represents the
disproportionation reaction, while equation (3) denotes the
methane cracking reaction. Equation (4), commonly termed
as reverse water-gas shift reaction, is the key method for the
H2O formation [9]. DRM is an endothermic reaction that
entails the use of high temperatures, which favors rapid
catalyst deactivation and thus lowers its industrial appli-
cations. Tis aspect renders the CH4 to decompose and the
coke to form as shown in the following equations:

CH4 + CO2↔2CO + 2H2ΔH
0

� 248 kJmol−1, (1)

2CO⟶ C + CO2ΔH
0

� −172 kJmol−1, (2)

CH4⟶ C + 2H2ΔH
0

� 75 kJmol−1, (3)

CO2 + H2⟶ CO + H2OΔH
0

� −41 kJmol−1. (4)

Investigators made enormous eforts to synthesize
suitable catalysts for DRM to decrease the formation of coke.
Noble metals-based catalysts showed excellent coke resis-
tance and higher conversions for DRM. However, due to
their limited availability and higher cost, the use of noble
metals-based catalysts is limited. Researchers alternatively
used non-noble metals-based catalysts like nickel-based
catalysts for the reforming process [10–14]. Many investi-
gators synthesized catalysts by using numerous supports
such as Al2O3 and ZrO2 [15]. Another property of catalyst
support that is found to be very useful for reforming
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methane is oxygen storage capacity because supports that
provide O2 could improve the coke oxidation over a metal
surface. Tus, oxygen vacancies improved the CO2 con-
version into CO on the catalyst surface [16–18].Te catalyst
stability is dictated via the correspondence between the
extent of carbon removal and the degree of CH4 breakdown
[19]. Hence, zirconia generally presents signifcant ionic
conductivity due to its higher thermal stability and pro-
vides oxygen vacancies. ZrO2 is among the most universally
used zirconium compounds in nature. Its phases of crys-
tallization comprise cubic, monoclinic, and tetragonal at
ambient pressure [20–22]. Tus, using stable support like
zirconia promotes oxygen vacancy and stability of Ni-
formed catalysts [23]. Terdthianwong et al. studied the
efect of ZrO2 as catalyst support for DRM [24]. Te study
revealed that ZrO2 considerably enhanced the catalyst
stability in the view of superior coke resistance by im-
proving the dissociation of O2 intermediates which then
react with carbon species formed over the metal. Abasaeed
et al. studied the efect of catalyst calcination temperature
supported on zirconia and ceria in DRM [25]. Catalysts
calcined at low temperatures showed high activity and
yield, while catalysts at high temperatures showed lower
activity and yield. Wolfbeisser et al. investigated DRM over
zirconia–ceria-supported nickel catalyst [26]. Results
revealed that Ni/ZrO2 catalyst showed enhanced activity,
stability, and lower coke formation. Ibrahim et al. con-
ducted a study to investigate the DRM process over Ni-
based catalysts supported by zirconia [27]. Te results
indicated that the zirconia support source has a greater
infuence on the overall performance of the DRM process.
Pompeo et al. studied the stability enhancement of Ni-
based catalysts supported on ZrO2 and or CeO2 for the
reforming process. Tey found that the addition of support
decreases the deactivation by sintering, conferring to the
system with a higher contribution of adsorbed oxygen
species, favoring the deposited carbon elimination [28].
Tough, it has been a less focused area and has not been
studied systematically despite its promising results in
producing syngas.

2. Materials and Methods

2.1. Catalyst Preparation. To synthesize mesoporous zirco-
nia, zirconium (IV) n-butoxide ((80wt.% solution in 1-
butanol) was used as the precursor. Approximately 5.0 g of
(EO)20(PO)70(EO)20 triblock copolymer (Pluronic P123
from BASF, Co.) was dissolved in 50.0mL of 99.5+% an-
hydrous ethanol (Acros Organics) and allowed to stir for 4 h
at room temperature until dissolved completely. Ten, ap-
proximately 80ml of zirconium (IV) n-butoxide ((80wt.%
solution in 1-butanol) was dissolved in 20mL of 68–70wt %
nitric acid and 50.0mL of anhydrous ethanol. Te solution
was stirred at room temperature for 4 hours. Solvent
evaporation was performed at 100°C for 24 h in the oven
without stirring. Finally, the catalyst was calcined under air
in the furnace at 500°C temperature for 5 h.

Zirconia support was then used to load nickel within
the range of 0–15wt % using the wet impregnation method

[29]. For this purpose, nickel (II) nitrate hexahydrate Ni
(NO3)2.6H2O was used as a metal precursor. Te calculated
amount of Ni-salt was dissolved in water, and then, the
calculated amount of zirconia support was added to the
solution. Te resulting mixture is stirred continuously for 3
hours at room temperature (26°C ± 2°C). After completing
3 hours, the mixture is placed in an oven for drying for
about 24 hours at 5°C. To keep the relative homoge-
neousness of the mixture, the slurry is stirred manually
after every hour until most of the water is removed during
the initial 6 hours of drying as lack of stirring in this initial
stage often results in agglomeration of the catalyst [30]. Te
fnal dried catalyst is crushed, sieved, and calcined in dry air
at 800°C for 5 hours, at a heating rate of 5°C·min−1. Finally,
the calcined catalysts obtained are named C-0, C-2, C-4,
C-6, C-8, C-10, C-12, and C-15 with the number repre-
senting the amount of Ni wt % loaded over in-house
synthesized zirconia. Te fowchart for the preparation of
the catalyst through the impregnation method is shown in
Figure 1.

2.2. Characterization of the Catalyst. N2 adsorption/de-
sorption isotherm determines the texture properties like
specifc surface area, pore size, and pore volume of all
synthesized catalysts at (−196°C) of liquid nitrogen via the
Brunauer–Emmett–Teller (BET) based surface analyzer
(Nova 2200e Quanta chrome). Te material was frst
degassed in a vacuum at 300°C for 3 h before analysis. Te
crystal structure of all synthesized Ni/ZrO2 catalysts was
determined with high accuracy through X-ray difraction
(XRD) with the help of an advanced difractometer
(Bruker D2-Phaser). Tis difractometer has a 10–80° (2θ)
detection range and operates between 200mA and 40 kV
by using Cu Kα radiation. Fourier transform infrared
spectroscopy of the synthesized catalyst was recorded in
the range of 400–4000 cm−1 on the Shimadzu 8400 FTIR
spectrometer with KBr pellets at room temperature.
Scanning electron microscope images were obtained via
FEI titan 200, USA & NOVA NANOSEM 430, respec-
tively, to determine particle morphology. Termal anal-
ysis was carried out at the end of the reaction to estimate
the quantity of carbon that was deposited on the used
catalyst samples. Te analysis was performed with a
thermogravimetric/diferential analyzer (Shimadzu
TGA). For TGA analysis, 10mg of the samples were
heated from room temperature up to 1000°C at a heating
rate of 25°C/minute, and the weight change was recorded
with temperature rise.

2.3. Experimental Setup. Te activity of synthesized cata-
lysts for the dry reforming of methane was carried out in a
fxed-bed reactor as shown in Figure 2. Before the reac-
tion, the catalyst was in situ reduced with hydrogen gas at
550°C for two hours at a fow rate of 50ml/min. Te
reaction was carried out at atmospheric pressure, and the
reactant gas composition was 50mol % methane
(99.995%) and 50mol % CO2 (99.995%). Gas hourly space
velocity and other reaction conditions (T � 750°C and
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P � 1 bar) were kept constant for each catalyst. Te
temperature was determined with a thermocouple
inserted inside the reactor. Te reactor was ftted with a
gas chromatograph which was equipped with a thermal
conductivity detector (GC-TCD) to analyze the compo-
sition of exhaust gases coming out from the reactor.
Helium was used as a carrier gas in a gas chromatograph.
Methane, carbon dioxide conversions, and H2/CO ratio
were determined via the following formulas:

XCH4
(%) � 100 ×

FCH4in − FCH4out

FCH4in
, (5)

XCO2
(%) � 100 ×

FCO2in − FCO2
out

FCO2in
, (6)

H2

CO
�
FH2

out
FCOout

. (7)
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Figure 2: Schematic diagram of the reactant and products analysis.
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Also, the deactivation factor (DA, %) for the catalyst at a
particular temperature was calculated using the following
equation:

DA � 100 ×
XiCH4

− XfCH4

XiCH4

, (8)

where Xi,CH4
represents the initial conversion at temperature

TandXf,CH4
represents the fnal conversion at temperature T.

3. Results

3.1. Characterization of Fresh Catalysts

3.1.1. BET. Pore size distribution and surface area of syn-
thesized catalysts were obtained through the nitrogen ad-
sorption-desorption study. Surface area and pore volume are
presented in Table 1. Te surface area of mesoporous zirconia
was found to be 54m2/g which is comparable to literature-
reported values [31, 32], and it was observed that there is a
decrease in the surface area and the pore volume when active
metal was added to it. Tis indicates that Ni particles fll up the
pores of support to reduce their surface area and pore volume.

Te average pore size distribution of all the catalysts falls
between mesopores, mesopores >2 nm, and mespores
<50 nm range. Te mesopores structure in metal catalysts
played a vital role to restrict the formation of metallic
crystallite and also the sintering of metallic particle surface at
a higher temperature during the reaction [33]. Te N2 ad-
sorption-desorption isotherms are presented in Figure 3. All
the catalysts are representing type IV isotherm with char-
acteristic H2 hysteresis. In the area of lower relative pressure,
the isotherms of catalysts show a linear increase in adsorbed
amount with an increase in relative pressure. Tis shows the
monolayer adsorption of N2 on the pore walls [6]. However,
a steep increase in the area of higher relative pressure from
0.73–0.99 in the adsorption branch of the isotherms can be
observed in the fgure. It represents the flling up of the
mesopores by the adsorbed nitrogen. Pore size distribution
is presented in Figure 4. All the catalysts show the formation
of the mesostructured in the presence of a surface-active
agent used in the synthesis of pristine zirconia.

3.1.2. X-Ray Difraction (XRD). XRD studies were made to
determine the crystal phase in the catalyst structure. Te
XRD patterns of all fresh catalysts are shown in Figures 5(a)

and 5(b). Both monoclinic and tetragonal zirconia phases
are identifed on the support and the other samples. Peaks
appear at 2θ angles that are equivalent to 28.2, 31.5, 34.2,
34.3, and 40.6° ascribed as the monoclinic phase (111) of
ZrO2 [JCPDS 88-2390]. Similarly, tetragonal phases are
observed at 29.9, 34.9, 42.88, 50.09, and 59.5° ascribed as the
tetragonal phase (111), (220) of ZrO2 [JCPDS 14-0534].
Similar peaks were also observed in diferent studies con-
ducted for Ni-ZrO2 catalyst prepared by the impregnation
method [34–36]. It was observed that with impregnation of
even a small amount of Ni (2 wt %), the intensity of the peaks
for monoclinic zirconia was a bit reduced, and also, it was
transformed to a tetragonal phase.Te reduction in intensity
was enhanced with an increase in Ni loading on zirconia
support. Te peaks at 2θ � 37.3°, 42.8°, 62.9°, and 75.3° are
due to the presence of NiO species [JCPDS 22-1189].

3.1.3. Fourier Transform Infrared Spectroscopy. FTIR spec-
troscopy is very helpful to evaluate the presence of functional
groups in the sample. Figure 6(a) depicts the FTIR spectra
for pristine zirconia support, while Figure 6(b) shows the
FTIR spectra of fresh catalysts, respectively. A wide spec-
trum of 3431 cm−1 is due to the –OH bend indicating water
absorption on the sample surface. A peak around 2968 cm−1

shows the presence of C–H bonding in the sample. Te peak
at 1624 cm−1 and 1363 cm−1 confrm the presence of –OH
stretching and bending modes, indicating the presence of a
hydroxyl group present on the zirconia surface. Te peak at
879 cm−1 and further a wide band around 800–500 cm−1

corresponds to zirconia. Peaks at 1503 cm−1 show O-H
stretching which is the characteristic of Ni (OH)2 [37].

3.1.4. Scanning Electron Microscopy. Te surface morphology
of each of the catalysts is given by the SEM images shown in
Figure 7. It can be observed from images that support exhibiting
of the cubic structure which is preserved in all samples with
metal loading. With the increased metal loading, clusters of
particles are observable (Figures 7(d)–7(g)). Metal particles
seems to be uniformly distributed over zirconia support [38, 39].

3.2. Catalyst Performance. Te catalyst activity in terms of
CH4 and CO2 conversion in the presence of pristine zirconia
and synthesized catalyst with nickel loading was studied at a
temperature of 750°C. Initially, thermodynamic conversion

Table 1: Textural properties of the catalyst.

Catalyst Sg (m2/g) BJH vp (cm3/g) BJH dp (nm)

C-0 54.0 0.16 21.2
C-2 43.8 0.14 20.8
C-4 36.0 0.13 19.8
C-6 34.9 0.13 19.7
C-8 34.5 0.12 18.9
C-10 32.9 0.11 16.9
C-12 20.2 0.07 9.0
C-15 11.2 0.05 6.8
Sg is the surface area by using the BETmethod, BJH vp is the BJH adsorption cumulative volume of the pore between 17 Å and 3000 Å width, and BJH dp is the
BJH adsorption average pore diameter.
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with a no-coke deposition assumption was calculated,
showing the maximum achievable conversion for DRM
reaction for methane and carbon dioxide for any catalyst
(Figure 8(a)).

Te activity of pristine mesoporous zirconia (C-0) was
evaluated within a temperature range of 600 to 800°C and
conversion for both methane and carbon dioxide is reported
after 10minutes in Figure 8(b). It was observed that conversion
is very little afected after rising in temperature from 750°C to
800°C; therefore, rest of the catalyst activity experiments were

performed at 750°C. Also, from equilibrium conversion, the
diference in conversion after 750°C is not much (at 750°C, its
94% for CO2 and at 800°C, its 95.1% for CO2).

Te activity results in terms of CH4 and CO2 conversion
for all catalysts are shown in Figures 8(c) and 8(d), as a
function of time at a temperature of 750°C. Te reaction was
carried out for 9 hours (540min). 10% Ni/ZrO2 catalyst
shows the highest methane and carbon dioxide conversion at
a reaction temperature of 750°C at any time in comparison to
other catalysts.
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Pan et al. reported 69% conversion for methane with
10%Ni/Al2O3, but the deactivation factor was very high
even after 2 hours of experiment [40].Te previous studies
reported that at lower GHSV, the conversion will be
higher due to more contact time and vice versa. For in-
stance, Jin et al. reported 36% conversion at low GHSV of
6000ml/h·gcat over MgO-promoted Ni/Al2O3 and 800°C.
Ibrahim et al. reported in 2021, the 54% conversion of
methane for DRM reaction over various catalysts
[27, 41, 42]. Fakeeha et al. reported 70% methane con-
version over Ni/H-ZSM-5 at 86,000ml/h·gcat GHSV and
760°C [43]. Te highest conversion of CH4 obtained in this
study is 68.8% which is comparable to the literature-re-
ported conversions. Te molar ratio of H2/CO in the
product stream is reported in Figure 8(e). Teoretically, it
can be equal to one but because of the reverse water-gas
shift reaction, the Boudouard reaction and methane gas
decomposition reaction ratio can be less than 1 [44]. For
pristine zirconia, the H2/CO ratio was within the range of
0.67–0.72 during reaction time, and for catalysts with
metal loading, the ratio was observed close to 1. For 10 wt
% Ni over zirconia, the ratio varies from 0.96 to 0.98
during a reaction time of 9 hours.

It was observed that pristine zirconia’s activity was the
lowest in comparison to other catalysts. Te deactivation
factor was calculated for each catalyst with initial con-
version at 10 minutes and fnal conversion at 540 minutes.
Te deactivation factor for pristine zirconia was the highest
as 27% less conversion was observed just after two hours.
With the increase in Ni metal loading over zirconia,
conversion for both methane and carbon dioxide was

increased and the maximum was observed with C-10. After
10 wt% loadings, although the deactivation factor was not
afected much, high metal loading conversion starts de-
creasing. For instance, with 15 wt % Ni loading, conversion
drops to 55% for methane. Tis might be attributed to the
lower surface area due to particle agglomeration with high
metal loading. Deactivation factor results are tabulated in
Table 2.

As observed from activity experimental results, the
deactivation of catalysts might be due to coke deposition on
catalysts surface. Te coke formation results in the accu-
mulation of inactive species of carbon on the catalyst surface
as observed from the deactivation factor. Te presence of Ni
prevents the formation of coke during the reforming process
as the deactivation factor was low in the presence of Ni over
zirconia. Te deactivation 10wt% Ni/ZrO2 was 15.1% after
540 minutes in comparison to 36.4% with pristine zirconia.
Te increase in Ni-contents, reduction of pore volume, and
surface area show that agglomeration of Ni particles reduces
the active sites and results in lower conversions.

Although the deactivation factor was comparable after
10wt % Ni loading, indicating Ni’s impact on the stability of
the catalyst (Table 2), conversion was dropped, which might
be attributed to low surface area (Table 1). Zirconia itself
shows higher stability as compared to other literature re-
ported due to its amphoteric nature along with the presence
of mobile oxygen species [45]. Comparison of the efect of
temperature on the catalyst performance with the literature
is shown in Table 3. It is apparent that this catalyst provides a
higher product yield than those catalysts operated at given
reaction conditions.
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3.3. Characterization of Spent Catalyst

3.3.1. Termogravimetric Analysis. Termal analysis was
performed to determine the quantity of carbon deposited
on the spent catalyst, and the results of weight loss curves
are presented in Figure 9, conducted in the presence of air.
Te TGA profle indicates two regions of catalyst weight
loss, one minor and the second major. Te Ist region of
minor/slight weight loss occurred at the 50–380°C tem-
perature range due to the water absorbed and surface
carbon and coke comprising hydrogen species due to
oxidation [2, 34, 61–64].

Major weight loss began at approximately 500°C and
ended within 740–800°C for spent catalysts containing active
metals, and the combustion of carbon deposits continued
until around 850°C for spent Pristine zirconia catalyst. Te
zirconia had the highest amount of carbon deposits of about
57.9%, while after 10wt %, weight loss was approximately
21%. It was observed that with the increase in active metal,
carbon deposition decreased. Zirconia itself deposited 58%
carbon which is less in comparison to other supports such as
silica where up to 80% carbon deposition is reported, and it
might be attributed to the higher oxygen density of zirconia
which could gasify carbon deposits [34, 35].

Table 2: Conversion and deactivation factors for synthesized catalysts.

Catalysts
CH4 conversion (X

CH4
) CO2 conversion (X

CO2
)

Deactivation factor (DA) (%)
Initial (%) Final (%) Initial (%) Final (%)

C-0 38.5 24.1 42.9 34.1 36.4
C-2 52.5 43.5 58.2 49.8 17.1
C-4 62.3 52.2 64.1 56 16.2
C-8 64.9 54.5 68.4 59.8 16.0
C-10 68.8 58.4 70.2 63.8 15.1
C-12 60.2 51.2 66.5 60.9 15.0
C-15 55.8 47.1 60.2 55.8 15.6
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Figure 8: (a) Equilibrium conversion as a function of temperature. (b) Activity of pristine zirconia support within a temperature range of
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4. Conclusion

In the present study, mesoporous zirconia was in-house
synthesized and then loaded with active metal Ni within the
range of 0–15wt % to check its activity and selectivity for
DRM reaction. 10% Ni/ZrO2 catalyst shows higher perfor-
mance among catalysts catalyst during DRM with the lowest

deactivation factor after 540 minutes of reaction. Methane
and carbon dioxide conversions were higher compared to
the series of catalysts evaluated in the study within 9 hours of
the experiment. Te application of mesoporous ZrO2 as
support for low-cost Ni particles exhibited better perfor-
mance and a superior role in dry reforming of methane
reaction.
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Figure 9: TGA profle of all spent catalysts.

Table 3: Performance comparison with that of other studies.

Catalyst Reaction temperature (°C) CH4 conversion (%) Ref.
Ni-Al2O3 800 36 [41]
Ni-SiO2 800 50 [42]
Ni-MgO 760 70 [43]
Ni-H-ZSM-5 700 76 [46]
15% Ni/perlite + Zr 700 79 [47]
0.1% Ni/Ce +Zr 850 38 [48]
5% Ni/La +Zr 700 66 [49]
15% Ni +Co/Al + -Zr−I 850 72 [50]
5% Ni +Co/Al + Zr 550 18 [51]
5% Ni/PO4+Zr 800 45 [12]
Ni/Al2O3 700 53 [52]
Ni/MCM-41 800 85 [53]
Ni/SiO2 700 41 [40]
3wt.% Ni/SBA-15 800 72 [54]
Ni/La +Zr 700 70 [49]
La0.9 Ce0.9Ni0.9Zr0.1 O3 750 40 [55]
La0.9 Ce0.9Ni0.7Zr0.3 O3 750 10 [55]
Ni-CeO2 760 65 [56]
Ni-ZrO2 750 64 [57]
Ni-ZrO2 700 30 [58]
SiO2@Ni-ZrO2 700 43 [59]
Ni-ZrO2 700 54 [27]
5% Ni/Y +Zr 700 63 [60]
Ni-ZrO2 750 68.8 Present study
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