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A multiscale investigation including computational chemistry calculations and experimental studies was performed to elucidate
and understand the methylene blue (MB) adsorption on polyaniline (PANI) from an aqueous solution. Static DFTand DFT-based
ab initio molecular dynamics were used to characterize the intermolecular interactions of this dye molecule with nondoped and
doped PANI. Experimental adsorption studies at di�erent operating conditions were performed to complement the mechanism
analysis of this adsorption system. Infrared spectroscopy studies and ab initio calculations showed the important role of π-π
stacking and van der Waals interactions for the dye adsorption on PANI. Experimental results of MB adsorption on the PANI
surface indicated that alkaline conditions were more favorable than acidic conditions where the MB adsorption capacity ranged
from 9.91mg/g at pH 1.8 to 23.16mg/g at pH 10.9. Equilibrium adsorption studies with nondoped PANI revealed a fast removal of
the dyemolecules where the equilibrium adsorption was reached after 45minutes.­e kinetic parameters were calculated with the
pseudo-second and pseudo-�rst order models, while the adsorption mechanism was analyzed using the intraparticle di�usion,
Boyd, and Elovich models. Dye adsorption equilibrium was studied at pH 8 and 30 °C where Temkin, Freundlich, Langmuir, and
Dubinin-Radushkevich (D-R) isotherm models as well as a statistical physics monolayer model were employed in data analysis.
­e saturation dye adsorption capacity was 40.2mg/g where an inclined adsorption orientation of dye molecules on the PANI
surface could be expected with an adsorption energy of 14.0 kJ/mol. ­is interaction energy clearly indicated that only physical
interactions were involved in the MB dye adsorption mechanism, which was also con�rmed by the calculations with the D-R
isotherm model. ­ese theoretical and experimental results are important to understand the dye adsorption properties of
conductive polymers and to consolidate their application in the synthesis of new adsorbents and composites for water treatment.

1. Introduction

Polymers with micro- and nano-structures are relevant in
several technological applications thanks to their mechanical
and chemical properties [1–5]. It was also shown that these

materials could be promising for the treatment and puri-
�cation of polluted water [6–10]. In this context, conductive
polymers, their copolymers, and composites have shown an
attractive performance in adsorption, electrocoagulation,
and photocatalytic processes [11–16].­ese polymers can be
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synthesized using simple procedures and inexpensive
monomers thus obtaining low-cost materials with tailored
morphology and surface chemistry [5, 14, 17]. Examples of
these compounds are polythiophene, polypyrrole, poly-
phenylsulfide, polyphenylene, polyacetylene, and polyani-
line (PANI) [16, 18].

PANI has been widely studied in adsorption applications
[5, 13–15]. .is polymer can exist in various forms that differ
in color, stability, electrical conductivity, and other physi-
cochemical properties [19]. It can be easily obtained via the
chemical oxidation of aniline with acidic aqueous solutions,
thus generating the conducting doped form named “Emer-
aldine Salt” (PANI-ES) [20]. .e latter form can be converted
by a simple base treatment into the electrical insulator
nondoped form termed “Emeraldine Base” (PANI-EB) [17].

Several studies have underlined the potentiality of PANI
and its related materials as effective adsorbents for inorganic
and organic pollutants including dye molecules
[13–15, 21–26]. Raw PANI, cross-linked PANI, PANI
nanotubes, PANI nanofibers, and PANI composites ob-
tained from chitosan, lignocellulose, starch, graphene, clays,
and zeolites have been employed in water decolorization to
remove a variety of dye molecules, e.g., reactive black 5,
congo red, acid green 25, rhodamine B, methylene blue
(MB), orange G, basic blue 41, acid green 25, acid violet 90,
and acid yellow 194 [5, 13, 16, 27–30]. Dye adsorption using
PANI-based materials has proved to be more effective than
other treatment methods, which have the disadvantages of
high operating costs and low removal efficacy [31, 32].
Different studies have concluded that PANI and its com-
posites can exhibit fast dye adsorption and high removal
efficiency compared to other conventional adsorbents. .is
is mainly owed to their surface functionalities, morphology,
and textural parameters [33]. Overall, the dye adsorption
capacities displayed by PANI-based adsorbents can range
from 10 to 480mg/g at 25–30 °C and pH 2–10 [5, 13, 26, 28].
For instance, Ayad and El-Nasr [13] employed PANI
nanotubes to remove cationic dyes from aqueous solutions.
Chowdhury et al. [26] found that an anionic specie can be
efficiently removed by the acid-doped PANI, while a cationic
dye was preferentially removed by the nondoped PANI.
Bhaumik et al. [28] reported the efficient removal of an
anionic dye by adsorption onto interconnected polypyrrole-
PANI nanofibers.

Although different studies on dye adsorption on PANI
adsorbents have been published, their adsorption mecha-
nisms have not been systematically analyzed and explained.
Adsorption properties of PANI-based materials have been
partially ascribed to amine and imine active groups con-
tained in the polymer backbone. In fact, it has been sug-
gested that the removal mechanisms of dye molecules with
these adsorbents could involve electrostatic interactions,
hydrophilic or hydrophobic forces, and conjugated π-π
electrons interactions [5, 16, 34]. However, no theoretical or
experimental evidence has reliably backed these claims
about the dye adsorption mechanisms and the possible
adsorbent-adsorbate interactions.

From a theoretical perspective, computational chemistry
calculations [35] and molecular simulations [36] are reliable

tools to understand and explain the intermolecular inter-
actions involved in the dye adsorption mechanism with
PANI-based adsorbents. But, a limited number of studies on
DFT-based mechanistic analysis for dye—PANI systems
have been reported in the literature [35, 37]. Specifically, Li
et al. [35] performed DFT-D3 calculations to characterize
the mechanism of methyl orange dye adsorption on PANI
from an aqueous solution. .ey concluded that hydrogen
bond and van der Waals forces were responsible for the
interactions of methyl orange adsorption on the PANI
surface. .e interaction energy between methyl orange
molecule and PANI was also calculated using DFT to
complement the analysis of dye adsorption on a magnetic
PANI-silica nanocomposite [37]. .e latter study also
confirmed the presence of hydrogen bonding for the ad-
sorption of this dye molecule. It is convenient to highlight
that the dye separation performance of PANI adsorbents is
highly pH-dependent [5, 16, 38]. However, several papers
have reported the adsorption of dye molecules on PANI-
based materials at limited operating conditions (i.e., pH 6–7)
[5, 16]. .e literature review indicates that the pH effect on
the molecular structures of PANI and the corresponding
analysis of adsorption mechanisms for other dye molecules
have not been fully explained and understood. Computa-
tional chemistry studies are indeed necessary to resolve this
gap and to enhance and consolidate the understanding and
application of conductive polymers in the preparation of
effective materials for water purification.

In the present work, a multiscale approach with com-
putational chemistry calculations, kinetic-isotherm model-
ing, and experimental studies has been realized to elucidate
the MB-PANI interactions, describe the electron transfer
between adsorbent and adsorbate, and rationalize several
aspects of this adsorption system. .e novelty of this study
was to provide a detailed explanation of the chemical
changes occurring in the molecular structure of MB dye and
their effect on the adsorption using PANI in acidic, neutral,
and alkaline solutions. .ese findings are fundamental to
understanding the surface properties of PANI thus allowing
it to optimize its application to prepare composite materials
for water treatment. .is dye is mostly used for coloring
textiles and paper but is primarily regarded as a toxic
pollutant in wastewater treatment because it can generate
several harmful effects on the human body after intoxication
or acute exposure [39]. .erefore, MB was selected as the
model dye molecule for the present study. Experimental
studies were also done to validate the theoretical findings
thus analyzing the MB removal with PANI at various op-
erating conditions (i.e., contact time, initial dye concen-
tration, pH).

2. Materials and Methods

2.1. Molecular Modeling of MB Adsorption on PANI. .e
adsorption of MB on PANI-EB and PANI-ES was investi-
gated using static DFT and ab initio molecular dynamics
(AIMD) within the GGA and PBE methods [40]. DFT
computations were performed using Gaussian code (version
09) [41] and employing the implicit solvation where the
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effect of the solution was modeled with the C-PCM model
(SCCS) [42, 43]. However, due to the high computational
cost, AIMD calculations were performed in CP2K [44] and
were limited to the gas phase with no periodic boundary
conditions applied.

.e structure model of PANI-ES and PNI-EB consisted
of six benzenoid rings and two quinoid rings (Figure 1). .e
optimization of PANI molecules was performed using DFT
via PBE with a double zeta quality basis-set augmented with
polarization functions (DZVP). .is level of theory was able
to reproduce structural parameters that were in excellent
agreement with previous theoretical computations [45]. Ab
initio molecular dynamics runs of 100 ps were performed in
the case of MB@PANI systems to describe the adsorption
modes of MB; then, static optimizations were conducted.
AIMD calculations were conducted in the CP2K code within
the DFT and the GGA-PBE method. DFT-D2 dispersion
correction of Grimme [46] was added to account for non-
covalent interactions. .e core electrons were treated with
the Goedecker, Teter, and Hutter (GTH) Norm-Conserving
pseudopotentials [47], while the valence electrons were
expanded as double zeta Gaussian functions with polari-
zation (DZVP) [48] within the Gaussian PlaneWave scheme
(GPW) [49].

An energy cut-off of 300 Ry was chosen. .e canonical
ensemble was generated using the GLE thermostat [50] at
300 K, and the trajectories were propagated for 100 ps,
including a 15–20 ps equilibration step with a 0.5 fs in-
tegration time step. .e parameters for the thermostat
were obtained from [51]. Subsequently, 0 K DFT calcu-
lations were conducted in Gaussian 09D code allowing to
model statically the solvation effect as well as computing
the IR spectra.

Adsorption energies (Eads) were calculated at 0 and
300K, according to

Eads � EMB@PANI − EMB − EPANI. (1)

Energies from AIMD calculations (300K) were extracted
by taking the average of the total energies over the produced
trajectory (with the equilibration part omitted) for MB,
PANI, and MB/PANI systems.

2.2. Experimental Studies of MB Adsorption on PANI. .e
chemical synthesis of PANI was performed following the
procedure reported by Stejskal and Gilbert [52] using
ammonium persulfate ((NH4)2S2O8) as oxidant and
hydrochloric acid (1M HCl) as a dopant. Analytical
grade chemicals were used and aniline was bidistilled and
stored in darkness at 2 °C prior to its use. .e reaction
was conducted in a three-necked round-bottom flask
immersed in an ice bath (< 4 °C) with a molar ratio
oxidant/aniline of 1.5. .ese experimental conditions
limited the secondary reactions and led to a product with
a high yield. To complete the polymerization, the mixture
was stirred for 4 h, and the dark green precipitate was
washed with water, acetone, and 0.1 M HCl and dried at
50 °C. .e structural characteristics of synthesized PANI
were analyzed with FTIR spectroscopy, UV-Vis

spectroscopy, and X-ray diffraction (XRD). .ese tests
were performed, respectively, on a Perkin-Elmer spec-
trometer in the range 4000–400 cm−1, a Shimadzu UV-
Visible spectrophotometer UV1201 in the range
190–1100 nm, and an X′’Pert3 Powder diffractometer in
the range 2°–60° using CuKα radiation (λ= 1.54 Å) from
2θ= 10° to 70°, at a scan rate of 0.02/s. Peak crystalline
areas were determined with the X’pert HighScore soft-
ware. .e surface morphology of PANI powders was
observed at room temperature by scanning electron
microscopy (SEM) on a ZEISS GeminiSEM 300 micro-
scope with an accelerating voltage of 2 kVolts. Particles’
size of doped and nondoped PANI powders was obtained
using the “CILAS 1190” particle size analyzer. Powders
were dispersed in water, sonicated for three minutes, and
then analyzed under a set of three lasers ensuring the
highest level of accuracy and precision.

.e synthesized PANI was tested in the MB adsorption
from aqueous solutions. A stock solution of 1 g/L of this dye
was prepared and used to obtain the working solutions with
different concentrations. MB, [7-dimethylamino-3-pheno-
thiazinylidene]-dimethylammonium chloride (Figure 1), is a
heterocyclic aromatic compound (Mw � 319.85 g/mol;
λmax � 661 nm) and was obtained from Sigma and used as
received.

In the experimental adsorption studies, 10 mg of
PANI powder was dispersed in the dye solution (50 mL),
sonicated to homogenize the mixture and break down
the polymer aggregates, and, finally, stirred at room
temperature (30 °C) during a specific contact time. MB
adsorption on PANI was assessed at different conditions
of pH (1.8—11), contact time (5 min—6 h), and initial dye
concentration (5–60 mg/L). In all these experiments,
centrifugation at 10000 rpm was applied to separate the
adsorbent from the aqueous solution and the final dye
content was quantified. MB concentrations were deter-
mined using a Shimadzu UV-Visible spectrophotometer
UV1201 at the wavelength of 661 nm. Batch adsorption
experiments were done in triplicate.

Methylene Blue Cation (MB+)

Polyaniline
(PANI)

Quinoid Ring Benzenoid Ring

Figure 1: Structure representation of MB and quinoid and ben-
zenoid rings of PANI. Nomenclature: carbon is indicated in grey,
nitrogen in blue, hydrogen in white, and sulfur in yellow.
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MB adsorption capacity (Q, mg/g) and removal effi-
ciency (R%) were determined using the next expressions
[53]:

Q �
C0 − Cf􏼐 􏼑 · V

m
,

R% �
C0 − Cf

C0
· 100,

(2)

where C0 and Cf (mg/L) are the initial and final MB con-
centrations from the adsorption experiment, m(g) is the
adsorbent mass, and V(L) is the MB solution volume.

Kinetic and equilibrium experimental data of MB ad-
sorption on PANI were correlated with the pseudo-second-
order, pseudo-first-order, Langmuir, Freundlich, Temkin,
and Dubinin-Radushkevich (D-R) equations as well as a
statistical physics monolayer model. Furthermore, the ad-
sorption mechanism was analyzed using the intraparticle
diffusion, Boyd, and Elovich models.

Nonlinear regressions were performed for all adsorption
models, and the best fit was identified based on the root mean
square error (RMSE) and the determination coefficient (R2).

R
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􏽐

ndat
i�1 Qi, exp − Qi,cal􏼐 􏼑

2

􏽐
ndat
i�1 Qi, exp − Qi,exp􏼐 􏼑

2,

RMSE �

������������������
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i�1 Qi, exp − Qi·cal􏼐 􏼑

2

ndat − np

􏽶
􏽴

,

(3)

where Qi,cal and Qi, exp are the calculated and experimental
MB adsorption capacities, np is the number of model pa-
rameters, and ndat is the number of experimental points used
in the nonlinear regression, respectively.

3. Results and Discussion

3.1. Characterization of PANI. First, infrared spectroscopy
was employed to investigate the dye structure and to verify the
MB adsorption on the surface of PANI powder at acidic and
basic conditions. .e experimental FTIR spectrum of this
cationic dye, shown in Figure 2, revealed a broad and intense
band related to OH groups (3100–3500 cm−1) thus indicating
that theMB used in this study was a hydrated compound..e
absorption bands corresponding to vibrations of CH groups
of the heterocycle and CH3 of the terminal dimethylamino
groups were located at 3025, 2950–2920, and 2850 cm−1,
respectively [54]. .e region of low IR frequencies displayed
several bands attributed to bonds of stretching vibrations in
the heterocycle, with either strong intensities, like C=C and
C=N (1600 cm−1) and C-C and C-N (1545 cm−1), or moderate
intensities like C-N (1340 cm−1) and S=S+ (1356 cm−1). Other
absorption bands were identified at 1300–600 cm−1, which
could be assigned to C-N and C-S-C vibrations of the het-
erocycle (1142 and 1068 cm−1) to C-H vibrations of different
types (890–790, 1184, 1226, 1252, 1394, 1447, and 1490 cm−1),
to C-S-C vibrations (615 and 667 cm−1), and toH bonds of the
type Nhet HO (950 cm−1) [55].

Figure 3(a) contains the FTIR spectrum of the green-
dark powder obtained in this study, which was similar to
those found by several authors for HCl-doped PANI
[56, 57]. .is result indicated that the as-synthesized PANI
was in its Emeraldine Salt form (i.e., PANI-ES). FTIR
spectrum of PANI-ES pointed out the characteristic vi-
bration bands of C�C groups at 1572 and 1468 cm−1 as-
cribed to the quinoid rings and benzenoid rings of
polyaniline, respectively. Other specific vibrations of car-
bon-nitrogen bonds, mainly C�N and C-N linked to ben-
zene and quinine rings, were identified via the bands in the
region of 1400–1240 cm−1 [58]. .e absorption band located
at 1020 cm−1 corresponded to the vibrational mode of po-
laron (–C–NH+•) or bipolaron (–C�NH+•) structures that
were formed in the doping process [57]. Absorption bands
between 3000 and 3400 cm−1 were attributed to N–H bonds
and those between 690 and 800 cm−1 were related to the
aromatic C–H bond.

FTIR spectrum of PANI-EB sample obtained after the
treatment of PANI-ES with an alkaline solution is reported
in Figure 3(b). .e main characteristic bands of PANI-ES
were also identified but with slight shifts to higher fre-
quencies due to the reduction of conjugation in the polymer
backbone [58, 59]. .erefore, the absorption bands at 1572,
1468, and 1295 cm−1 in the PANI-ES spectrum shifted to
1586, 1499, and 1303 cm−1 in the PANI-EB spectrum, re-
spectively, because of the deprotonation process. Conse-
quently, the deprotonation of PANI involving oxidation or
reduction reaction, or both, generated the formation of two
alternating units containing reduced amino groups (ben-
zenoid ring) and oxidized imine groups (quinoid ring).

.e UV-visible spectrum obtained for the synthesized
PANI displayed bands characterizing the chromophores of
aniline and the p-benzoquinonediimine cation radical and
the interaction between them; see Figure 3(c). .ese bands
appeared at ∼430 and 870 nm and were attributed to π − π∗
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Figure 2: Experimental FTIR spectrum of MB.
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transition in the benzenoid ring, the polaron-π∗ transition,
and π-polaron transition, respectively [60]. UV-visible ab-
sorption results also showed that the PANI-EB backbone
structure generated a band at 615 nm, which was ascribed to
the benzenoid-quinoid rings charge transfer (Figure 3(d)).
Another sharp absorption band at 325 nm was detected and
assigned to π − π∗ transitions [61].

XRD patterns of PANI-ES and PANI-EB are presented
in Figures 3(e) and 3(f ). A semicrystalline pattern was
observed for PANI-ES, which exhibited sharp peaks at
2θ � 9.3°, 14.8°, 20.3°, and 25.2°, and shoulders at 26.8°, 29.3.
However, the XRD pro�le of PANI-EB displayed fewer
peaks compared to PANI-ES which re©ected a loss of
crystallinity during the dedoping process. ­e crystalline

4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm–1)

PANI-ES

(a)

4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm–1)

PANI-EB

(b)

200 400 600 800 1000 1200

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
bs

or
ba

nc
e (

a.u
)

Wavelength (nm)

PANI-ES

(c)

300 400 500 600 700 800
0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
bs

or
ba

nc
e (

a.u
)

Wavelength (nm)

PANI-EB

(d)

10 20 30 40 50 60 70 80

1000

0

2000

4000

3000

5000

6000

7000

8000

In
te

ns
ity

 (a
.u

)

PANI-ES

2θ (°)

(e)

2000

0

4000

6000

8000

10 20 30 40 50 60 70 80
2θ (°)

PANI-EB

In
te

ns
ity

 (a
.u

)

(f)

Figure 3: (a), (b) FTIR spectra, (c), (d) UV-VIS spectra, and (e), (f ) XRD di�ractograms of PANI-ES and PANI-EB.
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parts of Emeraldine Base displayed several broad reflection
peaks at 2θ� 6.4°, 9.1°, 15.7°, 18.4°, 19.8°, and 25.4°. Larger
peaks are believed to be formed by reflections of wider
clusters. Similar diffractograms were found in the literature
for PANI-ES [62] and PANI-EB [63].

.e semicrystalline character of PANI-ES and PANI-EB
was confirmed with the values of their degrees of crystallinity
(Xc %), which were calculated using the following equation
[62]:

Xc(%) �
Hc

Hc + Ha( 􏼁
∗ 100, (4)

where Hc and Ha are the areas of the crystalline and
amorphous profiles. .e crystallinity degree value of PANI-
ES was 52%, while that of PANI-EB was 19%.

Experimental FTIR spectra obtained after MB adsorp-
tion on PANI are displayed in Figure 4. .ey exhibited the
main characteristic absorption bands of both interacting
compounds (PANI/MB). However, several bands of these
spectra have undergone shifts in their positions, thus sup-
porting the evidence that MB was adsorbed on the PANI
surface either in its doped or nondoped states. .e main
changes in PANI were associated with the amine and imine
moieties. .e positions of their absorption bands moved
from 1572 and 1468 cm−1 to 1599 and 1490 cm−1 for PANI-
ES. However, the absorption band positions of PANI-EB
shifted from 1581 and 1495 cm−1 to 1618 and 1510 cm−1,
respectively. Note that the analysis of these spectra was not
straightforward mainly in the fingerprint region due to the
close proximity of bond vibrations in MB molecules and in
the chain backbone of adsorbents. Similar spectral changes
were mentioned in other studies [64, 65], and they were
accredited to the participation of different active centers of
MB molecules with the adsorbent active sites in donor-
acceptor, π − π stacking, and hydrophobic interactions.

.ese experimental FTIR spectra were superposed with
those computed via DFTforMB@PANI-ES andMB@PANI-
EB, as seen in Figure 4. Overall, the comparison of the PANI
and MB@PANI systems indicated a good agreement. An
analysis of the normal modes belonging to the MB@PANI
showed no pronounced vibrational correlation between the
adsorbate and adsorbent, which supported the experimental
findings about the dispersive nature of MB/PANI
interaction.

Finally, SEM images for the analysis of the morphology
of doped and nondoped PANI powders are displayed in
Figure 5. .ese images showed irregularly arranged grainy
particles, which tended to form small clusters. Such granular
morphology has been observed in PANI powders prepared
by chemical oxidation [66].

.e analysis of PANI powders by laser particle size
analyzer (see Figure 5) suggested large particle size distri-
bution and a high polydispersity of particles, which may
indicate the occurrence of some particle aggregation. Also, it
can be noticed that the average diameter of PANI-ES
(47.8 μm) was lower than that of PANI-EB (68.9 μm)
denoting that aggregations of PANI-ES particles were more
compact than PANI-EB ones. .erefore, it was concluded
that the availability of the ions along PANI-ES backbones

resulted in an increment of the intermolecular forces, sig-
nificant chain aggregation, and a decrement in the average
particle size. Furthermore, the specific surface area mea-
surements for both polymer powders were carried out in
previous works where authors reported values of 15m2/g for
PANI-ES [67, 68] and 29m2/g for PANI-EB [68] with N2
adsorption/desorption isotherms of Type II according to
IUPAC classification. PANI can be considered as an ad-
sorbent with low porosity and, consequently, it could be
expected that the MB adsorption occurred mainly on the
external surface of this polymer.

3.2. MB@PANI Adsorption Dynamics. .e experimental
and theoretical IR spectra suggested a π − π stacking type
adsorption of MB on PANI. In this section, a systematic
analysis of the MB adsorption on PANI-EB and PANI-ES is
provided by describing their respective adsorption inter-
molecular interactions and energies.

Figure 6 shows the molecular structures of MB-PANI
systems obtained from ab initio calculations, while Table 1
reports the energies computed using DFTand AIMD for the
MB adsorption on PANI-EB and PANI-ES, as well as their
deformation energies. Both methods predicted the ad-
sorption energy of MB on PANI-EB higher than that on
PANI-ES, thus indicating a higher adherence of the former
to the MB molecules. .ese results were in full agreement
with the experimental MB adsorption studies as will be
described below.

.e theoretical calculations indicated that the main
driving interactions were of dispersive nature where both
PANI-EB and PANI-ES interacted with MB mainly through
π − π stacking. While the computed adsorption energy
difference was rather low, their adsorption behavior can be
explained by the slightly different adsorption modes. On
PANI-EB, the adsorption of MB was angled thus allowing a
higher adsorption rate per PANI-EB molecule. On the other
hand, the MB adsorption on PANI-ES was more likely to
occur parallel with the adsorbent surface, thus needing a
higher effective area.

.e electronic properties of PANI adsorbents were inves-
tigated to gain insight into their reactivity and behavior toward
this organic adsorbate. In this direction, the frontier orbital
energiesEHOMO andELUMO indicated an obvious contrast in the
capability to give or accept electrons. It can be noted that PANI-
EB had a minimal gap compared to PANI-ES, which can cause
it to be more reactive toward MB molecules. .e quantum
chemical descriptors of the studied MB/PANI-EB and MB/
PANI-ES systems are illustrated in Figure 7 and Table 2.

.e electronegativity values in Table 2 show that electron
flux can occur from the MB toward the PANI surface
showing the highest electronegativity. From Figure 7 and
Table 2, it was concluded that PANI-EB was more reactive
than PANI-ES because of its lesser gap values in gas and
solvated states, which could indicate that MB could be
adsorbed more easily and quantitatively higher on PANI-EB
than PANI-ES. Experimental adsorption results that will be
discussed in the next section confirmed these theoretical
findings.

6 International Journal of Chemical Engineering



3.3. Adsorption of MB on Doped/Undoped PANI

3.3.1. E�ect of the pH on PANI Adsorption Capacity. ­e
e�ect of solution pH on MB adsorption was experimentally
investigated due to its crucial role in dye removal. ­is

parameter can a�ect the surface charge, the protonation of
adsorbent active sites, and the dye speciation distribution.
­e results of the pH e�ect on MB adsorption on the PANI
surface are shown in Figure 8. Overall, the adsorbed MB
quantity increased with the pH solution from acidic
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conditions (pH∼2) to alkaline conditions (pH∼11) where the
MB adsorption capacity ranged from 9.91mg/g at pH 1.8 to
23.16mg/g at pH 10.9. .ese results were similar to those
reported by Chowdhury et al. [26] and Wang et al. [69]
which showed a high removal efficiency of PANI for MB
over alkaline pH compared to acidic pH where the dye
adsorption was low.

.e observed pH effect on theMB adsorption with PANI
can be discussed in terms of the chemical modification of its
surface structure (Figure 9) and dye molecule when
changing the solution pH. Some authors [70, 71] have shown
that Emeraldine Salt starts losing rapidly its protons (H+)
when the solution pH approaches 3, and around pH 6–7, the
polymer is entirely deprotonated leading to the generation of
the leucoemeraldine base structure. .ese results were
supported by Wang et al. [72] and Cabuk et al. [73], who
found that the isoelectric points (pHIE) of PANI, were ∼5.8.
and 6.1, respectively. .e pHIE is the pH at which the surface
of a specific particle carries no net electrical charge.
.erefore, a further increase in solution pH caused the
polymer surface to be negatively charged, thus favoring the
attractive electrostatic interactions with the cationic dye
molecule at pH> pHIE.

Moreover, the pH-chemical structure dependence of
MBmolecule has been extensively studied, and this dye was
found to exhibit spectral changes related to the displace-
ment of the maximum absorption wavelength even in the
same pH range. MB is a weak base with a pKa value of 3.8
and provides, in general, an almost neutral pH solution of
∼6.8. Holmes and Snyder [73] have shown that MB was also
stable at room temperature below pH 9.5. However, MB
oxidation and/or demethylation began at pH > 9.5–9.8 and
exhibited a slow increase in both rate and extent until pH
11. Beyond this value, rapid changes in the chemical
structure took place, and the substances produced in highly
alkaline solutions displayed metachromatic properties.
Several authors [74–76] mentioned that these substances
corresponded to methylene violet and methylene azure (A,
B, C), causing a red or blue shift of the maximum absor-
bance; see Table 3.

In the case of acidic conditions and pH< 3.8, MB may
undergo several structural modifications, mainly proton-
ation and aggregation of MB monomers [77, 78]. .e
protonation can occur on bothNMe2 groups or at the central
nitrogen atom of MB with a greater protonation tendency at
the central nitrogen [79]. .erefore, MB is susceptible to
generating neutral and charged chemical structures at low
pH.

3.3.2. Kinetics and Equilibrium of MB Adsorption on PANI-
EB. As stated in the previous section, MB adsorption on
PANI at alkaline pH was higher than that obtained at acidic
pH. For that reason, experimental kinetic and equilibrium
studies of MB adsorption were carried out at pH 8 where the
dye structure was also stable. MB adsorption kinetics on
PANI-EB are reported in Figure 10. MB removal of PANI-
EB improved with the contact time and dye concentration.
Such observation could be attributed to the improvement of
the driving forces needed to overcome the mass transfer
limitations of dye molecules between the solid and aqueous
phases [80]. Kinetic data revealed a fast dye removal during
the first 15min, after which the adsorption rate gradually
decreased, and the equilibrium plateau was almost reached
after 45min. In general, the sharp increase of adsorption
capacity at the beginning of the removal process could be
assigned to the external surface available on PANI. MB
removal of PANI-EB ranged from 62 to 81% for these initial
concentrations. .is MB removal by PANI could be asso-
ciated with the interactions between the negatively charged
surface of the adsorbent and the positively charged dye
molecule.

.e parameters for MB adsorption kinetics on PANI-EB
were calculated with the pseudo-first-order model of
Lagergren [81] and the pseudo-second-order model of Ho
and McKay [82]. Results of data correlation and the cor-
responding model parameters are given in Table 4. Overall, a
satisfactory correlation of experimental kinetic data was
obtained with the pseudo-first-order model, in contrast to
the pseudo-second-order model. Determination coefficients

Table 2: Quantum chemical descriptors of the studied MB/PANI-EB and MB/PANI-ES.

Parameter
MB PANI-EB PANI-ES

Gas Aqueous Gas Aqueous Gas Aqueous
E HOMO (eV) −8.125 −5.213 −4.103 −4.274 −3.257 −3.486
E LUMO (eV) −6.614 −3.803 −3.268 −3.583 −0.826 −1.113
Gap ΔE (eV) 1.511 1.410 0.835 0.691 2.431 2.373
Electronegativity χ 7.369 4.508 3.685 3.928 2.042 2.299
Hardness η 0.755 0.705 0.417 0.345 1.215 1.187
Electrophilicity index ω 35.962 14.413 16.282 22.361 1.716 2.226

Table 1: DFT and AIMD adsorption energies (Eads) of MB on PANI-EB and PANI-ES as well as their deformation energies.

Adsorption energy (kJ/mol) Deformation
energy (kJ/mol)DFT AIMD

MB/PANI-EB −9.92 −8.17 −0.54
MB/PANI-ES −8.45 −7.91 −0.39
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(R2) of this kinetic model were higher >0.9, and the cal-
culated adsorption capacities were very close to those ob-
tained during the experiments. .ese results were consistent
with other studies related to MB adsorption onto PANI
hydrogel [83] or the removal of other dyes using PANI
nanoparticles [84]. MB adsorption rates ranged from 0.014
to 0.249min−1 at 30 °C and pH 8.

Experimental data were also used to analyze other kinetic
parameters associated with the mechanism by which MB
molecule adsorbed on the PANI surface. For that, the intra-
particle diffusion, Boyd, and Elovich models were employed.
.ese models can be also used to identify the controlling steps
of the adsorption process. .e fitting results and the kinetic
parameters are displayed, respectively, in Figure 11 and Table 5.
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Figure 11(a) shows the dye adsorption capacity (Qt)
versus t1/2. Two linear segments were identified for each
initial dye concentration indicating that MB adsorption on
PANI particles involved different mass transfer mechanisms.
Furthermore, the model parameters suggested that the rate-
controlling step in the adsorption of MB on PANI was not
controlled by the intraparticle diffusion; but other mass
transfer phenomena occurring at the boundary layer could
also govern this separation process. Table 5 indicates smaller
values of Kd2 compared to Kd1 for all initial concentrations,
which could be attributed to the reduction of the free canals
available for diffusion. Figure 11(b) displays Boyd model
plots representing Bt as a function of time (t) with
Bt � −0.497− ln (1− (qt/qe)). .is fitting provided linear

curves but none of them passed through the origin, thus
indicating that the MB dye adsorption onto PANI-EB was
controlled by film diffusion.

.e experimental data were plotted using the Elovich
model (Figure 11(c)) and the calculated parameters, α and β,
are reported in Table 5. .ese parameters corresponded to
the initial adsorption rate constant and the desorption
constant, respectively. .e determination coefficients (R2) of
various plots were somewhat far from the unity except for
the highest concentration (30mg/L). .e tendency observed
for the variation of α and β values (i.e., a decrease of β and an
increase of α) can be associated with an enhancement of the
adsorption rate [85]. .ese results could indicate that the
MB@PANI-EB adsorption rate was concentration-
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Figure 10: Effect of initial concentration and contact time on MB removal and adsorption capacity of PANI-EB at 30°C and pH 8.

Table 4: Kinetic parameters for the MB adsorption on PANI-EB at pH 8 and 30°C.

Q e (exp) (mg/g)
C 0 (mg/L)

5 10 15 20 30
4.3 7.9 10.9 15.6 19.3

Pseudo-first order

Q e (cal) (mg/g) 4.7 7.8 11.0 15.7 18.8
K 1 (min−1) 0.014 0.103 0.072 0.098 0.249

R 2 0.58 0.94 0.94 0.92 0.88
RMSE 1.67 0.50 0.84 1.22 0.78

Pseudo-second order

Q e (cal) (mg/g) 6.3 8.4 12.1 16.9 19.6
K 2 (g/mg min) 0.002 0.016 0.007 0.008 0.026

R 2 0.53 0.86 0.85 0.84 0.95
RMSE 1.78 0.79 1.41 1.79 0.50

Table 3: Structures of methylene azure (A, B, C) and methylene violet [76].

Name Structure λ max (nm)

Methylene azure A 628
Methylene azure B 645
Methylene azure C 615
Methylene violet 610
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dependent. An improvement in the MB adsorption rate with
PANI-EB was observed when the dye amount increased.

Figure 12 reports the MB adsorption isotherm at pH 8
and 30 °C using PANI-EB and its correlation with various
isotherm models, namely, Langmuir, Freundlich, Temkin,

D-R, and statistical physics models, summarized in Table 6.
Overall, all the isotherm models showed high values of
determination coefficients (R2> 0.97) and low values of
RMSE. .e statistical physics model was used to analyze the
steric parameters associated with MB adsorption on PANI-
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Figure 11: (a) Intraparticle diffusion model, (b) Boyd model, and (c) Elovich model for the MB adsorption on PANI.
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Table 5: Kinetic parameters of intraparticle diffusion, Boyd, and Elovich models for the MB@PANI-EB adsorption.

Initial concentration C 0 (mg/L) 5 10 15 20 30

Intraparticle diffusion

First linear section
C 1 (mg/g) 2.351 2.662 5.293 5.532 8.229

K d1(mg·g·min1/2) 1.512 2.491 3.641 4.990 2.533
R 2 0.998 0.975 0.992 0.951 0.978

RMSE 0.059 0.497 0.372 0.812 0.514
Second linear section

C 2 (mg/g) 3.727 7.381 11.842 15.516 18.558
K d2(mg·g·min1/2) 0.007 0.032 0.014 0.016 0.044

R 2 0.958 0.974 0.968 0.964 0.988
RMSE 0.859 0.491 0.672 0.681 0.414

Boyd R 2 0.864 0.883 0.836 0.757 0.669
RMSE 0.553 0.659 0.863 1.319 0.911

Elovich

α (mg/g·min) 1.367 23.069 48.066 73.631 257.913
β (g/mg) 1.341 1.057 0.635 0.517 0.925

R 2 0.777 0.864 0.831 0.845 0.975
RMSE 0.553 0.659 0.863 1.319 0.911
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EB. Note that this model showed the highest determination
coefficient (R2> 0.99).

.e monolayer model based on statistical physics theory
provided a complementary description of the MB dye ad-
sorption mechanism. .is model was applied to the MB ex-
perimental adsorption data to sketch the dye adsorption
orientation on the PANI-EB surface and to estimate the energy
of dye-adsorbent interactions. Data fitting results showed that
the parameter n, which described the number of MB dye
molecule adsorbed per adsorption site, was greater than one
(i.e., n=1.2)..erefore, it can be concluded thatmore than one
MB molecule interacted with the adsorption site on the PANI
backbone. Additionally, this parameter suggested the forma-
tion of MB dimers in the aqueous solution. .e adsorption
orientation of MBmolecules on the PANI-EB surface could be
expected to be inclined during the dye removal, which was
consistent with the computational chemistry results.

According to this statistical physics model, the energy for
the MB-PANI-EB surface interaction can be estimated via
the following expression:

ΔE � R · T · ln
Cs

C1/2
􏼠 􏼡, (5)

where Cs is the water solubility of MB dye (mg/L), C1/2 is the
estimated concentration at half-saturation (mg/L), and T is
the adsorption temperature in K. .e calculated adsorption
energy was 14.0 kJ/mol and clearly indicated that only
physical interactions were involved in the MB dye ad-
sorption mechanism. However, it is convenient to remark
that this value was lower than those obtained by AIMD
calculations due to the absence of explicit water in the
molecular simulations. .e estimation of the saturation MB
adsorption capacity (Qmax) of PANI-EB was 40.2mg/g
under alkaline conditions. .is adsorption capacity of
PANI-EB was superior to the values reported for other
adsorbents at neutral pH [13, 14, 26, 83, 86–92]; see Table 7.
It is necessary to remark that the removal performance of
PANI-EB was lower than the adsorption capacities reported
for PANI hydrogel (71.2mg/g) [83] or PANI treated with
polyacid (466.5mg/g) [86] even at neutral pH..erefore, the

Table 6: Parameters of isotherm models for the MB adsorption on PANI-EB powder at pH 8 and 30°C.

Isotherm model Equation R 2 RMSE

Langmuir Qe � (Qm ∗KL ∗Ce/1 + KL ∗Ce)
Q max (mg/g) KL (L/mg) 0.978 1.8144.41 0.096

Freundlich Qe � KFC1/nF
e

K F ((mg/g) ∗ (L/mg)1/n) nF (L/mg) 0.983 1.594.62 1.48

Temkin Qe � (RT/BT) Ln (KT ∗Ce)
B T (J/mol) KT (L/g) 0.974 1.94273.52 1.18

Dubinin-Radushkevich Qe � Qmaxe
− βε Q max (mg/g) E (kJ/mol) 0.973 1.8334.21 0.888

Statistical physics—monolayer Qe � (n D m/1 + (C1/2/C2)
n)

Q max (mg/g) n 0.995 0.4940.17 1.2
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Figure 12: Isotherm of MB adsorption on PANI-EB, at pH 8 and 30°C, and its correlation with (a) Langmuir and Freundlich, (b) Temkin
and statistical physics monolayer, and (c) Dubinin-Radushkevich models.
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preparation of PANI composites and other derived materials
is the best alternative to exploit the chemical and mechanical
properties of this conductive polymer for the preparation of
adsorbents in water treatment.

4. Conclusions

.eoretical computational chemistry calculations were
performed to elucidate and explain the mechanism and
intermolecular interactions for MB adsorption on doped
and undoped PANI. Results showed that the adsorption
energy of this dye on PANI-ES was slightly lower than that
of PANI-EB where gas phase static DFT calculations es-
timated adsorption energies of −9.92 and −8.45 kJ/mol for
MB@PANI-EB and MB@PANI-ES, respectively. Experi-
mental and calculated infrared spectra of the MB-PANI
systems and molecular dynamic simulations allowed us to
conclude the relevant role of π − π stacking and van der
Waals interactions where a parallel adsorption position on
the PANI surface could be expected. DFT calculations
indicated that the PANI-EB surface showed the best ad-
sorption properties for dye removal. .ese theoretical
results were validated with experimental adsorption studies
under different conditions of initial dye concentration,
contact time, and initial pH. Experimental studies showed
that MB adsorption on the PANI surface was significantly
pH-dependent, thus confirming the theoretical results
where the highest adsorption capacities were obtained at
alkali solutions. Dye adsorption on PANI-EB was rapid
within the first 10min and the equilibrium was reached at
about 100min. Statistical physics calculation also sketched
an inclined adsorption orientation of MB molecules on the
PANI-EB surface, and a saturation adsorption capacity of
40.2mg/g was estimated. .e pseudo-second-order model
and the intraparticle diffusion model were more suitable to
fit adsorption data. .e intraparticle diffusion and liquid-
film diffusion processes were expected to control the ad-
sorption rate of MB on PANI-EB. .ese theoretical and
experimental results represent a full rationalization of
MB@PANI adsorption behavior, which is fundamental to

preparing new and advanced PANI materials for water
detoxification.
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