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�is paper employs dispersed nanoparticles (NPs) to build an adaptive neuro-fuzzy system (ANFIS) for predicting their thermal
conductivity (TC) and viscosity according to the most important input data including concentration, size, the thickness of the
interfacial layer, and intensive properties of NPs. In this regard, we gather an extensive and comprehensive data set from di�erent
sources. Here, the ANFIS model factors are optimized by using the particle swarm optimization (PSO) technique. Afterward, the
obtained results are compared with previously published models which did a better job in predicting target values. In the
following, to investigate the validity of our proposed model, statistical and graphical techniques are employed and it was proved
that this model is e�cient to evaluate the output values. Amounts of results obtained from the PSO-ANFIS model evaluation are
0.988 and 0.985 for the R2 and 0.0156 and 0.0876 for root mean squared error (RMSE) of TC ratio and viscosity ratio values,
respectively, letting out a valid forecast of targets. Finally, by performing various statistical analyzes, it can be said that this model
shows a high ability to predict target values and can be considered a good alternative to previous models.

1. Introduction

�e colloids of engineered NPs distributed uniformly in base
�uids are called nano�uids (NFs) [1–3]. �e thermo-
physical, transport, and other characteristics of NFs are
distinct from those of conventional �uids [4–6]. For ex-
ample, adding modest amounts of NPs may result in a
substantial increase in thermal conductivity [7]. Numerous
theoretical and experimental studies established formula-
tions for the change of viscosity and TC [4, 5, 8–20].
Established formulas describe the e�ect of nano�uid TC and
viscosity on a variety of factors, including volume fraction,
the type of base �uid, the particle shape and size, the
temperature, the surface charge, pH, the particle nature, the
Brownian motion of NPs, dispersion, clustering, and
monolayer approaches [1, 4, 6, 8, 21, 22]. In most studies, the
viscosity and TC are determined by size and concentration

of one type of NF. However, there is much disagreement
between experimental results and theoretical theories. �ere
are currently no acceptable mathematical models for de-
scribing the temperature behavior of a NF [23, 24].

Recently, the use and application of arti£cial intelligence
methods in various sciences have been seen repeatedly
[25–29]. �e quantitative structure-property-activity rela-
tionships method is among the most interesting and widely
used approaches for developing mathematical relationships
between target characteristics and aspects of the chemical
composition [30, 31]. �e method is often referred to as
“nano-QSAR” or “nano-QSPR” when used with NPs
[32, 33]. Since 2009, several nano-QSAR/QSPR models have
been created for inorganic NPs [33]. In spite of the im-
portance of this endeavor and the interesting £ndings of
available nano-QSAR/QSPR models, there is yet no uniform
approach to o�er a coherent de£nition for a diverse array of
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nanoscale structures. Additionally, direct characterization of
dispersed-phase particles can be performed utilizing mo-
lecular dynamics models, which are not appropriate for
rapid prediction for screening applications [12]. Several
studies have been performed on the effects of chemical
composition on the viscosity and TC of NFs employing the
QSPR technique [34, 35]. Each of them used a simplified
model of the NF structure [34]. For instance, we described
NF structures using the so-called “liquid drop” model in
earlier works. But themodel’s application was limited by (i) a

lack of variety (five different NPs were examined) and (ii) a
low volume percentage (NPs concentration lies within
0.01–0.55%) [34].

+e present research aims to provide a thorough ex-
amination of viscosity and TC utilizing a hierarchical
mixture of newly created descriptors that describe the
composition of NFs at various organizational levels. +is
project aims to develop a unifying expert system capable of
predicting viscosity and TC of various NFs at various sizes
and concentrations using PSO-ANFIS. +e predicted TC
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Figure 1: Mean squared error values according to the number of iterations for two parameters TC ratio and relative viscosity.
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and viscosity of NFs using the suggested mathematical
model are compared to experimental test data published in
the literature in this study and compared with models al-
ready presented by previous researchers.

2. Methodology

2.1. (ANFIS)Model Description. In 1993, Jang [36] proposed
adaptive neuro indistinct inference network (ANIIN) for the
first time, as a combination of the synthetic neural system
(SNS) and indistinct inference network (IIN). Here, a fuzzy

inference system has four underlying parts which must be
studied [37]. +e first part consists of the fuzzy if-then rules
defined by Takagi-Sugeno type in a “if A then B” structure.
+ese rules are characterized by proper membership func-
tions (MFs). +ere are various MFs. In this research, we
utilize the Gaussian type MF as follows [38–40]:

μAi � ai exp
x − ci

ai

􏼠 􏼡

2
⎡⎣ ⎤⎦, (1)

where ci and ai are the indicator units.

Train: y = 0.9975x + 0.0025
R² = 0.988

Test: y = 1.0072x - 0.0073
R² = 0.987
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Figure 2: Regression analysis on the (a) TC ratio and (b) relative viscosity of NFs data related to training and testing phases.
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In the second part, indistinct decisions are made by
indistinct rules. +en, in the third and fourth parts, fuzzi-
fication and defuzzification fulfillment are done, respectively
[41, 42].+e fuzzification unit has a responsibility to increase

data amounts to the fuzzy amounts [43, 44]. +e type of
Takagi and Sugeno fuzzy rules are as follows (to evaluate data
of the x and y as well as the production of f, two first-order
polynomials are studied) [45, 46]:
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Figure 3: Simultaneous viewing of laboratory and modeled data of the (a) TC ratio and (b) relative viscosity of NFs related to training and
testing phases.
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Rule 1: if x is A1 an d y is B1 , then f1 � p1x + q1y + r1,

(2)

Rule 2: if x is A2 an d y is B2 , then f2 � p2x + q2y + r2,

(3)

where B and A are optimization techniques and indistinct
units, respectively. +ese are required to be employed for
optimization of the linear indicators, i.e., p, q, and r. In this
study, this optimization is performed by the PSO technique
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Figure 4: Relative deviation analysis of the (a) TC ratio and (b) relative viscosity of NFs. Furthermore, the validity of the proposed model is
measured by statistical factors. To predict errors, R2, RMSE, MSE, STD, and MRE are used in Table 1 [55–59].

Table 1: Statistical parameters obtained to estimate the accuracy of
the PSO-ANFIS model.

Parameter Phase R2 MRE
(%) MSE RMSE STD

TC ratio
Train 0.989 0.829 0.000208729 0.0144 0.0112
Test 0.987 1.056 0.000243615 0.0156 0.0101
Total 0.988 0.886 0.000217451 0.0156 0.0110

Relative
viscosity

Train 0.990 4.110 0.003234137 0.0569 0.0538
Test 0.981 16.556 0.007665055 0.0876 0.0816
Total 0.985 7.176 0.004325812 0.0876 0.0616
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[47–49]. So, to calculate the ultimate production in a five-
layer mechanism, the ANFIS model is used. +us, pro-
duction for each layer is presented as follows [50, 51]:

1st layer: O1,i � µAi(x), (4)

2nd layer: O2,i � wi � µAi(x) × µBi(y), (5)
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Figure 5: William’s plots for data related to the (a) TC ratio and (b) relative viscosity of NFs.
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Figure 6: Sensitivity analysis for data related to the (a) TC ratio and (b) relative viscosity of NFs.
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3rd layer: O3,i � wΔi �
wi

􏽐
​
wi

, (6)

4th layer: O4,i � wΔi × fi � wΔi pix + qiy + ri( 􏼁, (7)

5th layer: O5,i � overall output � 􏽘
N

i�1
wΔi

� 1wΔi fi �
􏽐iwifi

􏽐iwi

,

(8)

where wi is the standardized volley vigor.

2.2. Input Attainment. In order to develop a trusty pre-
dictive tool, we require to utilize an inclusive data foun-
dation. In a mechanism for progressing the model, we must
investigate various factors which affect the production
factor. In this mechanism, we apply a data foundation in-
cluding data tips from formerly stated papers. Collected
references to this data are given elsewhere [52].

2.3. Model Progression. To employ data foundation, they
were randomly classified into testing and training units. +e
training data unit will create the construction of the fore-
casting model and the testing data unit measures the validity
of the evaluated amounts. We see that the training data unit
is containing 75% of the data, while the remaining is 25%
and assigned to the test data unit. +en, the addendum
formulation is used to represent the model progression with
the standardized amounts as follows [53, 54]:

Xnor �
X − Xmin

X − Xmax
× 2 − 1, (9)

where max, nor, and min signs depict the maximum, nor-
malized, and minimum amounts.

3. Results and Discussion

In this research, we create an ANFIS model with Gaussian
MF operation to evaluate the output values. To test the MF
factors, a PSO algorithm was used. Figure 1 shows the mean
squared error values in terms of the number of iterations for
two output target parameters of TC ratio and relative
viscosity.

Figure 2 demonstrates the regression shape by planning
the expected amounts versus the empirical amounts.

As you see in Figure 2, data points are gathered around
the 45° line revealing the model’s great ability to forecast the
target values.

Figure 3 shows the great coincidence between expected
and empirical amounts for every indicator number in the
synchronous shape of the expected and empirical amounts.

Also, the relative deviation of expected and empirical
amounts is shown in an aberrance plan in Figure 4. In this
form, the mass of data points is set around the zero line,
revealing the accurate anticipation of the output values.

To resolve the faraway data points, the force methodmay
be used in some cases. In this technique, William’s plot is
used acquired from planning the normalized residuals
versus hat amounts (hat amounts are acquired from oblique
factors of the hat matrix) to mark the faraway data points
out. +e hat matrix (H) for a matrix of size n × m (X) is as
follows [60–62]:

H � X X
t
X􏼐 􏼑

−1
X

t
, (10)

where m and n are data parameters and the number of data
points, respectively. A cut-off value for the normalized
deposition and a force hat value (H∗) are defined to raise a
possibility for the area ofWilliam’s plot. In the following, the
cut-off amount of 3 is explored for normalized residuals
while the strength hat value is yielded by the following
equation [59, 61, 63]:

H
∗

� 3
k + 1

n
. (11)

Also here, the feasibility region is restricted to −3<R< +

3 and 0<H<H∗, vertically and horizontally, respectively,
and will be a squared area. Figure 5 shows William’s plot.
+is figure demonstrates the statistical authority of the
suggested PSO-ANFIS model, as the majority of data points
are placed in the feasibility region of William’s plot.

In order to determine the effect of each of the input
variables on the target parameter, sensitivity analysis has
been used [64]. More details about this analysis have been
given in several articles [65–69]. In summary, in this
method, a relevancy factor is calculated for each input
variable that has a value between −1 and +1, and if this value
is positive for a particular variable, it indicates the positive
effect of this variable on the target parameter and vice versa.
+e next point that can be deduced from the relevancy factor
is that the larger the absolute factor for a variable, the more
effectively that variable affects the target parameter
[60, 70, 71].

As can be seen from Figure 6, the density and size of NPs
have the highest and lowest effects on TC, respectively. +e
following diagram shows that a volumetric concentration
with a relevancy factor of +0.48 has the greatest effect on the
viscosity of NFs and the density of nanoparticles has the least
effect on this parameter.

4. Conclusions

In this research, statistical and graphical evaluation of the
suggested PSO-ANFISmodel demonstrates that this strategy
has a superior capability to predict the outputs including the
TC ratio and relative viscosity. +e R2 values obtained by
this model for these two parameters were set at 0.988 and
0.985, respectively, which indicates the high accuracy of this
strategy in estimating outputs. Other analyzes employed in
this paper included sensitization, visual observation, esti-
mation of suspicious data, and determination of other
statistical parameters. So, due to its reliability, it can be taken
into account as a great predictive tool to be used in practical
applications in related industries.
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