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Hidden Markov models (HMMs) have been recently used for fault detection and prediction in continuous industrial processes;
however, the expected maximum (EM) algorithm in the HMM has local optimality problems and cannot accurately fnd the fault
root cause variables in complex industrial processes with high-dimensional data and strong variable coupling. To alleviate this
problem, a hidden Markov model-Bayesian network (HMM-BN) hybrid model is proposed to alleviate the local optimum
problem in the EM algorithm and diagnose the fault root cause variable. Firstly, the model introduces expert empirical knowledge
for constructing BN to accurately diagnose the fault root cause variable. Ten, the EM algorithm is improved by sequential and
parallel learning to alleviate the initial sensitivity and local optimum problems. Finally, the log-likelihood estimates (LL) calculated
by the improved hiddenMarkov model provide empirical evidence for the BN and give fault detection, prediction, and root cause
variable detection results based on information about the similar increasing and decreasing patterns of LL for the training data and
the online data. Combining the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process, the
feasibility and efectiveness of the model are verifed. Te results show that the model can not only fnd the fault in time but also
fnd the cause of the fault accurately.

1. Introduction

Te rapid development of the social economy and the
continuous progress of science and technology, as well as the
continuous improvement of people’s requirements for
product quality, system performance, and economy, have
prompted the modern industrial process to show an in-
creasingly complex trend in terms of structure and auto-
mation. Te increasing complexity of systems leads to
reliability and safety issues becoming the most important
aspects of system design. It is imperative to understand and
optimize the coupling of industrial processes through reli-
ability and safety analysis, thus reducing production costs as
much as possible on the premise of ensuring the safety of
industrial processes. Te failure or unreliability of complex

industrial processes will have a great negative impact on
social stability and economic development. For example, in
June 2000, the explosion at the A. L Ahmedi refnery in
Kuwait caused a loss of more than 100 million US dollars [1].
Te reliability and safety analysis of the industrial process is
conducive to clearly grasping the production status of the
industrial process. Crucially, the information obtained
through analysis is benefcial to equipment maintenance and
helps prevent failures or safety accidents.

In order to reduce or avoid industrial process failures,
improve the safety and reliability of industrial processes, and
promote the operation and development of enterprises,
integrated fault diagnosis, prediction, and health manage-
ment technology has gained increasing attention and ap-
plication [2]. Te technology includes detecting faults and
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giving early warning, detecting faults and fnding out fault
variables for isolation, identifying faults, and determining
the size and type of faults.

Te data-driven fault detection method has been proven
to be efective [3–7]. For example, principal component
analysis (PCA), partial least squares (PLS), canonical cor-
relation analysis (CCA), and independent component
analysis (ICA), the basic methods of machine learning, have
been deeply promoted and studied [8–11]. Kernel principal
component analysis (KPCA) methods are proposed to deal
with the nonlinear problems of industrial processes [12].
Despite the promising performance of the KPCA method in
nonlinear processes, as the complexity of industrial pro-
cesses increases, KPCA has emerged with high computa-
tional costs and memory storage problems. An improved
kernel method is proposed to improve the robustness of the
KPCA method [13]. Dynamic principal component analysis
(DPCA) and dynamic kernel principal component analysis
(DKPCA) are proposed for the dynamic process with au-
tocorrelation of time series [12, 14]. A recursive or window
principal component analysis method is proposed for time-
varying industrial processes [15]. A distributed principal
component analysis model is proposed to solve the problem
that industrial processes contain a large number of variables
[16, 17]. Te above data-driven fault detection methods all
have their own advantages, and they are applied by training
on and learning a large number of datasets.

However, the abovementioned models or methods have
challenges in complex continuous fault diagnosis; for ex-
ample, traditional models such as PCA, PLS, KPCA, and
support vector machines (SVMs) do not deal with time-
series industrial process fault detection, and methods such as
DPCA, DKPCA, and dynamic independent component
analysis (DICA) can deal with time-series between data by
means of augmented matrices or vectors, but these methods
do not have an autocorrelation of the feature components.
Te existence of autocorrelation in feature components and
model residuals can also have an impact on the use of
monitoring statistics. At the same time, this type of method
may not work with complex, large-scale industrial process
data. To adapt to the increasing complexity of industrial
process fault detection, deep learning (DL) methods such as
deep migration networks (DTN) and stacked auto-encoders
(SAEs) have recently been proposed. Aiming at the unsu-
pervised self-reconstruction of SAE in the pretraining stage,
which cannot ensure the relevance of deep features with fault
types, a stacked supervised automatic encoder is proposed to
pretrain the deep network [18]. Te method gradually learns
advanced fault-related features from the original input data
by stacking multiple supervised automatic encoders in layers
to improve the classifcation accuracy of the classifer. Te
DTN has alleviated the negative impact of each batch of
samples not refecting the overall distribution of the entire
dataset, and given the physicochemical nature of industrial
chemical process variables, the features extracted from these
process variables also contribute diferently to the domain
adaptation in the DTN. A linear discriminant analysis
(LDA)-based DTN is proposed for fault classifcation of
chemical processes. Te model determines the degree of

infuence of each variable on the source and target domain
samples by introducing the LDA method and then designs a
weighted maximum mean discrepancy (MMD) for domain
adaptation to improve the generalisation performance and
classifcation accuracy of the model [19]. Deep learning-
based models have demonstrated powerful data processing
capabilities and have shown high fault detection accuracy in
experiments. However, the root cause variables of highly
coupled, complex industrial process faults remain difcult to
identify.

Hidden Markov model (HMM) has received a lot of
attention to advance the development of time-series fault
detection. HMM is a particularly famous directed graph
structure that is mainly used for modeling time-series data.
Te earliest application of HMM to fault detection was based
on the combination of a pattern recognition system and
HMM [20]. Te HMM has received the attention of re-
searchers since it was used for process monitoring. To
improve the fault detection accuracy of the HMMmethod, a
classifcation system that combines stochastic resonance and
HMM is proposed [21].Te advantages of the HMMmethod
of time-series modeling are exploited in combination with
goodness-of-ft tests. Online data is used for the detection of
industrial process conditions [22]. Targeting the prediction
of remaining useful life (RUL), it proposed a prediction
method for remaining useful life on the basis of HMM and
Prognostics and Health Management (PHM). Te predic-
tion process is divided into three parts, including ofine
modeling, online state estimation, and online prediction. As
part of ofine modeling, HMM and PHM are established to
map the entire degradation path. In the process of operation,
the degradation state of the object is estimated in real time.
Once the fnal degradation state is reached, they extract the
degradation features and obtain the survival function
through the ftted PHM. Te proposed methods present
higher accuracy than traditional methods [23]. Te studies
confrm the role of HMM in the feld of fault detection and
prediction. In the feld of complex system diagnosis and
prediction, the combination of HMM and Bayesian network
(BN) has attracted the attention of some researchers.
However, the combination of HMM and BN still faces some
challenges. Rebello et al. presented a new method to evaluate
the functional reliability of complex industrial systems
running in steady state [24]. Tey used HMM to map
continuous data to unobservable state probabilities. DBN
found the posterior state probability of the system by
considering the dependencies between components in the
system. Tey believed that the degradation of the main
components of the system would cause system failure.
However, in fact, the cause of failure in complex systems was
not just degradation. For the diagnosis and prediction of
complex systems, Don and Khan proposed a new detection
method by combining HMM and BN [25, 26]. Tey divided
the measured data into three parts: the upper and lower parts
are related to the data of dangerous areas, and the data in the
middle part represent normal data. Tey used the average
value of logarithmic likelihood (LL) estimation to fnd the
most similar sequence for diagnosis and prediction. How-
ever, this method is not very reliable. Te reason is that the
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detected data may contain a variety of variables, some of
which can be partitioned to represent hazards or safety,
while special variables such as vibration or chemical reaction
temperature cannot be partitioned by this method. Te
smaller the vibration, the more stable the system is. Some
special chemical reactions require extremely high or low
temperatures. It is unreasonable to partition the data for
diagnosis and prediction using this method.

Te BN, also known as the belief network or directed
acyclic graphmodel, is a probability graphmodel. A directed
acyclic graph consists of nodes representing variables and
directed edges connecting these nodes. BN can represent the
causal relationship between variables or components in a
concept or probability model diagram. Although this feature
cannot solve all problems, BN is still superior to other
classical methods in the applicable range [27]. For example,
Liu et al. [28] proposed to use BN and a genetic algorithm
(GA) to assemble parts and to refect the causality between
parts through BN so as to obtain relatively high-quality
product assembly with low-quality parts. Considering the
diagnosis results of complex mechanical systems are infu-
enced by the strong dependence of wear among compo-
nents, which leads to difcult diagnosis and identifcation of
fault modes, Pang et al. propose a BN model for fault di-
agnosis of lock mechanisms based on degraded data [29].
Te BN probability diagram shows the causal relationship
between each variable and each component, and the model
shows a good diagnostic efect.

Recently, hybrid modeling technology has been pro-
posed [30, 31]. An important idea of hybrid modeling is to
adopt various models or methods to represent various re-
lationships among variables. Terefore, hybrid modeling
technology has attracted considerable attention in the feld
of process modeling and monitoring. Inspired by the idea of
mixed modeling and causality, this paper proposes a hybrid
model of a hidden Markov-Bayesian network (HMM-BN),
upgrading the HMM to ameliorate its robustness. When
analyzing the reliability and safety of complex industrial
processes, this model represents the causal relationship
between variables or components of complex industrial
processes in the form of probability diagrams. It solves the
shortcomings of the abovementioned methods.

In this study, the hybrid HMM-BN model is proposed
based on the defciencies of the fault diagnosis and pre-
diction model mentioned above. By introducing experts’
experience and knowledge, incremental and decremental
patterns of log-likelihood estimates, improving the EM al-
gorithm, and combining the BN, it aims to improve the
robustness of the HMM-BN model and expand its scope of
application in fault detection and prediction of complex
industrial processes. Te working principle of the HMM-BN
hybrid model is to calculate the log-likelihood value through
HMM training. It takes advantage of the improved EM
algorithm to fnd globally three adjacent log-likelihood
values with similar increasing/decreasing ranges, the average
value, and the standard deviation of three adjacent log-
likelihood values globally, so as to enhance the accuracy of
model fault detection and prediction. Te BN is constructed
based on experts’ experience and knowledge. HMM training

results and log-likelihood estimates are used to update the
BN, and the root cause variables of the faults were eventually
identifed based on the percentage change in probability of
each variable. Te efectiveness of the HMM-BN hybrid
model is illustrated by the Tennessee Eastman (TE) process
and continuously stirred tank reactor (CSTR) process
examples.

Te structure of this paper is as follows: Section 2 in-
troduces the basic knowledge of the HMM and BN and the
premise assumption of the HMM-BN hybrid model, as well
as the learning of HMMparameters. Section 3 introduces the
model’s construction in detail. Section 4 introduces the
examples of the TE process and the CSTR process, based on
which the efectiveness of the model is verifed. Section 5
gives the conclusion.

2. Basic Knowledge and Method Description

2.1. Hidden Markov Model. Te hidden Markov model
(HMM) describes the process of randomly generating ob-
servation sequences from hidden Markov chains, which
belong to the generationmodel. Markov process refers to the
assumption that in a random process, the conditional dis-
tribution of state it+1 at time t + 1 is only related to its
previous state it, that is, p(il+1 | i1, i2 . . . , it) � p(it+1 | it).Te
process is shown in Figure 1(a). HMM is a probability model
about time series. As shown in Figure 1(b), it describes the
process of randomly generating an unobservable state
random sequence (state sequence) from a hidden Markov
chain and then generating an observation random sequence
(observation sequence) from each state. Tere are a limited
number of hidden states in the model, and the observed
values are output discretely or continuously. HMM has two
kinds of probabilities, one is called transition probability,
and the other is called observation probability. Te former
indicates the probability of changing from a hidden state to
other states, while the latter refers to the probability of
generating observations from a hidden state. Although the
real hidden state sequence is hidden and cannot be observed
directly, it can be inferred by measurement. HMM has the
following main elements:

(1) Hidden state:

Q � q1, q2, . . . , qN􏼈 􏼉, (1)

where N represents the number of hidden states.
(2) Observation variable:

V � v1, v2, . . . , vM􏼈 􏼉, (2)

where M represents the number of observed
variables.

(3) Initial probability distribution:

π � πi􏼈 􏼉. (3)

(4) State transition probability:

A � aij􏽮 􏽯, 1≤ i, j≤N, (4)
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where aij � P(it+1 � qj | it � qj) represents the
probability that the state will change from i⟶ j.

(5) Observation probability matrix:

B � bj(k)􏽮 􏽯, (5)

where bj(k) � P(Ot � vk | it � qj) represents the
probability relationship between the hidden variable
and the observed variable.

As we all know, the parameter that the HMMmodel needs
to learn and train is λ. λ contains three main elements, namely
the initial probability distribution π, state transition matrix A,
and emission matrix B, which are formulated as follows:

λ � π, A, B{ }. (6)

Te HMM model needs to solve the following three
problems:

(1) Evaluation problem, that is, using a forward-back-
ward algorithm to calculate P(o | λ)

Te specifc calculation steps of forward algorithm
are as follows:

(i) Defnition and assumption:
Use forward-backward algorithm to calculate
the following data sequence:

o(t × M) � o1, o2, . . . , ot􏼂 􏼃
T
, (7)

where t represents the measured quantity and
M represents the variable quantity.
For the convenience of calculation, set forward
variables as follows:

αt(i) � P o1, o2, . . . , ot, it � qi

􏼌􏼌􏼌􏼌 λ􏼐 􏼑, (8)

where t refers to time t and i refers to state i.
(ii) Initialization:

α1(i) � πibi o1( 􏼁, (9)

where 1≤ i≤N.
(iii) Inductive recurrence:

αt+1(j) � 􏽘
N

i�1
bj ot+1( 􏼁aijαt(i), (10)

where 1≤ t≤T − 1, 1≤ j≤N.

P(o | λ) � 􏽘
N

i�1
αT(i). (11)

(iv) Specifc calculation steps of backward
algorithm:

(a) Defnition and assumption:

βt(i) � P ot+1, ot+2, . . . , ot it
􏼌􏼌􏼌􏼌 � qi, λ􏼐 􏼑. (12)

(b) Initialization:

βt(i) � 1. (13)

(c) Inductive recurrence:

βt(i) � 􏽘
N

j�1
bj ot+1( 􏼁αijβt+1(j), (14)

where t � T − 1, T − 2, . . . , 1, 1≤ i≤N.
(d) Termination:

And βt(i)⟶ P(o | λ).

(2) Parameter learning problem, that is, using EM al-
gorithm to learn the best parameter λ
Step E, solving the Q function:

Q(λ, 􏽥λ) � 􏽘
I

logP(o, I | λ)p(I | 􏽥λ),

� 􏽘
I

logP(o, I | λ)
p(o, I | 􏽥λ)

p(o | 􏽥λ)
,

∝ 􏽘
I

logP(o, I | λ)p(o, I | 􏽥λ),

(15)

where 􏽥λ is the current estimated value of hidden
Markov model parameter, and λ is the model pa-
rameter to be maximized.
Joint probability calculation formula:

P(o, I | λ) � πiαi1i2
αi2i3

. . . αiT− 1iT
bi1o1

bi2o2
. . . biToT

. (16)

Logarithmic function of joint probability calculation
formula:

logP(o, I | λ) � logπiαi1i2
αi2i3

. . . αiT− 1iT
bi1o1

bi2o2
. . . biToT

,

� logπi + 􏽘
T− 1

t�1
logαitit+1

+ 􏽘
T

t�1
logbitot

.

(17)

Substitute equation (16) into the Q function:

… …i1 i2 it it+1 iT

(a)

…

……

…state sequence:

observed sequence:

i1 i2 it it+1 iT

O1 O2 Ot Ot+1 OT

(b)

Figure 1: Schematic diagram of Markov process and hidden Markov model process.
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􏽘
I

logP(o, I | λ)p(I | 􏽥λ)

� 􏽘
I

log πiαi1i2
αi2i3

. . . αiT− 1iT
bi1o1

bi2o2
. . . biToT

􏼐 􏼑P(o, I | 􏽥λ),

� 􏽘
I

logπi + 􏽘

T− 1

t�1
logαitit+1

+ 􏽘

T

t�1
logbitot

⎛⎝ ⎞⎠P(o, I|􏽥λ).

(18)

Step M, solving the parameters of the model:

􏽥π � argmax 􏽘
I

logπiP(o, I | 􏽥λ)􏽨 􏽩,

􏽥A � argmax 􏽘
I

logaijP(o, I|􏽥λ)􏽨 􏽩,

􏽥B � argmax 􏽘
I

logbj(k)P(o, I|􏽥λ)􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s.t.

􏽘
N

i�1
πi � 1

􏽘

N

i�1
aij � 1

􏽘

N

i�1
bj � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(19)

Te parameters of the model can be obtained by
solving equation (19) with the Lagrange multiplier
method.

(3) Decoding problem, that is, using Viterbi algorithm
to fnd a state sequence I, which makes P(I | o)

maximum
Defne the maximum probability in all single paths
(i∗1 , i∗2 , . . . , i∗t ) with the state of i at time t:

δt(i) � maxP o1, o2, . . . , ot, i1, i2, . . . , it− 1, it � qi | λ( 􏼁.

(20)

From the defnition and hidden Markov hypothesis,
the recursive formula of variable δ can be obtained,
and the following formula can be deduced:

δt+1(j) � maxP it+1 � i, it, . . . , ot+1, ot, ot− 1, . . . , o1 | λ( 􏼁,

� max δt(i)aij􏽨 􏽩bj ot+1( 􏼁.

(21)

Te t − 1 th node defning the path with the highest
probability among all the single paths (i1, i2, . . . it)

with the state i at time t is

φt(i) � argmax δt− 1(j)aij􏽨 􏽩, i � 1, 2, . . . , N. (22)

2.2. Bayesian Network. Bayesian network (BN) is a directed
acyclic graph, which consists of nodes representing variables
and directed edges connecting these nodes. Nodes represent
random variables, and the directed edges between nodes

represent the relationships among nodes. Conditional
probability is used to express the dependencies among
variables, and prior probability is used to express infor-
mation without parents. It is an uncertainty processing
model that simulates causality in the process of human
reasoning.

Te nodes in the directed acyclic graph of a BN represent
random variables (X1, X2, . . . Xn), which can be observable
variables, hidden variables, unknown parameters, etc. In
order to determine the root cause variables of a fault, this
study uses the causal inference capability of BN to fnd the
root cause variables of a fault.

As shown in Figure 2, assuming that the industrial
process variable of node A directly afects the industrial
process variable of node B, i.e., A⟶ B, the directed arc
(A, B) from the variable of node A to the variable of node B

is established by the arrow that points from A to B, and the
weight (i.e., connection strength) is expressed by the con-
ditional probability P(B | A). In short, a BN is formed by
drawing the variables involved in a research system inde-
pendently in a directed graph according to the conditions. It
is mainly used to describe the conditional dependence be-
tween random variables, with circles representing variables
and arrows representing conditional dependence.

Te joint probability distribution of nodes x can be
expressed by the following formula:

p(x) � 􏽙
i∈I

p xi xpa(i)

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (23)

where pa(i) represents the parent node of node i.
For any random variable, its joint probability can be

obtained by multiplying their local conditional probability
distributions

p x1, x2, . . . , xk( 􏼁 � p xk|x1, x2, . . . , xk− 1( 􏼁 . . . p x2 x1
􏼌􏼌􏼌􏼌􏼐 􏼑p x1( 􏼁.

(24)

Te learning relationship diagrams are considered im-
portant in BN. Te knowledge of causality and infuence
among variables provides the fundamental reason for the
whole system. BN is capable of calculating the posterior
probability according to the evidence for variables and
knowing the states of several other variables. Domain expert
knowledge and statistical data are two main information
sources for building BN. In the feld of fault detection in
complex industrial processes, the conditional probability
table (CPT) of BN is provided through a historical database.
Unfortunately, when generating CPT from historical data,
there may be problems such as insufcient data, missing
values, fuzzy confdence limits of variables, etc. To solve
these problems, experts’ experience and knowledge are in-
troduced into the BN to improve its accuracy.

Te Bayesian network relies mainly on graph structure
and CPT to update the BN through likelihood evidence.
After providing CPTand likelihood evidence to complete the
BN update, the iterative update of the fault can be obtained
by calculating and analyzing the posterior probability. In
fault isolation, the parent node with the largest percentage
change is the root cause variable of the fault.
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2.3. Expected Maximum Algorithm Amelioration. As is
known to all, the hidden Markov model has a challenging
problem when learning parameters, which means the expected
maximum (EM) algorithm will cause accuracy problems due to
initial sensitivity and local optimization. However, this disad-
vantagewill not be greatly afected in a small number of datasets.
Consequently, this problem has not attracted attention. Con-
sidering the arrival of the era of big data, the data-driven fault
detection and prediction model must be an indispensable tool
for the state monitoring of complex industrial process systems.
In this paper, the EM algorithm is upgraded to ameliorate its
robustness and expand its applicable scope. Te rest of this
section will introduce the advancement of the EM algorithm.

Since the data collected for industrial process variables
are usually continuous values, the state emission probability
B can be described by a Gaussian mixture model (GMM) (μ,
σ, w), where μ and σ are the mean and standard deviation of
the sequence X, respectively, w � (w1, w2, . . . wk) is the
Gaussian subdistribution weight and K is the number of
Gaussian subdistributions. From the perspective of a
learning strategy, EM algorithms can be called parallel
learning methods when learning the state emission proba-
bility parameters. Te algorithm chooses the initial pa-
rameters of each set of Gaussian functions and
simultaneously, or in parallel, estimates the probability that
each point will be generated in each Gaussian function. Te
process is competitive, and if the probability of a data point
belonging to a member is high, the probability of it be-
longing to other members decreases, and the parameters are
updated at the same time. Solving the two problems of the
EM algorithm, requires all Gaussian functions to “fnd” each
Gaussian scatter “cluster” from the scatter set through se-
quential learning before competing in parallel. Te mean lies
in the larger region of this “cluster,” and the variance refects
the structure (or shape) of the scatter “cluster.”

Te steps for learning the state emission probability
parameters using the EM method are as follows:

Step 1. Set the initial parameters μ0, σ0, w0;
Step 2. From equation (25)calculate μt+1

h , Σt+1h , wi
k(i �

1, . . . , N; h � 1, . . . , K);
Step 3. Iterate to 􏽐

K
h− 1 ‖μt+1 − μt‖< δ convergence using

step 2;
where G indicates a high-dimensional Gaussian
function
G(xi, μh, 􏽐h) � (|􏽐h|− (1/2)/(2π)d/2)e− 1/2(xi − μj)

T

􏽐
− 1
h (xi − μh), 􏽐 � σ2I, i indicates the ith sample, h

indicates the hth Gaussian member, 􏽐 indicates the
covariance, and d indicates the marginal distance.

μt+1
k �

􏽐
N
i�1 w

i
kx

i

􏽐
N
i�1 w

i
k

,

􏽘

t+1

k

�
􏽐

N
i�1 w

i
k x

i
− μt

k􏼐 􏼑 x
i
− μt

k􏼐 􏼑
T

􏽐
N
i�1 w

i
k

,

w
i
k �

G x
i
, μt

k,Σtk􏼐 􏼑 􏽐
N
i�1 w

i
k

G x
i
, μt

k,Σtk􏼐 􏼑 􏽐
N
j�1 w

i
k

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Te biggest problem with the EM algorithm is that it
cannot guarantee the global optimal solution or that the
obtained solution will change with diferent initial values,
that is, the so-called initial value sensitivity. As shown in
Figure 3. Te horizontal axis of the graph represents the
unknown parameter (assuming there is only one pa-
rameter here), and the vertical axis represents the like-
lihood function L. If the initial point is selected as point
A, then the point M1 that fnally converges is naturally
the global maximum point of the likelihood function, and
the corresponding parameter is naturally the global op-
timal solution. However, if the initial point is point B,
then the fnal convergence point is point M2. Tis is just
the maximum point, and the corresponding parameter is
the local optimal solution. In order to address the initial
sensitivity and local optimum problems, this study uses
two parts of optimal parameter learning, sequential
learning and parallel learning. Sequential learning:
there is no direct competition for data resources between
the Gaussian functions, and each Gaussian function
learns its own parameters (mean and covariance) in
diferent time periods. Te learning process for each
Gaussian function is essentially the same as for the EM
algorithm: frst, the class of the data point set is divided
using the current parameters, then the parameters of the
current Gaussian member are re-estimated based on the
division, and then the original dataset is redivided using
the updated parameters. And so on, until there is no
signifcant change in the estimated parameters between
the frst and second times. Parallel learning: there is a
direct confict between the individual Gaussian functions
regarding the allocation of data resources. All Gaussian
functions compete with each other to update the pa-
rameters simultaneously (and the weight coefcients are
updated accordingly).

Trough the abovementioned methods, the appropriate
parameters of the Gaussian function are found and used as
initialization parameters of the EM algorithm. In this case,
the EM algorithm is used to fne-tune the parameters from a
global perspective. Te algorithm structure block diagram is
shown in Figure 4.

Te improved EM method learns the emission proba-
bility parameters in the following steps:

A B

P (B|A)

Figure 2: Simple form of Bayesian connection and conditional
probability table.
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2.3.1. Sequential Learning

Step 1. Set the initial values of σ and ∈;
Step 2. Set h � 1, Xh

L � X;
Step 3. While XL≠ do
Randomly selecting μh(0) ∈ Xh

L as the initial mean;
Set initial covariance 􏽐h(0) � σ2I;
Get initial allocation

Xh
s (0) � x | x ∈ Xh

L, d􏽐m

(x, μh)≤ ε􏼚 􏼛, Xh
s(0) is the

point that falls within V∈(μm);
Finding the high-density region and structure of the h

th Gaussian scatter cluster by iteration; t� 0;
While ‖μh(t + 1) − μm(t)‖2< 10− 6;
Update the mean value of the hth Gaussian member μh,
μh(t + 1) � 􏽐xi∈Xs(t)x

i/N(Xs(t));
Update the covariance of the hth Gaussian member 􏽐h,
􏽐m(t + 1) � 􏽐xi∈Xs(t)(xi −

μm(t))(xi − μm(t))T/N(Xs(t)) − 1;
Add the same very small positive real number δ to each
eigenvalue of the covariance 􏽐m(t + 1), 􏽐m(t + 1) �

􏽐m(t + 1) + δ · I, preventing the occurrence of eigen-
values of zero and hence of singular matrices;

Update Xh
s (t + 1) � x | x ∈ XL, d􏽐m

(t)(x, μm(t)≤ ε)􏼚 􏼛;
t � t + 1;
End While{ }

Calculate the weight factor of the hth Gaussian
member, wh � N(Xs)/N(X);
When learning the next Gaussian membership pa-
rameter, the last data point assigned during the pre-
vious sequential learning is ignored, XL � XL − Xh

s (t);
m � m + 1;
End While{ }

Step 4. Remove noncompliant data points by reference
to the number Xh

s of data points contained in all
members.

2.3.2. Parallel Learning. Te parameters (μ, σ, w)0 obtained
by sequential learning are used as the initial parameters of
the EMmethod, and then all parameters are continued to be
fne-tuned using EM.

Where X denotes the original dataset (x1, x2, . . . , xN),
Xh

s denotes the data points contained in the hth member, XL

denotes the set of data points left after ignoring the elements
learned from the previous members, Vε(x) denotes the
high-dimensional Gaussian ellipsoid, ε denotes the radius, x
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Figure 3: Local optimal problem.
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Figure 4: Improved structure block diagram of EM algorithm.
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denotes the centroid, N(X) denotes the number of data
points in the dataset X, and d􏽐(x, μ) denotes the Marxist
distance.

Te goal of the EM algorithm is to ensure the maximum
log-likelihood estimation value. Te larger the value, the
better the algorithm. In this section, it is verifed that the
improved EM algorithm is superior to the original EM al-
gorithm by comparing the log-likelihood estimation values.
Te specifc results are shown in Figure 5. It can be seen from
the fgure that the test results of log-likelihood estimation
and iteration times are obviously lower than those of the
original EM algorithm. It shows that our methods can get
better parameter estimates. Although the improved algo-
rithm in this section cannot guarantee that the global op-
timal result can be found every time, the superiority of the
algorithm is verifed by comparison. It lays the foundation
for improving the robustness and expanding the application
range of the HMM-BN hybrid model.

3. Fault Diagnosis and Prediction of HMM-BN
Hybrid Model

Tis section describes the HMM-BN hybrid model’s con-
struction, fault detection, and fault prediction in detail, as
shown in Figure 6. Te following section explains the
structure of the model step by step.

3.1. Dataset Establishment. Normal operating condition
data is not the type of data detected under the optimal
working conditions of a complex industrial system. Al-
though some defects may occur with the operation of
complex industrial systems, the system can still provide basic
production functions. For improving the robustness of the
HMM-BN hybrid model, normal operating conditions data
are defned using continuous industrial process knowledge
and experts’ experiences of process operation mode, se-
quence, state, and variable coupling. Te introduction of
expert empirical knowledge can usually determine the key
characteristic parameters required for continuous industrial
process operating conditions, fault monitoring, and building
continuous industrial process operating datasets and BN. In
this study, the Tennessee Eastman Process (TE) and Con-
tinuously Stirred Tank Reactor (CSTR) process knowledge
and operating experience are used to select continuous
operating variables, extract key characteristic parameters,
determine coupling relationships between variables, and
build process datasets and BN. However, how to system-
atically introduce experts’ empirical knowledge into other
continuous industrial processes, defne data from normal
operating conditions, and collect and build the required
datasets for fault detection remains a challenge.

Tere are various diferent methods of data pre-
processing [32, 33]. Data preprocessing is the process of
cleaning up and converting the original dataset, which
usually includes deleting outliers, supplementing missing
values, normalizing, feature extraction, and the defnition of
a suitable data format. In this study, the data preprocessing
approach is to read operational data from the original

dataset, convert it into a data format suitable for further
analysis, identify and extract key feature parameters based
on engineering knowledge and expert experience, remove
outliers, and delete or add missing values. Ultimately, a
dataset suitable for process inspection is created.

3.2. Data Analysis. In line with the basic knowledge of the
improved EM algorithm, HMM, and BN introduced in
Section 2, it carries out model training and parameter
learning. Te specifc training and learning steps are as
follows:

3.2.1. Of-Line Modeling

Step 1. Training the HMM and BN models with the
normal operating conditions dataset constructed by
Section 3.1;
Step 2. Firstly, the parameters of equation (6) are
initialized, and then the most probable sequence is
calculated according to the evaluation problem in
Section 2.1;
Step 3. Learning of model parameters and maximum
likelihood values by the improved EM algorithm in
Section 2.3;
Step 4. Calculating log-likelihood estimates and storing
the results in a historical database to facilitate later
process predictions;
Step 5. Based on the decoding problem in Section 2.1,
fault detection and prediction using the range of in-
crease or decrease, mean, and standard deviation of
three adjacent log-likelihood estimates as evidence;
Step 6. Build the initial BN causality diagram in the way
described in Section 2.2, calculating the conditional
probability values, and transmit them as evidence to the
initial BN to build the BN under normal operating
conditions.

3.2.2. Online Monitoring

Step 1. Extract key feature parameters and construct
test sets based on engineering knowledge and expert
experience;
Step 2. Learning parameters, calculating log-likelihood
estimates, and computing likelihood evidence using the
trained HMM model in ofine modeling;
Step 3. Gives detection and prediction results. Based on
the parameter learning, log-likelihood estimates of new
data samples of industrial processes, an industrial
system is considered to be anomalous if it appears to be
signifcantly diferent, or a system failure if the anomaly
persists for a period of time. Based on the log-likelihood
estimates and the pattern of increase and decrease for
the new data sample, the log-likelihood estimate history
library is queried to fnd three consecutive log-likeli-
hood estimates with similar patterns of increase and
decrease, mean, and standard deviation, which are
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output as predicted values. Te sequence of log-like-
lihood values is examined to determine whether the
system will fail in the future.Te exact process is shown
in Figure 7;
Step 4. Te BN is updated by using log-likelihood
evidence to determine the root cause of the fault and to
isolate the fault. To determine the root cause variables
that generate the fault, it evaluates the values of dif-
ferent variables over a period of time before the fault
identifcation point and determines the possibility of
each variable causing the fault. It is also transmitted to
BN as valid evidence of causal deduction;
Step 5. Engineers handle faults and make fault records.

3.3. Result Output. Fault detection and fault prediction
results are derived from data analysis, and the results are
presented to facilitate engineers’ understanding of the op-
erational status of industrial processes. In the event of a fault
alarm, the root cause variables are output via BN to help feld
service personnel deal with system faults in a timely and
accurate manner. Finally, the results are documented to
enhance the robustness of the model.

4. Application Example

4.1. TE Process. Te TE process includes fve main units: the
reactor, the condenser, the compressor, the separator, and
the stripper. Tere are four reactions that generate two
products.Tree gaseous reactants are supplied to the reactor,
where liquid products are formed through catalytic chemical
reactions. Te product enters the condenser in the form of
steam for liquefaction. Ten, the product passes through a
gas-liquid separator, and the condensed product and the
noncondensed product are separated. A centrifugal com-
pressor recycles the uncondensed product into the reactor,
and the condensed product enters the stripping tower for
stripping. Te fnal product stream fows from the bottom of
the stripper and is pumped downstream for further refning.

Te fow chart of the TE chemical industry is shown in
Figure 8. Te chemical process of TE includes 12 operating
variables and 41 measured variables (22 continuous mea-
sured variables and 19 component measured values). In this
paper, 22 continuous variables from the output variables are
selected as observation variables, and their descriptions are
shown in Table 1. Te whole TE simulation process, which
includes 15 types of known faults and 5 types of unknown
faults [34–36], has simulated and detected 10 types of fault
scenarios related to monitored variables. Tis paper selects 4
kinds of fault scenarios to verify the efectiveness of the
model, and the specifc fault types and causes are shown in
Table 2.

E Feed Loss is a simulation case study, and other test
results are given in Section 5. All normal operating condition
data were extracted from these 10 fault datasets as the
training set, and the test set was composed of 1500 samples
(1130 normal samples, 120 samples with smaller fault ranges,
and 250 fault samples). First, the HMM was trained, and the
BN was built according to the ofine modeling method in
Section 3.2. Te training curve is shown in Figure 9 and the
BN is shown in Figure10. Ten, a database of log-likelihood
estimates is built to lay the foundation for introducing fault
data detection and prediction. Finally, a test set is used for
validation, and the validation results are shown in Figure 11.

It can be seen from Figure 9 that the log-likelihood
estimation value is about constant after 11 iterations. HMM
parameters are constantly improved in the iterative updating
process, and fnally a stable training model is obtained. From
Figure 11, it can be seen from the change in the actual log-
likelihood estimation curve that the HMM model detected
weak anomalies at time node 1126 and strong changes at
sample 1265. From the detection results, the HMMmodel is
not only more sensitive to strong fault changes but also
possesses the ability to detect weak fault data; in short, the
HMM model possesses a pleasing fault detection capability.
For the purpose of prediction, the HMM model is used to
calculate the mean, deviation, increase, and decrease pat-
terns of the new data set, and the log-likelihood estimator

New data sets

Transferring new data samples
to the trained HMM

Training HMM
with historical

datasets

Historical data sets

Calculating log-likelihood
values for historical data set

Calculating log-likelihood
values for a new data set

HMM

Historical database
of log-likelihood

values

Based on the three
consecutive log-
likelihood values

the entire historical
database is

searched to fnd the
most similar LL
sequence, giving

the prediction
result

Figure 7: Reduction method based on LL sequence.
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history library is retrieved to fnd a similar sequence of log-
likelihood estimates, which is the prediction of the industrial
process operation. As can be seen from the change in the
predicted log-likelihood estimate curve in Figure 11, the
predicted results deviate from the actual results to some
extent, but the overall change curve shows that the predicted
result curve follows the actual test result change curve, which
also indicates the predictive validity of the hybrid model.

TE chemical process has a cyclic variable, XMEAS (5).
Given that BN is an acyclic network, it establishes the re-
peated virtual node XMEAS (5) of cyclic fow. In order to
ameliorate the robustness of the HMM-BN hybrid model in
order to improve the robustness of the hybrid HMM-BN
model, engineering knowledge is introduced into the BN,
and expert experience of continuous industrial process
operation modes, sequences, and variable correlations is
used to build a Tennessee Eastman process BN with causality
and expert empirical knowledge. First, it uses normal op-
eration data to train HMM. Ten, it analyzes the frst half of
the test data by HMM to obtain the detected data strings and
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Figure 8: TE model process fow chart.

Table 1: Description of continuous process variables of TE process.

Variable no Description Unit
XMEAS1 Feed (stream 1) Kscmh
XMEAS2 D feed (stream 2) kg/hr
XMEAS3 E feed (stream 3) kg/hr
XMEAS4 A and C feed (stream 4) Kscmh
XMEAS5 Recycle fow (stream 8) Kscmh
XMEAS6 Reactor feed rate (stream 6) Kscmh

XMEAS7 Reactor pressure Kpa
gauge

XMEAS8 Reactor level %
XMEAS9 Reactor temperature °C
XMEAS10 Purge rate (stream 9) Kscmh
XMEAS11 Product separator temperature °C
XMEAS12 Product separator level %

XMEAS13 Product separator pressure Kpa/
gauge

XMEAS14 Product separator underfow (stream
10) m3/hr

XMEAS15 Stripper level %

XMEAS16 Stripper pressure Kpa
gauge

XMEAS17 Stripper underfow (stream 11) m3/hr
XMEAS18 Stripper temperature °C
XMEAS19 Stripper steam fow kg/hr
XMEAS20 Compressor work kw

XMEAS21 Reactor cooling water outlet
temperature

°C

XMEAS22 Separator cooling water outlet
temperature

°C

Table 2: True root causes for tested fault conditions [35].

Fault ID True root variable
E Feed Loss XMEAS3
IDV 4 XMEAS9
IDV 5 XMEAS11
IDV 6 XMEAS1
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their log-likelihood values. From this generated database, it
is able to infer various combinations of states and their
respective probabilities. Te logarithmic likelihood estima-
tion value can be loaded for each of the data strings detected
by HMM. Te load value must be normalized to be used as
the conditional probability of the CPT table. By establishing
CPT and prior probabilities, BN has the ability to detect
system anomalies. Figure 10 shows BN in normal operation.

After the HMM model detects the failure, it quickly
retrieves the string sequence of recent time, calculates the
failure probability of each variable, and fnally updates the
BN with probability and likelihood evidence. When BN is
updated with likelihood evidence, the rate of change is

evaluated at each node. When the root node has the highest
rate of change, it is considered the cause of a specifc
problem. If not, the maximum change rate on the previous
consecutive parent nodes is considered the root cause.
Figure 12 shows the BN of the E feed loss failure. It can be
seen from Figure 12 that the root cause variable of the E Feed
Lose fault is XMEAS3. Compared to Table 2, it can be
noticed that the model detection result is completely correct,
which is fnally used for fault isolation.

4.2. CSTR Process. Te CSTR process contains nine process
variables. In this study, 4400 normal operating state samples
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Figure 9: HMM training curve of TE process.
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were collected as the training set, and another 2850 samples
were collected as the test set (1850 normal operating samples
and 1000 fault samples) to verify the efciency of the HMM-
BN hybrid model.

Firstly, the HMMwas trained with the ofine model and
training set, and the CSTR-BN process was built based on
the training results and expert experience. Te HMM
training curve is shown in Figure 13, and the BN for the
normal operation state is shown in Figure 14. Te trained
HMMwas used to detect the CSTR process test set data, and

the test set detection and prediction results are shown in
Figure 15. To help engineers fnd the root cause variables
leading to the fault and repair the fault, fnally, the condi-
tional probability of the BN is updated based on the log-
likelihood evidence, and the fault diagnosis results for the
BN are shown in Figure 16. Te sequence of log-likelihood
estimates in Figure 15 shows that the HMM-BN hybrid
model not only detects fault data in a timely manner at the
location but also accurately predicts the occurrence of faults.
Although there is some diference between the actual and
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Figure 11: Detection and prediction result of E feed lose fault.
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predicted curves at the peaks, the overall trend between the
actual and predicted curves is consistent, which confrms the
fault detection and prediction potential of the hybrid HMM-
BN model. When comparing Figures 14 and 16, the most
signifcant change in probability can be found for variables 6,
7, and 8, indicating a CSTR process failure due to a fault in
variables 6, 7, and 8.

5. Results and Discussion

In this paper, the purpose is to present a method for fault
diagnosis and prediction of complex continuous industrial
processes. To achieve this objective, a hybrid hidden Markov
model-Bayesian network (HMM-BN) model is proposed,
and improvements are made to deal with the initial sensi-
tivity and local optimality problems of the expected maxi-
mum (EM) algorithm in the HMM approach, while
continuous industrial process operation datasets and the BN

are built using continuous industrial process knowledge and
expert experience of process operation modes, sequences,
states, and variable coupling. Te hybrid model is fnally
validated in the Tennessee Eastman (TE) chemistry process
and the continuously stirred tank reactor (CSTR) process.
Te validity of themodel is fnally verifed in the TE chemical
process and the CSTR process, demonstrating the possibility
of diagnosing and predicting unknown faults in continuous,
complex industrial processes.

In this study, the EM algorithm is improved to reduce
the impact of the initial sensitivity and local optimum
problems by introducing standard deviation, mean, in-
creasing and decreasing mode ranges when retrieving log-
likelihood values during data analysis and introducing ex-
pert empirical knowledge when building the dataset and
Bayesian network to improve the robustness of the model.

As shown in Table 3, it is proved that the detection,
prediction, and isolation results of the hybrid model for the
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Figure 13: HMM training curve of CSTR process.
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remaining three types of faults are completely correct by
comparing the root cause variable and the detection result
variable of the fault data [35]. In this paper, four fault
scenarios are used to verify the efectiveness of the HMM-
BN hybrid model. In accordance with the four detection
results, it can be shown that the hybrid model can be used for

continuous, complex industrial process state monitoring.
However, it has not been verifed whether there are other
possibilities for this hybrid model. Readers can extend it to
other aspects on the basis of the research ideas in this paper
in order to fulfll the original intention of this paper by
expanding the applicable scope of this model.

To further optimize the model. Tere are some aspects of
the HMM-BN hybrid model that still need to be developed
and studied in depth.

(1) By looking at the detection results in Figure 11, it can
be seen that the hybrid model has the ability to detect
weak fault signals to a certain extent; whether it can
be used for early fault detection is yet to be studied.
In addition, the hybrid model requires a large
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Figure 15: Detection and prediction result of CSTR process fault.
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Figure 16: Bayesian network of CSTR process fault.

Table 3: Other variables fault detection results.

Fault ID True root cause Diagnosed root cause
E Feed Loss XMEAS3 XMEAS3
IDV 4 XMEAS9 XMEAS9
IDV 5 XMEAS11 XMEAS11
IDV 6 XMEAS1 XMEAS1
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amount of data training; however, there are chal-
lenges in collecting fault data samples in normal
industrial processes. [37] How to use a small number
of samples for fault diagnosis and prediction may be
a further research direction.

(2) Resolving the two hypothetical premises of the
HMM and improving the robustness of the model.

(3) Learning complex continuous industrial process
knowledge through artifcial intelligence algorithms.

(4) How to introduce experts’ experience and knowledge
with a more formal approach.
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