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As an important rawmaterial for the chemical industry, ethylene is one of the surest indicators that measure the development level
of a country. �e diene yield is an important production quality index parameter of ethylene units, and it is very important to
detect and control them in real time. Due to the limitations of online analytical instrumentation technology, diene yields are
di�cult to measure online. Motivated by this, this article has studied soft-sensing technology for measuring diene yields. A diene
yield prediction method based on a deep belief network algorithm network is proposed, and the regularity of historical diene yield
data is fully explored by the method. First, the data feature vectors are fused and normalized. �en, the data are fed into a DBN
consisting of two layers of restricted Boltzmann machines for unsupervised training, and �nally, a DBN model is used to predict
the diene yield. �e experimental results show that the mean squared error of the test set with historical data is 1.15%, and the
mean absolute percentage error of the measured data is 2.79%. �e experimental results are provided to show the e�ectiveness of
the proposed method.

1. Introduction

Ethylene was an important raw material for the chemical
industry, and the industrial products made using ethylene
already account for more than 75% of petrochemicals.
Ethylene was one of the surest indicators that the petro-
chemical industry used as a tool to measure the development
level of a country. In recent years, the Chinese ethylene
industry had already made much progress. However, a gap
in the technical level of ethylene existed between China and
developed countries. For petrochemical production busi-
nesses, strengthening the quality was a long-term strategic
task.

Productive enterprises implement active information
technology to improve product quality, and advanced
control strategies that had been applied in production plants
have been introduced [1]. Under real-time monitoring of the
critical parameters and e�ective control of the key manip-
ulated variables, safety in the production process can be
guaranteed, and the production e�ciency of enterprises was

improved. In most cases of actual industrial processes with
cracking furnaces, the process involved complex physico-
chemical processes and conversion and delivery of energy
and materials. �erefore, the actual production process had
coupling, uncertainty, nonlinearity, hysteresis, and other
characteristics. �e result of all these factors was that some
key process parameters were di�cult to detect online. For
ethylene production units, it was di�cult to measure the
yields of ethylene products and propylene products.

Ethylene and propylene were the main products of
ethylene units. �e diene yield was the sum of the yield of an
ethylene product and a propylene product and was an im-
portant production and operational index of ethylene plants.
In order to improve the competitiveness of China’s ethylene
industry and achieve product quality control and stabled
production operations, it was necessary to develop the real-
time detection and optimization control of the diene yield, an
important production quality index of ethylene plants. At
present, due to the limitations of online analytical instrument
technology, it was di�cult to measure diene yields online.
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Based on the research and analysis of the cracking
furnace process mechanism, the main factors affecting diene
yields could be obtained. )e model of diene yields in a
cracking furnace could be established based on the main
factors of the soft measurement online prediction. First, it
was convenient to establish a diene yield prediction model
based on a soft measurement method for industrial
implementation. Different from online analysis instruments,
the model did not require careful maintenance, and the
online maintenance costs were lower. Second, the online
estimation value could be given in real time, which over-
comes the time delay of online analysis instruments.
)erefore, the establishment of a diene yield soft mea-
surement model was feasible and timely. )e soft mea-
surement model was gradually improved as the amount of
data increases, and the model had a wide range of appli-
cations, small overall investment costs, easy online main-
tenance, large-scale promotion, and feasible applicability.

In order to realize the effective online measurement of
some variables and parameters that were difficult to measure
[2], such as ethylene and propylene yields in ethylene plants,
many scholars had conducted in-depth research on software
measurement technology. Soft measurement technology
could estimate key quality indicators that could not be di-
rectly measured. Compared with traditional hard mea-
surement methods, soft measurement had many advantages
such as quick response, low costs, diversified methods,
convenient maintenance, and safe operations.

Regarding building suitable soft measurement models,
deep learning must be mentioned. In 2006, deep learning
and the revolutionary layer-by-layer greedy training method
were proposed, marking a new level of realizability of neural
networks [3]. Developed from artificial neural networks,
deep learning was experiencing its third wave in the twenty-
first century. Deep learning had made remarkable break-
throughs in many fields such as computer vision, provided
new feasible tools for solving old problems, and provided
scholars with new hope and foci. However, in the process of
using deep learning technology to build soft measurement
models, many problems still need to be explored and solved.

Soft measurement was essentially a type of mathematical
model. )erefore, the techniques and methods of signal
processing, mathematical statistics, expert systems, and
other research fields had been applied by many scholars and
engineers in this field. After summarizing the previous work,
the industrial process modelling methods were roughly
divided into three categories: mechanism-based methods,
knowledge-based methods, and data-driven methods [4, 5].

Mechanism-based methods, as the earliest developed
process modelling methods, depicted and reflected the na-
ture and mechanism of industrial processes by using ac-
curate and analytical mathematical models [6–8]. )erefore,
the mechanism model usually had high accuracy and reli-
ability and was widely used in aerospace, automotive, pre-
cision instruments, and other fields where it was easy to
accurately describe the process mechanism; however, for the
process industry and other instances where it was difficult to
obtain accurate mechanism knowledge, the model’s effect
was greatly reduced. Typical examples of such methods

included the state estimation method, parameter estimation
method, equivalent space method.

)e knowledge-based method was applied to the existing
production experience and expert knowledge where it
qualitatively described each link and internal structure in the
production process after inference and deduction, and then
applied specific models to solve problems [9–11]. )erefore,
in order to achieve a better effect, experts were often required
to be very meticulous in place of understanding and rich
practical experience. Additionally, considerable time and
money must be spent to set up and update the maintenance
expert knowledge base; nevertheless, the accuracy and re-
liability were still not effectively guaranteed, especially in
complex industrial process modelling scenarios.

Due to the increasing complexity of industrial pro-
duction equipment and related processes, it was very in-
creasingly difficult to define process mechanisms and
obtained reliable expert knowledge. Furthermore, with the
advent of Industry 4.0 and the industrial big data era, a large
amount of data could be obtained, and the modelling gains
and advantages brought by data were becoming increas-
ingly more obvious. )erefore, data-driven industrial
process modelling methods were becoming mainstream
[12–14]. )e data-driven modelling method usually needs
to reasonably select and improve the corresponding
modelling method according to the actual data charac-
teristics or process characteristics. )e method used suf-
ficient data to learn the parameters involved in the
mathematical model and then obtained a practical soft
measurement model. Classical data-driven methods in-
cluded support vector machines [15], K-means clustering
algorithm [16], and artificial neural networks.

Different from shallow learning, deep learning had an
excellent nonlinear fitting ability and could fit complex
functions. Common neural networks included stacked
autoencoders (SAEs), deep belief networks (DBNs) [17],
convolutional neural networks (CNNs) [18], and recurrent
neural networks (RNNs). )is type of method had also been
gradually applied to industrial process monitoring and
quality prediction. For example, a network structure was
proposed based on self-organizing mapping (SOM) and
compared it with the SVR and other traditional methods
[19]. )e results highlighted the superiority of the neural
network method.)eDBNwas used to estimate the polymer
melt in an industrial polymerization process [20, 21], which
is suitable for applications to nonlinear data-driven models.

Due to the rapid dynamic response of soft measurement
technology, continuous online measurement displays could
be used without the aid of the analysis. In this article, a
diene yield model for ethylene plants was established based
on soft-sensing technology to realize the online measure-
ment of diene products. Specifically, it included the fol-
lowing aspects. First, aiming at the production process of
ethylene from naphtha pyrolysis as a raw material, this
article proposed a software measurement method for diene
yields in cracking furnaces based on the DBN algorithm.
On the basis of fully mining the regularity in historical load
data, data feature vectors were input into a DBN composed
of a two-layer RBM for feature fusion. )e DBN model was

2 International Journal of Chemical Engineering



used to predict the diene yield in a cracking furnace, and the
model was pretrained by unsupervised training. Finally, the
BP algorithm was used to calculate the diene yield in a
cracking furnace.

2. Material and Methods

2.1. Ethylene Cracking Process. )ere were many ways to
produce ethylene by cracking petroleum fractions, but
pipeline cracking furnaces, which had the advantages of
being mature technology, possessing a simple structure and
good operating stability and providing high olefin yields,
were currently the main way to produce ethylene in the
world [22]. )e entire structure of the tube cracking furnace
was divided into two parts: a radiation chamber and a
convection chamber. In the radiation chamber of a tube
cracking furnace, many metal tubes were arranged in se-
quence. Uniformly distributed burners were designed out-
side the tube (including bottom burners and sidewall
burners). )e raw material passes through the metal tube
quickly, and the heat was transferred to the material by the
tube wall. )e material in the tube cracking reaction oc-
curred at a high temperature. )e radiation chamber was
arranged at the bottom of the cracking furnace, and it was
mainly for cracking raw materials. )e convection chamber
was arranged above the radiation chamber, and it mainly
used waste heat in flue gas to heat raw materials, steam, and
other media. )e feedstock entered the convection section
from the top of the cracking furnace and was mixed with
steam as a diluent after some preheating. After further
preheating to the required temperature, the feedstock en-
tered the radiation section furnace tube for high-tempera-
ture cracking. A schematic diagram of a cracking furnace
structure is shown in Figure 1.

2.2. Selection of Auxiliary Variables. Variables or param-
eters that could be easily measured were called auxiliary
variables, and variables and parameters that could not be
measured or were difficult to measure were called
dominant variables. For the soft measurement model of
diene yields, the dominant variable was the diene yield,
which was the sum of the ethylene and propylene yields.
)e auxiliary variables were some influencing variables
and parameters directly related to the diene yield.

In order to ensure the accuracy and validity of the soft
sensor model, the information content of selected data
covered a wide range when selecting production operating
data. Generally, the input parameters of a model fall into two
categories: one is the physical parameters of cracking raw
materials, and the other is the process parameters of the
cracking furnace. )ese two types of parameters commonly
used in industry could be used as input parameters after
screening and simplification, and the output parameters
were the diene yield data of the cracking furnace that were
hoped to obtain through the model.

2.2.1. Properties Indexes of Cracking Materials. Ethylene
cracking furnace is mainly used to process natural gas,

refinery gas, crude oil, and naphtha and other raw materials
into cracking gas, and the study object is naphtha in this
article. )e quality of naphtha, feeding flux, and pyrolysis
temperature are the major factors on the yield of naphtha
pyrolysis products. )e aim product of naphtha pyrolysis
products is ethylene and the coproduct of that is propylene,
so the diene yield of cracking furnace was the sum of the
ethylene and propylene yields.

Quality of naphtha will affect the reaction process and
the purity of product in cracking furnace, and when the
hydrogen content of naphtha increased, the olefin of small
molecules is produced more. )e C/H ratio is an important
index of the naphtha quality. Also, the lower the proportion
of aromatic compounds, the higher the diene yield is. )e
main physical constants of raw material are density, dis-
tillation, and chemical admixture. )e parameter of
chemical admixture was sulfur content. )e distillation of
raw material includes initial boiling point (IP), 10% distillate
temperature (t10), 30% distillate temperature (t30), 50%
distillate temperature (t50), 70% distillate temperature (t70),
90% distillate temperature (t190), and end point (EP).

)e main characterizations of cracking raw material
quality are characterization factor K, PONA (paraffin, olefin,
naphthene, aromatics), and Bureau of Mines Correlation
Index (BMCI). )e petroleum hydrocarbons can be scien-
tifically classified into five groups: n-paraffins, i-paraffins,
olefin naphthene, and aromatics. )e characterization
factor K represents chemical composition characteristic of
crude oil and the fraction oil, and the computation meth-
odology of K is shown in the following formula:

waste heat
boiler

row oil

steam

burner

Figure 1: Schematic diagram of the structure of a cracking furnace.
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where 0R represents the Rankine scale and ρ represents the
density of naphtha, and the computation methodology of t is
shown in the following formula:

t �
t10% + t30% + t50% + t70% + t90%( 

5
. (2)

)e parameter BMCI is the combinations of the relative
density and the boiling point, which is shown in the fol-
lowing formula:

BMCI �
48460

t1 + 273
+ 473.6 × d

15·6
15·6 − 456.8, (3)

where for a single hydrocarbon, t1 represents its boiling
point, and for mixed hydrocarbons, t1 represents their
average boiling point. d15·6

15·6 represents the proportion of oils
at 15.6°C (600F) to water at 15.6°C (600F).

2.2.2. Working Conditions of Cracking Furnace. If the raw
material is determined in the cracking reaction, the main
factors affecting the product yield are temperature, residence
time, and hydrocarbon partial pressure. High cracking tem-
perature, short residence, and low hydrocarbon partial pressure
are conducive to the formation of diene products. With the
increase in the pyrolysis temperature, the yield of propylene
increased first and then decreased. )e yield of propylene
should be increased as much as possible while ensuring the
yield of ethylene, so as to maximize the profit of the enterprise
and obtain more profits. )e furnace tube outlet temperature
(COT) is usually replaced with cracking temperature. )e
residence time refers to the time when the cracking raw ma-
terial passes through the furnace tube of the radiation section.
At present, the residence time of tubular cracking furnace is
generally between 0.1 s and 1 s. )e secondary reaction and
coking reaction will occur if the residence time of raw
materials in the radiation section is too long. )erefore, the
residence time should be shortened as far as possible. From
the perspective of chemical equilibrium, the cracking reac-
tion is a chemical reaction with an increase in the number of
molecules. Reducing the hydrocarbon partial pressure of
reactants is conducive to the formation of products. )e
furnace tube outlet pressure (COP) represents hydrocarbon
partial pressure of tubular cracking furnace. Actually, adding
steam into the raw material has many advantages. It can not
only reduce the partial pressure and prevent the coking of the
cracking furnace tube, but also protect the furnace tube,
stabilize the cracking temperature, and remove the coking.
)e disadvantage of adding too much steam into the raw
material is that it will make the subsequent quench operation
more difficult and require greater heat load.)e parameter of
water oil ratio varies with different cracking raw materials,
and the principle is to minimize the use of dilution steam
under the requirement of preventing coking.

Seventeen physical properties of naphtha, including the
density, distillation range, characterization factor K, PONA,

C/H ratio, Bureau of Mines correlation index (BMCI), and
sulfur content, were selected in this article. )e distillation
process contained the following 7 indicators: IP, t10, t30, t50,
t70, t90, and EP. )e group structure of petroleum hydro-
carbons could be divided into several categories, namely,
n-paraffins, i-paraffins, olefin naphthene, and aromatics. )e
above showed that there were 17 material property param-
eters selected by the model. )e process conditions that had a
significant influence on pyrolysis products and could be
adjusted and controlled include COT, COP, water-oil ratio,
and residence time, and these four industrial parameters were
selected as input parameters. )erefore, a total of 21 input
parameters, including 17 physical parameters and 4 tech-
nological parameters, were selected for the model.

2.3. Algorithm Flowchart. A static model DBN was trained
by 120 sets of training data and tested by 30 sets of testing
data. )e prediction DBN model of the diene yield was
trained by training data, and the prediction model was tested
using testing data. )e algorithm flow is shown in Figure 2.

(1) )ere were 21 auxiliary variables used to collect
cracking furnace material characteristic parameters
and industrial operating parameters as DBN input
variables. )e output variables were the sum of
ethylene and propylene yields.

(2) In order to ensure the scale consistency of all data,
feature vectors must be normalized, and all data after
normalization were between [0, 1], as shown in the
following formula:

xi �
xi − xmin

xmax − xmin
, (4)

where xmin and xmax were the minimum and max-
imum eigenvectors in the feature set, respectively.

(3) )e 4-layer DBN structure was trained by using 120
sets of historical operating data of a cracking furnace,
and the fast-learning algorithm for contrastive di-
vergence was used to conduct learning.

(4) )e weight and bias obtained in the DBN training
process were used to test the test set. According to the
distribution of the RBM, the errors in the sample
obtained by Gibbs sampling and thirty groups of
measured data of a cracking furnace were evaluated,
and the test results were obtained. In the regression
prediction, themean squared error was usually used as
the loss function, as shown in the following formula:

MSE �
1
N



N

n�1
(y − h(x))

2
, (5)

where N represents the number of sample data
points, y represents the expected value, and h(x)
represents the estimates of the DBN model.

2.4. 1e Diene Yield Prediction Model of a Cracking Furnace.
DBN could be regarded as a process of abstracting high-level
features by combining various meaningful low-level features
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and discovering distributed characteristics of data through
deep learning. In fact, DBNs were probabilistic generative
depth structure models, which had better effects in the
probability estimation of prior data or posterior data. )e
core idea of a DBN was that each layer of a restricted
Boltzmann machine extracted and abstracted input data
from bottom to top and retained as much important in-
formation as possible.

2.4.1. Restricted Boltzmann Machine Model. A restricted
Boltzmann machine (RBM) was used in a deep belief net-
work [23], and understanding how an RBM works allowed
one to understand how a DBN works. An RBM was a deep
learning algorithm with a visual layer (denoted by v) and
hidden layer (denoted by h), and the simplified model is
shown in Figure 3. In an RBM, there was no correlation
between nodes in the visual layer and hidden layer, and the
conditions were independent of each other. )erefore, the
total probability distribution of the visible layer and the
hidden layer satisfied the following formula:

p
h

v
  � p

h1

v
  � · · · � p

hn

v
 . (6)

)e weight between the visible layer v and the hidden
layer could be obtained by solving the minimization loss
function, and the process was as follows. First, convert RBM
data from the visual layer to the hidden layer. )en, set the
visual layer node to vi, and set the hidden layer node to hj.
)e total number of visible layer nodes was i, the total
number of hidden layer nodes was j, and the weight between
the visible layer node and hidden layer node was Wij. )e
following equation also represents the energy of the entire
combined configuration [24]:

E(v,h,θ) � −
ij

Wijvihj − bivi − ajhj,θ� W,a,b{ }, (7)

where θ � W, a, b{ } represents the parameters limiting the
Boltzmann machine model. )e joint probability distribu-
tion of the configuration could be determined by the
Boltzmann distribution, where Z(θ) represents the distri-
bution function and e∗ represents the potential function:

pθ(v, h) �
1

Z(θ)
exp(−E(v, h, θ))

�
1

Z(θ)


ij

e
Wijvihj 

i

e
bivi 

j

e
ajhj ,

Z(θ) � 
h,v

exp Δ − EΔv, h, θΔΔ,

(8)

For eachnode in thehidden layer, the related conditions of
the joint probability distribution did not affect each other and
existed independently, as shown in the following formula:

p
h

v
  � 

j

p
hj

v
 . (9)

As shown in formula (10), on the premise of a given
visual layer v, the probability that the jth hidden layer node
was 1 or 0 could be obtained by the factorization of Equation
(9). As shown in the following formula, similarly, for a given
visual layer h, the probability that the ith hidden layer node
was 1 or 0 could be obtained [25]:

p
hj � 1

v
  �

1

1 + exp − 
i

Wijvi − aj 

,

p
v

h
  � 

i

p
vi

h
 , p

vi

h
  �

1

1 + exp − 
i

Wijhj − bi 

.

(10)

hidden layer (h) 

visible layer (v) 

weight (W)

Figure 3: Restricted Boltzmann machine model.

21 input
parameters of
original data

data preprocessing

data dividing

training
data

testing
data

DBN prediction
model training

calculate mean
square error

predicted
results

establish DBN model
according to the

parameters

obtain the node number of
each hidden layer

test DBN model

Figure 2: )e algorithm flowchart.
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If the sample set Test � v1, v2, . . . vN  satisfied the in-
dependentdistribution condition, theparameterθ � W, a, b{ }

could be obtainedby learning.Here, themaximum-likelihood
estimation was used to select parameters to maximize the
observed sample probability, as shown in the following
formula:

L(θ) �
1
N



N

n�1
log Pθ v

(n)
  −

λ
N

‖W‖
2
F. (11)

Take the derivative of the above formula to obtain the
parameter value W with the maximum sample probability,
as shown in the following formula:

zL(θ)

zWij

� EPdata
vihj  − EP0

vihj  −
2λ
N

Wij, (12)

where EPdata
presents the expected value of the training

sample set and EP0
presents the expected value defined in the

model.
In summary, the above equations gave the general

process of the RBM algorithm. )e ability to initialize the
weight W between the visible layer and the hidden layer was
one of the advantages of the restricted Boltzmann machine
algorithm. In addition, in order to minimize the local
minimum probability, the gradient descent method was used
to train the relevant parameters of the experimental data.

2.4.2. Deep Belief NetworkModel. A deep belief network was
a structural model composed of multiple RBMs; therefore,
the deep belief network had the same structure as the re-
stricted Boltzmannmachine.)e weight layerWwas used to
associate layers with each other, and the nodes within the
layer were independent of each other. According to the
weights generated from bottom to top, the connection mode
of the deep belief network structure model could be de-
termined, which was conducive to learning the weight
W. )is operation was called the “contrastive bifurcation
method,” and the weight W of the model was obtained first.
Unsupervised greedy learning was conducted on training
layer by layer, and then, the BP algorithm was used to adjust
and update the weight of each layer. )is method was also
proven to be effective by Hinton.

In the process of data training following Gibbs, the
extracted feature data were used as the input data of the
visual layer in order to obtain parameter vector v. )e
hidden layer connected to the visual layer would obtain the
vector values passed in. )e hidden layer reorganized the
visible layer node through the obtained information and
then returned the updated visible layer node to the first
hidden layer node. )us, the hidden layer nodes were
updated. )e difference between the input data of the visual
layer and the data of the hidden layer was compared as the
updating condition of the connection weight.

)e practice proved that the above training methods
could not only greatly reduce the time spent on sample
training but also improved the feature learning ability of
training data when the number of relevant layers in the
neural network increases. However, a large number of layers

meant considerable training and learning time. )erefore,
the necessary condition for obtaining the prediction accu-
racy of the optimal performance ratio for the deep belief
network structural model was to verify the optimal number
of levels through a large number of experiments. )e im-
portant step of the deep belief network after data pretraining
learning was to update the weight of the training sample set
with the BP.

When using BP algorithm in the DBN, the learning
ability and prediction performance were improved, and the
training time was shortened.

2.4.3. Diene Yield Prediction Model Based on a DBN.
Considering the accuracy and time complexity of the pre-
diction, the model could guarantee the high accuracy and
timeliness of the prediction of diene yields. Combined with
the actual experimental conditions, a deep belief network
structure model containing two RBM layers was adopted.
)e first layer was the data input layer, and the fourth layer
was the data output layer. Since 21 auxiliary variables were
entered, the number of visible layer nodes was set to 21. )e
number of hidden layer nodes in RBM1 and RBM2was set to
44 and 22, respectively. )erefore, the number of nodes in
the last layer was set to 1, which was the diene yield.)e deep
belief network structure is shown in Figure 4.

3. Results and Discussion

3.1.1eParameterOptimization ofHidden LayerNodes in the
DBN. As the number of hidden layer nodes in the DBN with
two hidden layers needed to be set as 2, the number of hidden
layer nodes had three changing trends: rising, falling, and
constant. )erefore, this article chose the three combination
methods for the number of hidden layer nodes of increasing,
decreasing, and constant value to optimize the parameters of
the DBN model with two hidden layers. A constant value
meant that the number of hidden layer nodes was constant,
increasing meant that the number of hidden layer nodes
increases as the number of hidden layers increases, and
decreasing meant that the number of hidden layer nodes
decreases as the number of hidden layers increases.

)e number of iterations was set to 250, the sample batch
size was 20, and the learning rate was 0.001. )e average
value of 10 operations was taken as the test result. )e
identification accuracy of the DBN model for the three
combination modes of the number of hidden layer nodes is
shown in Table 1. )e recognition accuracy of the constant
and increasing methods was not as good as the decreasing
method, which indicated that the decreasing model with a
decreasing number of hidden layer nodes could better learn
the distributed features of the original feature data. When
selecting the number of hidden layer nodes for the de-
creasing method, too few (8–4) or too many (62–31) hidden
layer nodes caused the model parameters to be unable to be
fully trained and the recognition accuracy to be low. When
the number of hidden layer nodes was within one, the
recognition accuracy of the model was improved as the
number of hidden layer nodes increases.
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As shown in Table 1, to determine the optimal number of
hidden layer nodes of the DBN with two hidden layers, the
number of hidden layer nodes in the first layer was suc-
cessively set at a fixed interval of 6 within the interval [8, 62].
)e number of hidden layer nodes in the second layer was
calculated as an integer value according to the number of
hidden layer nodes in the first layer: it was set the same as the
number of hidden layer nodes in the first layer (constant),
two-thirds the number of hidden layer nodes in the first layer
(increasing), and half the number of hidden layer nodes in
the first layer (decreasing). )rough the experimental ver-
ification of the combination of different numbers of hidden
layer nodes for two hidden layers, it was finally obtained that
when the structure of the DBN with two hidden layers was
[21, 44, 22, 1], the model has the lowest mean squared error
of 1.15%.

In this article, the DBN structure included two RBM
layers. )e input layer and hidden layer constituted RBM1,
while the hidden layer and output layer constituted RBM2.
)e pretraining of the RBM in each layer of the network was
completed through unsupervised learning, and the training
results were used as the input of the RBM at the higher layer.
Finally, the network parameters of all RBM layers were
adjusted through supervised learning. As shown in Figure 5,
the training error rate decreased significantly in the first 20
iterations of the training of the first RBM layer. However,

after 25 training iterations, the error rate did not change, and
the parameter values in the RBM tended to be stable. )e
parameters in the second RBM layer were trained on the
basis of the parameters in the first RBM layer. )e variation

RBM2

RBM1

Output
Layer

Hidden
Layer2

Hidden
Layer2

Input
Layer

Figure 4: Deep belief network structure.

Table 1: Mean square error of different node types in the hidden layer of double hidden layers.

Group Constant type MSE (%) Rising type MSE (%) Descending type MSE (%)
1 8–8 21.40 8–12 30.16 8–4 9.17
2 14–14 28.78 14–21 21.14 14–7 6.38
3 20–20 22.81 20–30 18.35 20–10 5.41
4 26–26 18.27 26–39 15.27 26–13 3.35
5 32–32 16.32 32–48 18.35 32–16 3.26
6 38–38 13.17 38–57 20.78 38–19 2.29
7 44–44 15.46 44–66 21.14 44–22 1.15
8 50–50 20.25 50–75 23.93 50–25 3.24
9 56–56 22.84 56–84 25.64 56–28 4.19
10 62–62 24.69 62–93 27.18 62–31 8.63
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Figure 5: Mean squared errors of the DBN.
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in the parameters was relatively gentle, and themodel tended
to be stable. Finally, the supervised network parameters were
fine-tuned and classified to obtain the final training results.

Because the DBN was a data-driven model structure,
there was an optimal network structure corresponding to
different data samples. In this article, based on the DBN
structure with two hidden layers, the sample space of 21
dimensions of auxiliary variables of a cracking furnace was
considered. )e number of hidden layer nodes was opti-
mized.)e experimental results showed that the structure of
the DBN with two hidden layers that obtained the lowest
mean squared error was [21,44, 22,1]. )e mean squared
error on the test set with historical data of thirty groups was
1.15%, and the verification of the diene yield model is shown
in Figure 6.

3.2. Comparison Models. In this article, the SVM, BP arti-
ficial neural network, and DBN prediction models were
constructed based on the characteristics of 21 auxiliary
variables of a cracking furnace. )e models were evaluated
and compared using the mean absolute percentage error
(MAPE). Because of its stability, the MAPE could be used as
a benchmark for many evaluation criteria. )e calculation
formula is shown as follows:

MAPE �
1
N



N

n�1

T − h(x)

T




, (13)

where N denotes the number of sample data points, T
represents the actual value, and h(x) is the estimates of the
DBN model.

From Table 2, we can see that the prediction error of the
diene in a cracking furnace based on the DBN model was
lower than that of the SVM model and BP model. Because a
DBN was a network structure for mining the distributed

characteristics of data, it could better adapt to high-di-
mensional data structures and mined the distributed
characteristics of data. )e experimental results showed that
themean absolute percentage error of themeasured data was
2.79%. )e test times of the SVM model, BP model, and
DBN model were 0.0186 s, 0.0201 s, and 0.0237 s, respec-
tively, for the three models of the test samples of the 21
auxiliary variables of the cracking furnace. )e test results
showed that the test time based on the DBN model was
longer than that of the other two models.

With the consideration of the weakness of the soft-
sensing method based on the BP network, SVM, such as
uncontrollable convergence speed and local minima, ex-
ponential growth of amount of calculation with increasing
data samples, the DBN was introduced into soft-sensing
methods and then was studied. )e DBN uses latent vari-
ables to express process variables with high correlation; thus,
DBN has a good expression ability. )e soft-sensing method
based on DBN was applied in a real diene yield production
process for the first time. Compared with the soft-sensing
method based on BP and SVM, the generalization ability and
the accuracy were improved.

4. Conclusions

According to the physical parameters of the cracking raw
material and the characteristics of the cracking furnace
process parameters, a total of 21 input parameters, including
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Figure 6: Verification of diene yield model.

Table 2: Prediction time and MAPE of measured data.

Model Predicted time (s) MAPE (%)
SVM 0.0186 6.39
BP 0.0201 5.15
DBN 0.0237 2.79
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17 physical parameters and 4 technological parameters, were
selected for the model. )e DBN model was established and
optimized, and the prediction effect of the DBN model with
two hidden layers was explored by selecting different node
combinations. )e structure of the DBN with two hidden
layers that obtained the lowest MSE on the test set of 1.15%
was [21, 44, 22,1]. )ree prediction models, namely, the
SVM, BP, and DBN, were constructed according to the
measured sample data of a cracking furnace. By comparing
MAPE and prediction times, the DBN-based model had the
lowest MAPE but the longest recognition time. )e DBN
model was the best, and the lowest mean squared error of the
measured data was 2.79%.

Data Availability
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