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.e main aim of this work is the determination of aromaticity in biochar from easier accessible parameters (e.g., elemental
composition). To this end, two machine learning models, including adaptive neurofuzzy inference system (ANFIS) and least-
squares support vector machine (LSSVM), were used to predict this constant form 98 dataset gathered from earlier reported
sources. .e outputs of the statistical parameters showed that the LSSVM model has the ability to estimate the target parameter
with R-squared values of 0.986 and a mean relative error of 3.821 for the overall dataset. Also, by analyzing the sensitivity on the
input parameters, it was shown that the carbon percentage has the greatest effect on the target values, and a high focus should be
placed on this parameter. Finally, by comparing the methods proposed in this paper with other models published in previous
studies, our model has shown higher accuracy in predicting the target parameter.

1. Introduction

By undergoing biomass thermochemical transformation
throughout an oxygen-scarce condition, biochar is created
[1, 2]. As a carbon-negative product and an efficient way to
enhance soil productivity, biochar has lately gained attention
[3–5]. It also has other ecological benefits, such as storing
carbon to lessen the effects of continent changing [6–8]. A
significant biochar characteristic is aromaticity, which may
enhance durability and impact the ground ecosystem [9, 10].
Chemical endurance and biological disintegration tolerance
are improved in biochar with higher aromatic C proportions
[11, 12]. Aromaticity refers to the proportion of carbon
atoms that are found in aromatic rings [13, 14]. .e aro-
maticity of biochar C has been linked to its ability to adsorb
organic contaminants, according to Han et al. [15]. When
biochar is incubated over time, the quantity of CO2 pro-
duced correlates directly with the percentage of aromatic C
present at the beginning of the process, according to Singh
et al. and Xu et al. [16, 17].

Solid-state 13C nuclear magnetic resonance (13C NMR)
spectroscopy, near-edge X-ray absorption fine structure
spectroscopy (NEXAFS), benzene polycarboxylic acid
(BPCA) assessment, and lipid profile are several chemical
and physical techniques, which have been employed to
analyze aromatic C throughout biochar statistically [18–21].
.ough time- and money-consuming and difficult to im-
plement, these methods can only be found at research-heavy
colleges [22]. Biochar aromaticity has so far been evaluated
using uncomplicated and reliable substitutes [23–25].

Because it is feasible to correctly anticipate the aroma-
ticity of biochar C by utilizing certain fundamental char-
acteristic properties of biochar, numerical modeling may be
a commercially practical and effective option for assessing
the extent of aromaticity. .e atomic H/C proportion was
used by Maroto-Valer and his colleagues to create a linear
quantitative method for predicting bituminous char’s C
aromaticity [26]. .e linear Maroto-Valer formula, on the
contrary, has an applicability spectrum of just 0.5 to 0.8 for
H/C. As a result, Mazumdar created a more precise
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forecasting method for the C aromaticity based on funda-
mental combinations obtained from polycyclic aromatic
hydrocarbons (PAHs, which only included C and H) and an
updated densimetric technique [27]. Compared to the
Maroto-Valer approach, the new one possesses a higher
predictive ability since it considers the structural data of the
C- and H-atoms. Biochar aromaticity may now be predicted
using a framework that incorporates heteroatoms of H, O,
and N, developed by Wang and his colleagues [28]. When
the H/C proportion of biochar is more than 1.0, the altered
model’s extension capabilities are similarly restricted. To this
end, novel predictivemodels for biochar aromaticity must be
developed that have greater extension capabilities.

Artificial intelligence strategies combined with machine
learning can successfully simulate a variety of phenomena
[29–31]. In order to estimate biochar production, discover
inorganic phosphor hosts, investigate nanomaterial toxic
effects, and improve the magnetoelastic Fe-Ga alloy archi-
tecture, the intelligence approach has been employed [13].
Artificial neural network (ANN), support vector machine
(SVM), Bayesian network (BN), and random forest (RF) are
examples of intelligence techniques that are used in oper-
ation. Numerous desirable hypotheses were added during
the development of the Mazumdar framework to incorpo-
rate heteroatom structural data (e.g., H, O, and N). For
example, in the event of high C/N proportions, one C�O
link was substituted by two C-H linkages and one N atom by
a C atom [28]. .e revised Mazumdar model’s forecasting
ability is not acceptable for feasible usage when optimal
hypotheses are taken into account, leading to the omission of
essential model details. As a result, an appropriate predictive
model capable of more generality may be identified. .is
study’s primary aims are as follows: (1) to create funda-
mental composition-based forecasting algorithms with
improved generalization capabilities for biochar aromaticity
and (2) to uncover novel connections and regulations among
the fundamental combinations and biochar C aromaticity.
In this paper, LSSVM and ANFIS models are used for the
first time to predict the biochar aromaticity with acceptable
accuracy.

2. Least-Squares Support Vector
Machine (LSSVM)

Structural risk reduction and quantitative learning concepts
were inspired by Vapnik to create the algorithm of SVM as a
new machine learning technique [32–34]. On Seyken’s SVM
framework, the LSSVM method was created [35]. Two
optimization variables of c and σ2 must be calculated for the
LSSVM method [36]. .e following sources provide more
information and LSSVM method formulas [37–39].

3. Adaptive Neurofuzzy Inference
System (ANFIS)

.e ANFIS method is built using a mix of fuzzy logic and
ANN characteristics [40, 41]. In terms of capacity to convert
language words into computational variables, each layer has
a distinct function in this algorithm, which comprises five

separate levels [42, 43]. .roughout the paper, more in-
formation concerning these levels may be reported [44, 45].

4. Preanalysis Phase

Two alternative methods were utilized in this study to es-
timate and evaluate the aromaticity in biochar obtained by
the algorithms. For this purpose, 98 datasets were collected
from the data reported in previous articles [13]. .e in-
formation gathered in the empirical part of this research was
used to instruct the algorithms, with about 25% of these data
points used for algorithm confirmation. In addition, the
following steps were taken to normalize the dataset:

Dk � 2
x − xmin

xmax − xmin
− 1. (1)

In this formula, x represents the input score, and Dk

represents the normal score.

5. Outlier Identification

Suspected or outlier data points that behave differently from
the rest of the databank are common in large datasets
[46, 47]. .ese data factors may have an impact on the
models’ dependability and accuracy [48]. Due to the im-
portance of the training dataset, it is critical to find these
types of data when developing algorithms. Some limits in the
model will emerge if some inexplicable effects are dis-
regarded. In other words, investigating the outlier may
provide insight into these limits, which are the benefits of the
discussion analysis [49]. To eliminate outlier data, the le-
verage technique was used. .is technique involves calcu-
lating the prediction tool’s divergence from the accurate
matching data..is deviation, also known as standard cross-
accredited residuals, builds the hat matrix. .e hat matrix is
calculated in this study using the following formula [50, 51]:

H � X X
T
X 

− 1
X

T
, (2)

in which X indicates a matrix of size N× P. P and N indicate
the overall input parameters and data points, respectively.
Transpose and inverse operators are denoted by T and −1,
respectively. Furthermore, the following equation was used
to describe a warning leverage value:

H
∗

�
3(p + 1)

N
. (3)

.e viable region is specified as a rectangle limited by
0≤H≤H∗ and R�±3 values. Only 3 suspicious data points
are found within the total dataset, as shown by the red dots in
Figure 1.

.e relevancy factor is calculated as [52, 53]

r �


n
i�1 Xk,i − Xk  Yi − Y(( 
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n
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2


n
i�1 Yi − Y( 

2
 , (4)

in which Xk,i denotes input k, Xk is the average input, Yi is
output i, and Y stands for the average output.
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A larger relevancy factor implies higher efficiency for the
corresponding parameter. Figure 2 illustrates the influences
of the input on the aromaticity in biochar. .e relevancy
factor was obtained to be 0.14 and 0.90 for N% and C%,
respectively. .is suggests that these parameters have the
strongest contributions to the aromaticity in the biochar
estimate. .ey are directly related to the output. Also, target
is greater at larger C%. It should be noted that O% can be
concluded to undergo small variations within the empirical
dataset as it was found to have a small relevancy factor.

6. Verification Method

Model creation is not complete without verifying the ac-
curacy and reliability of the conclusions drawn. To that aim,
the following equations are used to evaluate the validity of
the proposed models [54–56]:
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7. Results and Discussion

To determine the aromaticity in biochar employingmolecular
descriptors, this research has established two web-based
methods, namely, LSSVM and ANFIS. To understand how to
calculate the output for a given dataset, we divided the dataset
into educating and examining parts and utilized 75% of the
information points. In this step, the effectiveness of the ed-
ucation procedure is expressed by a comparison between
anticipated values and real values of biochar aromaticity.
Comparing simulations throughout the evaluation stage, on
the contrary, gives perspective into the models’ correctness in
unknown circumstances, which is recognized as a model
generalization. All educated models in training and checking
databanks are presented in Figure 3 in a side-by-side com-
parison of calculated and empirical velocity constants of
biochar aromaticity. As demonstrated, the computed con-
stants are capable of covering empirical locations while
maintaining satisfactory performance standards.

Based on these results, it can be concluded that the
proposed LSSVM pattern can calculate the biochar aro-
maticity with excellent confidence. .e usefulness of the
proposed frameworks was evaluated using a variety of
graphical and mathematical methods. .ere are many
methods that may be used to estimate the biochar aroma-
ticity, as shown in Figure 4.

.e bisector path has the highest intensity of data points,
as can be seen. Figure 5 depicts the deviation designs of the
ANFIS and LSSVM patterns, which represent the relative
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Figure 1: Outlier analysis to determine suspicious points in models (a) ANFIS and (b) LSSVM.
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deviation against the biochar aromaticity during the in-
struction and testing phases. .e majority of calculated
deviations are found around the zero-error line. Further-
more, the LSSVM model’s deviation compaction is more
apparent than in the other model.

Table 1 shows themathematical indices calculated for the
proposed models..e proposed models have a high R2 value
and low RMSE, MRE, STD, and MSE values, indicating their
excellent competence in estimating the biochar aromaticity
values.
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Figure 2: Sensitivity on input parameters affecting the output parameter.
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Figure 3: Simultaneous and visual comparison of modeled and real data related to (a) ANFIS and (b) LSSVM models.
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Figure 5: Relative deviation analysis on data related to (a) ANFIS and (b) LSSVM models.

Table 1: Statistical parameters calculated to evaluate the accuracy of the proposed models in estimating the target parameter.
Model Phase R2 MRE (%) MSE RMSE STD

ANFIS
Train 0.969 5.141 0.0014 0.0370 0.0242
Test 0.961 11.364 0.0037 0.0606 0.0472
Total 0.968 6.665 0.0019 0.0606 0.0315

LSSVM
Train 0.986 4.513 0.0009 0.0307 0.0211
Test 0.984 1.684 0.0004 0.0203 0.0152
Total 0.986 3.821 0.0008 0.0203 0.0201
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Figure 4: Linear regression analysis on data related to (a) ANFIS and (b) LSSVM models.
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8. Conclusion

Two accurate methods, including ANFIS and LSSVM
models, were effectively proposed in this paper. .e models
mentioned above operate based on pollutant structures.
.ere are still some limitations in empirical evidence, but
artificial intelligence-based estimates of aromaticity in
biochar may help overcome those barriers. Researchers may
propose a novel measuring method with the assistance of
established prediction instruments. Given the R2, MRE,
MSE, RMSE, and STD scores of 0.986, 3.821, 0.0008, 0.0203,
and 0.0201, respectively, the LSSVM model has been shown
the most reliable. In accordance with these findings, this
approach demonstrated better effectiveness in terms of
precision, generalization, and authenticity when compared
to other mathematical techniques studied before. .e effect
of effective parameters on the output values was also studied
using a sensitivity evaluation.

Data Availability

Data references are described in the text of the article.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is research was funded by the Fundamental Research
Funds for the Central Universities (2017B685X14) and
Postgraduate Research and Practice Innovation Program of
Jiangsu Province (KYCX17_0426).

References

[1] X. Zhang, Y. Wang, J. Cai, K. Wilson, and A. F. Lee, “Bio/
hydrochar sorbents for environmental remediation,” Energy
& Environmental Materials, vol. 3, no. 4, pp. 453–468, 2020.

[2] P. Kovalenko, V. Novoseltseva, O. Vasyliv, O. Liapina, and
O. Sh. Beregova, “.e kinetics of the processes of extracting
the Cu (II) and Fe (III) ions from aqueous solutions by the
biosorbents based on pea processing waste,” Eastern-Euro-
pean Journal of Enterprise Technologies, vol. 5, no. 10, p. 107,
2020.

[3] Y. Elad, D. R. David, Y. M. Harel et al., “Induction of systemic
resistance in plants by biochar, a soil-applied carbon se-
questering agent,” Phytopathology, vol. 100, no. 9,
pp. 913–921, 2010.

[4] J. A. Mathews, “Carbon-negative biofuels,” Energy Policy,
vol. 36, no. 3, pp. 940–945, 2008.

[5] H. M. Breunig, J. Amirebrahimi, S. Smith, and C. D. Scown,
“Role of digestate and biochar in carbon-negative bioenergy,”
Environmental Science & Technology, vol. 53, no. 22,
pp. 12989–12998, 2019.

[6] M. Goswami, G. Pant, D. K. Mansotra, S. Sharma, and
P. C. Joshi, “Biochar: a carbon negative technology for
combating climate change,” in Advances in Carbon Capture
and Utilization, pp. 251–272, Springer, Berlin, Germany, 2021.
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