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To mitigate the negative e�ects of pollution produced by the growing levels of pollutants in the environment, research and
development of novel and more e�ective materials for the treatment of pollutants originating from a variety of industrial sources
should be prioritized. In this research, a UV-irradiated nano-graphene oxide (UV/n-GO) was developed and studied for
methylene blue (MB) adsorption. Furthermore, the batch adsorption studies were modelled using response surface modelling
(RSM) and arti�cial neural networks (ANNs). Investigations employing FTIR, XRD, and SEMwere carried out to characterize the
adsorbent. e best MB removal of 95.81% was obtained at a pH of 6, a dose of 0.4 g/L, an MB concentration of 25mg/L, and a
period of 40min. is was accomplished with a desirability score of 0.853. A three-layer backpropagation network with an ideal
structure of 4-4-1 was used to create an ANNmodel.e R2 andMSE values determined by comparing the modelled data with the
experimental data were 0.9572 and 0.00012, respectively. e % MB removal predicted by ANN was 94.76%. e kinetics of
adsorption corresponded well with the pseudo-second-order model (R2> 0.97). According to correlation coe£cients, the order of
adsorption isotherm models is Redlich–Peterson>Temkin> Langmuir> Freundlich. ermodynamic investigations show that
MB adsorption was both spontaneous and endothermic.

1. Introduction

Water resources are becoming polluted as industrialization
expands. e public is endangered by the majority of en-
terprises that dump wastewater into surrounding water
sources [1]. e biggest contributors to wastewater gener-
ation are textile, leather, and tanning industries, breweries,
oil mills, food processing, and chemical industries. e
textile industry creates a signi�cant amount of liquid waste
[2]. In textile manufacture, up to 2000 di�erent chemicals,
ranging from dyes to transfer agents, are used. A typical

textile mill (making around 8000 kg of cloth per day) utilizes
approximately 1.6 million gallons of water every day. In
addition, this may generate up to 200–350m3 of e«uent per
ton of �nished products. ese textile e«uents contain both
organic and inorganic pollutants [3, 4]. Not all colors that
are applied to clothing are �xed to them during the dyeing
process, and a large portion of these colors always remain
un�xed to the fabric and are washed o�. Signi�cant levels of
un�xed dyes have been found in textile e«uents. Severe
e�ects on local water systems have already been observed in
certain areas. is emphasizes the signi�cance of proper
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water treatment processes for long-term water consumption
[2, 5, 6]. Such effluents include high levels of dyes and
chemicals, some of which are nonbiodegradable and car-
cinogenic, posing significant environmental concerns. )ese
effluents were treated using a variety of primary, secondary,
and tertiary treatment methods [5]. However, these methods
have not been shown to be successful in removing dyes
completely [7, 8]. Because of the need for replenishing water
for new purposes, wastewater purification is practically
essential for achieving the desired level of purity.

Adsorption is the simplest and most efficient technique
due to its low cost, excellent separation capability, the
availability of a variety of low-cost adsorbents, and the
absence of secondary pollutant formation [9–12]. Adsorp-
tion may also be employed to remove organic, inorganic,
and biological pollutants, both soluble and insoluble [13–15].
)e adsorbents’ porous nature and wide surface area are
regarded as the key characteristics responsible for dye re-
moval. Hence, adsorption proved to be a very effective and
lucrative method for eliminating pollutants from industrial
effluents. In dealing with organic pollutants in water, such as
dyes, the development of ecologically friendly adsorbents is
becoming increasingly crucial.

Nanotechnology has the potential to solve problems in
nearly every field of science and technology [16]. Materials’
characteristics at the nanoscale differ greatly from those of
bulk materials. Because of the importance of water quality
and the rising benefits of nanotechnology, encouraging the
use of nanomaterials opens the door to the development of
efficient solutions to worldwide water pollution. )e ad-
sorbent’s surface functional groups and pore structure have
a significant impact on its adsorption process applicability.
Nanomaterials have been shown to be efficient wastewater
treatment materials due to qualities such as high surface
activity and reusability. Metal oxide nanoparticles have
recently received a lot of attention as better environmental
and energy materials [17].

Graphene, a remarkable two-dimensional carbon-based
substance with atomic thicknesses and a high surface-to-
volume ratio, has sparked widespread interest throughout
the world. Graphene oxide (GO), an oxidized derivative of
graphene, comprises functional groups such as hydroxyl and
carboxyl groups [4, 18, 19]. Because of the presence of these
functional groups, GO has a greater surface charge and is
easier to disperse in solution, making it an excellent ad-
sorbent. However, separation issues and the fact that it is
hydrophobic limit its practical utilization in water. Fur-
thermore, due to high van der Waals forces, graphene tends
to cluster, resulting in a decrease in the surface area and
hence a loss in adsorption efficiency [7–9, 20]. )e func-
tionalization of graphene materials appears to be an obvious
answer to this challenge. As a result, researchers focused on
several GO modifications, with amine functionalization
emerging as the most promising. However, the price is
excessively high. A basic physical treatment of UV irradi-
ation of GO is inexpensive and effective [21]. Irradiation of
graphene oxide foam promotes CO2 adsorption [21], with a
30-fold improvement in selectivity at 100mbar and a 7-fold
increase in CO2 capacity after 5 hrs of the UV treatment.)e

UV treatment of graphene-based adsorbents can increase
the efficiency of carbon capture, which might be used as a
simple and low-cost pretreatment strategy. Graphene oxide
surface changes will improve the adsorption efficacy.
However, the literature consists primarily of surface func-
tionalization of GO by chemical techniques, which are both
costly and harmful. As a result, the current research focuses
on the creation of a modified graphene adsorbent for the
treatment of organic contaminants using a simple physical
technique. Methylene blue (MB) is a cationic dye with a
heteropolyaromatic structure that prevents biological deg-
radation and is extremely difficult to degrade into tiny in-
organic molecules using conventional techniques. In
humans, MB produces cyanosis, jaundice, quadriplegia, and
tissue necrosis, as well as a fast heart rate, vomiting, shock,
and tissue necrosis. As a result, in adsorption testing, MB is
utilized as a model pollutant. )e goal of this research is to
develop a simple adsorbent (UV/n-GO) for MB adsorption.
Scanning electron microscopy (SEM), Fourier transform
infrared spectrum (FTIR), and X-ray diffraction (XRD) were
used to characterize the adsorbent. Response surface
methodology (RSM) and artificial neural networks (ANNs)
were used to optimize the adsorption parameters. )e ad-
sorption behavior of MB on UV/n-GO, including adsorp-
tion kinetics, isotherms, and thermodynamics, was also
investigated.

2. Experimental Work

2.1. Chemicals and Reagents. All chemicals of analytical
grade were used for this study. Graphite flakes and meth-
ylene blue (MB) (Sigma-Aldrich), H2SO4, KMnO4, and
H3PO4 (Fisher Scientific), and H2O2, HCl, and NaOH
(LobaChemie) were employed in this study. )e experi-
ments were performed in triplicate, and deionized water was
used in the experiments.

2.2. Synthesis and Characterization of Adsorbents.
Graphite was oxidized by physically agitating graphite flakes
(weighing 5 g) in concentrated sulfuric acid for 30min. After
that, concentrated phosphoric acid (33ml) was added to the
mixture with mechanical stirring. After 60min, 27 g of
potassium permanganate was added as a strong oxidizing
agent. To achieve total graphite oxidation, this mixture was
physically churned.)is was confirmed by the production of
a dark brown color instead of the initial dark purplish green
tint, indicating that graphite oxidation was effective. To stop
the oxidation reaction, 150ml of a 30% hydrogen peroxide
solution was added to the mixture. A brilliant yellow color
was visible at this point. Following this, the product was
centrifuged for fifteen minutes to separate out the acid
fraction, which appeared as the supernatant layer. After
getting an oxidized sample, it was washed up to ten times
with 1N hydrochloric acid solution, followed by washing it
with the deionized water until it reached a pH of 5. )e
material was then allowed to dry for two days. To undergo
the UV treatment, the as-prepared n-GO was put within a
UV cabinet equipped with UV lights. n-GO was exposed to
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UV irradiation for periods ranging from 0.5 to 10 hrs. )e
light source should be switched on once the n-GO samples
have been put in the UV chamber. Samples should be ob-
tained from the UV chamber at the following intervals:
30min, 1 hr, 2 hrs, 3 hrs, 4 hrs, 5 hrs, and 10 hrs. A UV-Vis
spectrophotometer was utilized to conduct the material
analysis.

2.3. AdsorptionProcedure. We prepare 50ml of dye solution
in conical flasks and adjust the agitation duration (t, min.),
pH of the aqueous solution, UV/n-GO dosage (w, g/L), and
starting concentration of dye in the aqueous solution (C0,
mg/L) for each sample. )e samples are agitated with an
ultrasonic bath that is provided. After shaking for the
prescribed time, we filter the samples and dry the UV/n-GO
adsorbent. Using a UV spectrophotometer, the concentra-
tion of filtered MB dye solution (liquid samples) after ad-
sorption is determined. )e % dye removal by adsorption is
calculated as follows:

%removal �
C0 − Ce( 

C0
× 100, (1)

where C0 is the starting MB solution concentration and Ce
denotes the MB solution’s ultimate concentration after
adsorption.

2.4. Modeling and Optimization. Data analysis will be per-
formed by using Design of Experiments (DOE) software to
optimize and to find the effect of combined variables on the
process, and MATLAB software will be used to find the
optimum conditions.

2.4.1. Experimental Design and Statistical Analysis Using
CCD. RSM is a collection of mathematical and statistical
approaches that are based on fitting a polynomial equation
to experimental data obtained within the operable area of
process variables. It is useful when many independent
process factors impact a response (dependent variable) or a
group of responses of interest [6]. )e goal is to optimize
the levels of various process variables at the same time to
get the optimum system performance. )e optimization
process consists of four key steps: conducting statistically
planned experiments, estimating the coefficients in a
mathematical model, forecasting the response, and de-
termining the model’s appropriateness. Box and Wilson
introduced the central composite design (CCD). )e full
CCD consists primarily of (1) a complete 2n factorial
design, where n is the number of test variables, (2) n0 centre
points (n0 ≥1), and (3) two axial points on the axis of each
design variable at a distance of 2n/4 from the design centre.
As a result, the total number of design points is
N � 2n+ 2n + n0, and the five variable levels are (–2n/4, –1,
0, +1, and +2n/4). )e batch adsorption study comprised
finding out the effects of various parameters such as agi-
tation time (t, min.), pH of the aqueous solution, adsorbent
dosage (w, g/L), and initial concentration of dye in the

aqueous solution (C0, mg/L) on the Design of Experiments
(DOE).

2.4.2. ANN Modelling with MATLAB. By examining the
existing data, the ANN model may learn the pattern of the
underlying process and then generalize what it has learnt (or
the complex mathematical relationship between input and
output data). An ANN model can predict any complicated
system by evaluating its design. Because of the intricacy of
the adsorption process, a computational intelligence-based
ANN model offers greater flexibility than a statistical model,
which may represent intricate datasets with nonlinearities.
)is is because ANN models are based on artificial neural
networks. )e artificial neural network (ANN) model is
made up of three layers: input, hidden, and output. )ese
layers, for example, can be utilized to anticipate the rela-
tionship between the input and output layers [22–24]. After
that, the content was separated into three categories at
random: learning (70%), testing (20%), and validation (10%).
)e learning dataset is used to train the ANN model. )e
testing dataset is used to evaluate the prediction capacity of
the ANNmodel.)e coefficient of determination is used as a
performance metric to determine how well the ANN model
operates (R2). A variety of parameters can affect the effec-
tiveness of the ANN model, including the number of
neurons in both the hidden and output layers, as well as the
shape of the transfer function. ANN computations were
performed using MATLAB Toolbox, version R2021a,
throughout this investigation.

3. Results and Discussion

3.1. Characterization Studies. UV light was used to reduce
n-GO at varied time intervals. )e analytical findings for all
seven samples (samples 1–7, for time periods t� 0.5, 1, 2, 3,
4, 5, and 10 hrs) are shown in Figure 1(a). )e development
of n-GO was demonstrated by the UV-Vis spectra of the
produced sample, which is shown in Figure 1(a) and verifies
the formation of nanoparticles [4, 25, 26]. UV light works as
a reducing agent, and the rate of oxidation rises with time
[26]. Because the material was substantially oxidized at time
t� 10 hrs (Sample 7), time t� 5 hrs (Sample 6) is regarded
optimal. UV/n-GO peaks were found at wavelengths ranging
from 240 to 243 nm, suggesting a little shift from the n-GO
sample, where the peak was seen at 230 nm. )e XRD
patterns of UV-treated nano-graphene oxide are shown in
Figure 1(b). )e experiments were performed on Rigaku
Miniflex at a scan speed of 1°/min from 10° to 80°. Scherer’s
equation [18] was used to calculate the crystallite size of the
samples. In all situations, sharp crystalline peaks may be
detected. In this study, the crystallite size was determined
using the highest diffraction peaks, yielding an average
crystallite size of 13.2 nm for n-GO and 12.24 nm for UV/n-
GO. )e UV/n-GO SEM images are shown in Figure 1(c).
Surface morphology was determined using a field-emission
scanning electron microscope (FESEM, Carl Zeiss NTS
GmbH, Germany). UV light causes spherical aggregation of

International Journal of Chemical Engineering 3



graphene oxide particles on rough surfaces, as seen in the
images.

)e use of FTIR spectroscopy to evaluate the presence of
various functional groups in graphene oxide, particularly
oxygen-containing functional groups, is a powerful method.
Figures 2(a) and 2(b) depict the FTIR spectrum charac-
teristics of n-GO and UV/n-GO, respectively. Stretching
vibrations of OH functional groups were found at 3696 cm−1

in the case of n-GO. Carbonyl group (C�O) stretching vi-
brations were discovered at 1636 cm−1, whereas alkoxy C-O
stretching vibrations were discovered at 1056 cm−1. At
1387 cm−1, C-OH stretching bands were obtained. )is
matches with the existing literature findings [12, 26, 27].
FTIR spectroscopy was used to investigate the UV reduction
of GO. )e intensities of the peaks corresponding to -OH of
UV/n-GO were lower than the intensities of graphene oxide
peaks. )is proved that UV light can successfully degrade
graphene oxide.

3.2. Analysis of the Adsorption Parameters Using Design Ex-
pert Software. A four-factor CCD (central composite

design) and a second-order RSM were used to observe the
effect of variables on dye recovery based on 30 experimental
runs at various numerical values of time (A), adsorbent dose
(B), initial concentration of dye solution (C), and pH (D)
while keeping temperature constant at room temperature.
STATISTICA Version 11.0 was used to analyze the answer
(Stat-Ease, Inc). Based on Fisher’s F-test, the analysis of
variance (ANOVA) was utilized to perform diagnostic
testing checks for the appropriateness of the suggested
model. )e regression coefficient (R2) indicates the amount
of variation around the mean explained by the model. )e
ranges of each variable studied are summarized in Table 1.
)e coded and uncoded levels of independent factors
according to the 30 experiments corresponding to CCD
along with their responses are shown in Table 2. )e
minimum and maximum values of the independent factors
were chosen based on the literature.

3.2.1. Analysis of Variance (ANOVA). To determine
whether or not the quadratic model is significantly affected
by the parameters listed in the design, it was crucial to
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Figure 1: (a) UV analysis of UV/n-GO; (b) XRD of n-GO and UV/n-GO; (c) SEM image of UV/n-GO.
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Table 1: Levels of different process variables in coded and uncoded forms for adsorption.

Variables Name of the process variables
Ranges and levels

−2 −1 0 1 2
A Time, min 10 20 30 40 50
B Adsorbent dosage, w, g/L 0.1 0.2 0.3 0.4 0.5
C Initial concentration of dye in the aqueous solution, Co, mg/L 10 15 20 25 30
D pH of the aqueous solution 5 6 7 8 9

Table 2: Actual versus model predicted values for adsorption.

Run A, time (min) B, w (g/L) C, C0 mg/L D, pH % adsorption experimental % adsorption predicted
1 40 0.2 15 8 88.65 88.93
2 20 0.4 25 8 88.91 89.53
3 30 0.3 20 7 91.91 91.65
4 20 0.2 15 6 94.26 94.70
5 30 0.5 20 7 90.42 90.37
6 30 0.3 20 7 92.4 91.65
7 30 0.1 20 7 93.44 92.94
8 40 0.4 15 6 89.28 89.13
9 40 0.4 25 8 91.4 91.13
10 20 0.2 25 8 90.12 90.44
11 20 0.4 15 6 93.26 93.71
12 30 0.3 20 7 92.4 91.65
13 30 0.3 30 7 92.4 92.49
14 30 0.3 20 9 90 89.69
15 50 0.3 20 7 90 90.50
16 40 0.2 25 6 94.66 95.12
17 20 0.4 25 6 91.71 91.60
18 40 0.4 15 8 84.64 84.99
19 30 0.3 20 7 91.66 91.65
20 30 0.3 20 7 91.66 91.65
21 30 0.3 10 7 90.75 90.82
22 40 0.2 15 6 91 90.78
23 40 0.2 25 8 92.78 92.73
24 10 0.3 20 7 92.95 92.81
25 30 0.3 20 7 91.66 91.65
26 20 0.2 25 6 90.17 90.22
27 40 0.4 25 6 95.72 95.82
28 20 0.4 15 8 92.47 92.18
29 30 0.3 20 5 93.8 93.62
30 20 0.2 15 8 95.15 95.45
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Figure 2: (a) FTIR of n-GO; (b) FTIR of UV/n-GO.
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perform analysis of variance (ANOVA). )e probability
values (P values) were used to perform as a device to check
the significance of each coefficient, which also showed the
interaction strength of each parameter. )e smaller the P

values, the bigger the significance of the corresponding
coefficient. Table 3 presents the ANOVA results for the
study.

)e model’s F-value of 77.06 indicates that it is signif-
icant. An F-value this big may arise owing to noise just 0.01%
of the time. Model terms are significant if the P value is less
than 0.0500. AC, AD, BC, and BD are the key model terms in
this scenario. Values larger than 0.1000 imply that the model
terms are unimportant. Model reduction may enhance your
model if it has a large number of irrelevant model terms
(except those necessary to maintain hierarchy). )e lack of
fit F-value of 1.53 indicates that the lack of fit is insignificant
in comparison to the pure error. A significant lack of fit F-
value owing to noise has a 33.67% chance of occurring [28].

Table 4 presents the key quality parameters to check the
adequacy of the model. )e coefficient of determination (R2)
was found to be 0.9759, suggesting that the model explained
97.59% of the experimental data and only 2.41% of the
overall variations. A high R2 number, in general, indicates a
strong match between expected and experimental outcomes.
With a value of 0.9633, the adjusted coefficient of deter-
mination (AdjR2) was found to be very high, meaning that
the model accounted for 96.33% of the observed variability.
)e coefficient of variation (C.V. %) was found to be 0.4668,
indicating that the difference between the expected and
experimental results was limited, implying that the exper-
iment was precise and dependable.)e adjusted R2 of 0.9633
is reasonably close to the predicted R2 of 0.9215; that is, the
difference is less than 0.2. )e signal-to-noise ratio is
measured by adeq precision. It is preferable to have a ratio of
more than four. A signal-to-noise ratio of 41.802 indicates a
good signal. )e design space may be navigated using this
concept.

3.2.2. Final Equation in Terms of Coded Factors. )e
equation in terms of coded factors can be used to make
predictions about the response for given levels of each factor.
By default, the high levels of the factors are coded as +1 and
the low levels are coded as −1. )e coded equation is useful
for identifying the relative impact of the factors by com-
paring the following factor coefficients:

%Removal � +91.65 − 0.5758A − 0.6433B + 0.4192C

− 0.9808 D − 0.1687AB + 2.20AC

+ 0.6525A D + 0.5887BC

− 0.5725B D − 0.1350CD.

(2)

3.2.3. Diagnostic Case Plots: Residual versus Predicted Plot.
For the model to be valid and the assumptions to be met, the
residual value must be structured less. In particular, it must
be unconnected with any other variable, including the an-
ticipated response. Plotting the residual vs. the fitted

(predicted) values is a straightforward check. )e assump-
tion of constant variance is tested with a plot of the residual
vs. the rising anticipated response values. As demonstrated
in Figure 3, the plot indicates random scatter or struc-
tureless, which fulfills the premise of constant variance.

3.2.4. Response Surface Plots and Interactions between the
Adsorption Parameters for Adsorption. )e response surface
3D surface contour plots of % adsorption vs. interaction
effects of agitation duration, dye concentration, adsorbent
dosage, and aqueous solution pH are shown in Figures 4(a)–
4(d). Each contour plot depicts a variety of various test
parameter combinations, with the other value set to zero.
)e maximum % adsorption was found on the surface
enclosed in the contour plot’s smallest curve (circular or
elliptical). )e nonlinear nature of the resulting interactive
plot of the agitation time and the starting concentration, as
shown in Figure 4(a), implies that the % removal is influ-
enced by the interaction graph of the initial concentration
and the agitation duration. As seen in the graph, extending
the agitation time from 20 to 30min enhances the % removal
rate, and the % removal rate improves as the starting
concentration rises. Due to possible dye-molecule interac-
tion, the % clearance declined as the initial dye concen-
tration was increased further.

Figure 4(b) depicts the interaction effect of time and pH;
at greater pH and time, the % removal decreases. )e %
removal rate is negatively affected by basic conditions, and
MB removal is greatest near the neutral pH level. Figure 4(c)
shows that once the dosage exceeds 0.25 g/L, the MB
clearance declines at lower MB concentrations due to total
saturation. )e 3D response plot (Figure 4(d)) demonstrates
that increasing the pH of the solution as well as the dose
decreased MB adsorption. With a dosage in the range of 0.3-
0.4 g/L at pH> 7.0, the adsorption efficiency decreased and
then remained nearly constant. )e transfer of an excess
proton to the reactive centre resulted in the appearance of
more repulsive electrostatic forces, resulting in a fall in
removal %.

3.2.5. Optimization. In the process optimization, % removal
may be improved or maximized by adjusting process pa-
rameters such as agitation duration, adsorbent dose, dye
concentration, and pH. )e feature of desirability was used
in Design Expert software version 11.0 to maximize the
answer. In this study, numerical optimization was chosen
because it provides a thorough and up-to-date explanation
of the most successful process optimization approaches. To
do so, the upper and lower limits of each variable, as well as
its anticipated response by the model, were supplied using
the previously generated contour and surface plots. )e final
objective of this optimization was to achieve the best possible
response by reducing the model variables. Figure 5 depicts
the desirability profile for % removal vs. factors. )e de-
sirability scale ranges from 0.0 to 1.0, corresponding to the
transition from an unpleasant to a much desired state. )e
best circumstances were established by considering % re-
moval to be maximized, which were a pH of 6, a dose of
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0.4 g/L, a starting dye concentration of 25mg/L, and a period
of 40min. )e removal rate was 95.81%, with an overall
desirability of 0.853. A comparison study was performed for
the plain n-GO sample under the optimal conditions; i.e., a
pH of 6, a dose of 0.4 g/L, a starting dye concentration of
25mg/L, and a period of 40min gave 90.6% MB removal.

3.2.6. Validation of the Model. An experiment involving
process variables was carried out to examine the impacts of
experimental design parameters based on the central
composite design outcome. As shown in Figure 5, nu-
merical optimization was used to enhance the % removal of
dye. According to the results of the research, the ideal %

reduction was 95.96%. )is is in line with what was ex-
pected. As a consequence, the model was deemed accurate
and trustworthy for forecasting % removal from the
adsorbent.

3.3. ANN Modeling Using MATLAB. )e testing dataset’s
maximum R2 and smallest MSE values were utilized to
establish the optimum design of an ANN model. )e
standard backpropagation technique was used to optimize
the training process. )e optimum adsorption structure was
discovered to be 4-4-1, and the design is shown in Figure 6.

)e modelling results yielded R2 and MSE values of
0.9572 and 0.00012, respectively.)e ANNmodel obtained a
strong connection to the optimal structure from the training
data, as shown in Figure 7(a), and it performed quite well in
validation and testing despite some data scattering
(Figures 7(b) and 7(c)). As seen in Fig, for the adsorption
dataset (Figure 7(d)), the ANN model performed brilliantly.
In Figure 8, the MSE for the improved ANNmodel is shown
vs. the epoch number. )e training process was discovered
to have ended after 18 epochs. All of these observations
demonstrated that the experimental data and the predicted
data from the ANN model agreed well. )e ANN model
predicted 94.76% removal as the maximum % removal
under the optimal conditions specified by RSM.

3.4. Adsorption Kinetics. )e kinetics of adsorption were
investigated to explain the dynamics of the adsorption
process after fitting the data to pseudo-first-order, pseudo-
second-order, and Elovich models (Figure 9(a)). Table 5
displays the experimental data for the models, as well as the
model parameters and constants for each model. )e kinetic
investigations were carried out in MB aqueous solutions of
25mg/L concentration at pH� 6 and temperature� 303K
and an adsorbent dosage of 0.4 g/L.)e adsorption efficiency
rose up to 30min before becoming constant. )is might be
due to the large number of open accessible sites that
gradually get saturated when a monolayer of metal ions
forms on the adsorbent surface. As a result, the optimal time

Table 3: ANOVA table for the model to predict % removal.

Sources Sum of squares Df Mean square F-value P value
Model 141.07 10 14.11 77.06 <0.0001 significant
A time 7.96 1 7.96 43.47 <0.0001
B dosage 9.93 1 9.93 54.26 <0.0001
C initial concentration 4.22 1 4.22 23.04 0.0001
D pH 23.09 1 23.09 126.13 <0.0001
AB 0.4556 1 0.4556 2.49 0.1312
AC 77.53 1 77.53 423.51 <0.0001
AD 6.81 1 6.81 37.21 <0.0001
BC 5.55 1 5.55 30.30 <0.0001
BD 5.24 1 5.24 28.65 <0.0001
CD 0.2916 1 0.2916 1.59 0.2222
Residual 3.48 19 0.1831
Lack of fit 2.82 14 0.2014 1.53 0.3367 not significant
Pure error 0.6589 5 0.1318
Cor total 144.55 29

Table 4: Model adequacy measure.
Std. dev. 0.4279 R 2 0.9759
Mean 91.65 Adjusted R 2 0.9633
C.V. % 0.4668 Predicted R 2 0.9215

Adeq precision 41.8019
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Figure 3: Comparison plot between the experimental data and
predicted data for adsorption.
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Figure 4: 3D response surface plots for adsorption: (a) time vs. initial concentration, (b) time vs. pH, (c) concentration vs. dosage, and (d)
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Figure 7: Output of the ANN model: (a) training, (b) validation, (c) testing, and (d) complete data.
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Figure 9: (a) Kinetic studies. (b) Equilibrium studies. (c) )ermodynamic studies for adsorption of MB by UV/n-GO.
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period was determined to be 30min. Because of the large
difference between the predicted and actual values of qe, and
R2 � 0.899, the pseudo-first-order kinetic model is ineffective
for fitting the experimental data. )e use of pseudo-second-
order kinetics was demonstrated to be useful in interpreting
experimental findings concerning MB adsorption by the
adsorbent with high R2 values (0.9719) and low χ2 (chi-
square) values (0.1545). )e Elovich model was used to
analyze the nature of diffusion kinetics, and it is found to be
fitting well with the experimental data (R2 � 0.8572), as
evidence that the rate determining step is not totally dif-
fusion in nature, but it has a modest effect on the adsorption
process. )eMB adsorption fits the Elovich model well, with
an initial rate constant (α) of 5757.84mg/g.min and a low
desorption rate constant (β� 0.2514 g/mg).

3.5. Equilibrium Studies. To fully comprehend adsorbate-
adsorbent interactions, the adsorption capacity of UV/n-
GO under various circumstances must be meticulously
determined. )e experimental data collected in this work
were fitted into four equilibrium models, i.e., Langmuir,
Freundlich, Temkin, and Redlich–Peterson isotherms
(Figure 9(b)). Table 6 includes the isotherm constants and
correlation coefficients (R2, χ2). With high R2 and low χ2
values, the Langmuir isotherm demonstrates that it is the
best model to reflect equilibrium. )e highest monolayer
adsorption capacity (qmax) for MB removal determined by
Langmuir was 200mg/g. Based on the separation factor RL
values (RL � 1/(1 + KLCO)), the adsorption process may be
rated as favorable, where KL (L/mg) is the Langmuir
constant and C0 is the initial adsorbate concentration (mg/
L). )e Freundlich isotherm, unlike the Langmuir equa-
tion, cannot capture either the linearity range at very low
concentrations or the saturation impact at very high
concentrations. )e Freundlich constant (n), often known
as the adsorption intensity factor or surface heterogeneity,
shows whether or not the adsorption is favorable. A value
for the Freundlich constant “n” in between 0 and 1 (0.446)
indicates the adsorption is favorable. )e Temkin isotherm
takes into account adsorbent-adsorbate interactions. )e
model assumes that the heat of adsorption (a function of

temperature) of all molecules in the layer decreases linearly
rather than logarithmically with coverage by neglecting
extremely low and high concentration values. When the
equilibrium data are fitted to the Temkin model, the heat of
adsorption (b) is calculated to be 68.82 J/mol. )e Temkin
constant (B�RT/b) and the equilibrium binding constant
(KT) of 3.3346 L/mg are used to compute this. )e results
suggest that adsorbent-adsorbate interactions can lower the
adsorption heat. As a result, dye adsorption displayed a
continuous spectrum of binding energies that ranged from
zero to the greatest practical value. Given the limitations of
the Freundlich and Langmuir isotherms, the Red-
lich–Peterson isotherm with three parameters was pro-
posed. )is model combines aspects of the Freundlich and
Langmuir models and may be useful for displaying ad-
sorption equilibrium over a wide range of adsorbate
concentrations. )e R–P isotherm constant “g” value of
0.61 indicates that the model was approaching the Lang-
muir isotherm.

3.5.1.<ermodynamics. )ermodynamic studies are the sole
method that can be used to forecast adsorption processes
(e.g., physical and chemical). )ermodynamics parameters
(energy and entropy) are used to determine the spontaneity
of an adsorption process. In environmental applications,
energy and entropy are two topics that need to be discussed
to properly evaluate the spontaneous nature of certain
processes.)e changes in free energy (ΔG0), enthalpy (ΔH0),
and entropy (ΔS0) of the adsorption process were deter-
mined. )e well-known Van’t Hoff equation is as follows:

ln KC � −
ΔH0

R

1
T

  +
ΔS0

R
. (3)

)e result of Van’t Hoff’s plot of ln(KC) as a function of
1/T is a straight line, which can be seen in Figure 9(c). )e
slope and intercept of this line were used to determine ΔH0

and ΔS0, respectively. )e Van’t Hoff thermodynamic
analysis showed that the adsorption of MB was spontaneous
(with a negative Gibbs free energy, denoted by ΔG°) and
endothermic (with a positive enthalpy change, denoted by

Table 5: Kinetic parameters and their correlation coefficients calculated for the adsorption of MB by UV/n-GO (pH� 6; dosage� 0.4 g/L;
concentration� 25mg/L; temperature� 303K).

Models Equations Parameters Values

Pseudo-first order qt � qe(1 − e− k1t)

k 1(min−1) 1.007
q e(calc)mg/g 41.81

R 2 0.899
χ 2 0.5599

Pseudo-second order qt � q2ek2t/(1 + qek2t)

k 2(g/(mg-min) 0.0349
q e(calc)mg/g 43.5

R 2 0.9719
χ 2 0.1545

Elovich qt � ln(1 + αβt)/β

β(g/mg) 0.2514
α (mg/g.min) 5757.84

R 2 0.8572
χ 2 0.9263

q e(Exp.)mg/g 44.35
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ΔH°), with the solid-liquid interface undergoing randomness
during the reaction (denoted by entropy, denoted by ΔS°).

4. Conclusions

)e objective of the present research is to synthesize UV-
treated nano-graphene oxide and adsorption for the removal
of a cationic dye, i.e., methylene blue.)e adsorption studies
were carried out with the design of experiments (DOE)
methodology. ANN modelling was carried out with
MATLAB.

(i) A chemical methodwas used for the synthesis of
graphene oxide nanoparticles.

(ii) A cost-effective physical treatment, i.e., UV irra-
diation was employed for the modification of
n-GO.

(iii) )e crystallite size of the samples was estimated
from the XRD analysis by using the Debye–
Scherrer formula; i.e., n-GO is 13.2 nm and UV/n-
GO is 12.42 nm.

(iv) FTIR spectra were recorded which show the
presence of the IR peaks.

(v) SEM images confirmed that the sizes of all syn-
thesized samples are in the range of nanoscale and
are in accordance with XRD results with spherical
morphology of the particles.

(vi) % MB removal of the optimal variables by CCD-
RSM was found to be 95.81% with an overall
desirability of 0.728.

(vii) )e ANN model was developed with MATLAB
revealing that the experimental data and the an-
ticipated data from the ANN model were in good
agreement, and % MB removal at the optimal
variables by ANN was found to be 94.76%

(viii) )e pseudo-second order model had a better fit for
the adsorption kinetics than any other model. )e
equilibrium may be well explained using the
Langmuir isotherm. )e maximum adsorption
capacity of 200mg/g was achieved. According to
thermodynamic research, the adsorption process
produces an endothermic reaction.

(ix) Based on the findings of the experiments, it is
possible to draw the conclusion that UV func-
tionalization of nano-graphene oxide renders it an
efficient adsorbent, and as a result, it is suitable for
further research in the form of scale-up studies.
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