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 e thermodynamic properties of pure compounds are relevant data for process systems engineering. Di�erent �rst-order group
contribution models have been reported in the literature to calculate these properties and they are also widely employed in
commercial process simulators. However, they may have some limitations and, consequently, a reliable comparison of these
models is required to analyze their performance and to determine the best alternative for the calculation of pure compound
properties.  is paper reports the implementation and evaluation of several �rst-order group contribution models to calculate the
normal boiling point and critical properties (temperature, pressure, and volume) of pure compounds.  e performance of these
models was characterized and compared for several compound families using a standardized approach to determine their group
contributions and parameters. An arti�cial neural network model was also applied and assessed to improve the estimations
obtained with the best group contribution models. Results showed that the calculation of critical temperature was challenging for
several compound families where AARD values ranged from 0.05 to 56.28%, while the group contribution models were more
accurate to estimate the critical volume with AARD values ranging from 0.48 to 35.99%.  is study allows us to identify the
limitations and gaps of this type of thermodynamic models with the objective of improving its performance for the calculation of
pure compound thermodynamic properties.  e �ndings of this study can help to enhance the capabilities of thermodynamic
models for the calculation of the normal boiling point and critical properties of pure compounds, which are relevant for the
process systems engineering of new operations and products.

1. Introduction

Process design, simulation, control, and optimization re-
quire the knowledge of the thermodynamic properties of
pure compounds and their mixtures. For example, the
critical properties are employed as input parameters to
predict the volumetric and phase equilibria behavior of pure
compounds and mixtures using cubic EoS in process sim-
ulators [1].  ese properties establish limits to the operating
conditions of equipment and processes. e characterization
of the critical properties for the synthesis and application of
new substances is a relevant issue from the perspective of
process systems engineering. However, several authors have
indicated that the experimental quanti�cation of critical

properties is time-consuming, potentially expensive for new
compounds, and may show other limitations (e.g., some
compounds with high molecular weight can degrade before
reaching the critical point) [2–5].  erefore, the develop-
ment of thermodynamic models to calculate the pure
compound critical properties is fundamental for process
design [6–10].

 e calculation of critical points with group contribution
models (GCMs) is usually straightforward and o�ers ad-
ditional advantages [1, 5, 7–9, 11–21].  ese models are
versatile, easy to implement, and do not require a substantial
computational e�ort. GCMs can estimate the property of a
compound from the individual contributions of functional
groups that conform its molecular structure [16].  ey
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assume that the contribution of each functional group will be
the same for any molecule thus allowing to expand its ap-
plication for the prediction of almost any type of chemical
substance [22].

Different GCMs have been proposed to calculate the
normal boiling point and critical properties of pure com-
pounds [1,9,11,12,14,16,23–27]. An extensive review and
description of these models was reported by Su et al. [9]. One
of the first GCMs for the estimation of critical properties of
pure compounds was proposed by Lydersen [23]. ,en,
Joback and Reid [11] proposed different first-order GCMs to
calculate several properties of pure compounds including
critical properties and normal boiling point. Another set of
GCMs which considered two levels of analysis for the es-
timation of group contribution values were proposed by
Constantinou and Gani [12]. In these models, the basic level
used first-order group contributions constituted by simple
functional groups and the higher level included second-
order groups. ,is approach allows for distinction between
isomers; however, its implementation is more difficult in
comparison to the first-order models as those proposed by
Joback and Reid [11]. Other GCM that considered group-
interaction contributions (i.e., the contributions of inter-
actions between bonding groups in the molecule) for the
calculation of critical properties and normal boiling point of
pure organic compounds were reported by Marrero-
Morejón and Pardillo-Fontdevila [14]. ,e experimental
database used to develop this model included 507 organic
compounds where 39 groups were considered. Marrero and
Gani [1] proposed another GCM that determined the
contributions at three levels. Specifically, the first level
utilized contributions from simple groups, and the second
and third levels included polyfunctional and structural
groups that supply more information about the molecular
fragments.

Retzekas et al. [28] proposed a GCM to calculate the
normal boiling point, critical temperature, and pressure of
hydrocarbons. ,is model involved compound density as an
additional parameter. A second-order GCM for the pre-
diction of the critical temperature of pure compounds was
introduced by Dalmazzone et al. [15]. ,ey used an exper-
imental database constituted of 381 organic compounds
including hydrocarbons and their derivatives containing
oxygen, chlorine, nitrogen, bromine, and sulfur. Wang et al.
[25], Wang et al. [26], and Jia et al. [27] published a set of
GCMs for the estimation of critical properties (temperature,
pressure, and volume) of organic compounds. But these
models were only applicable to compounds with relatively
small molecular weights and for those compounds with
carbon chains from C2 to C18 that contain oxygen, ni-
trogen, sulfur, chlorine, and bromine groups.,ese authors
used an experimental database with 467, 232, and 219
values of critical temperature, pressure, and volume, re-
spectively, of organic compounds to determine the group
contributions. Recently, Ghasemitabar andMovagharnejad
[29] developed a second-order GCM for the normal boiling
point of pure organic compounds including hydrocarbons
with nitrogen, oxygen, sulfur, fluorine, chlorine, bromine,
and iodine atoms.,is model applied the first-order groups

reported by Joback and Reid [11] but included additional
second-order groups that allowed to distinguish between
isomers. A similar approach to obtain the critical properties
of pure organic compounds was proposed by Tahami et al.
[5]. ,ey used an experimental database with 969, 715, and
539 data points of critical temperature, pressure, and
volume, respectively.

On the other hand, some artificial intelligence tools such
as artificial neural networks (ANN) have been used for the
modeling of difficult nonlinear systems thus proving their
numerical capabilities and reliable performance [30–33]. For
the case of thermodynamic property modeling, ANN has
been also applied with GCMs to obtain better estimations of
the normal boiling point and critical properties of pure
compounds [6, 8, 34].

Although a significant advance has been achieved in the
prediction of these relevant thermodynamic properties, the
major failure of these models still relies on their high pre-
diction errors for different molecules (especially those with
limited experimental data). Note that the lack of numerical
values of some group contributions affects the property
calculation via GCMs for some molecules, especially with
complex chemical structures [35]. In this direction, it is
important to highlight that a direct and reliable comparison
of the performance of available GCMs is usually not feasible
due to these models have been developed using different
databases and numerical frameworks to establish their group
contributions for the estimation of the thermodynamic
property at hand. To date, few studies have reported the
performance comparison of some GCMs for the calculation
of pure compound critical properties but without recalcu-
lating their group contributions using the same basic line.

In this research, several first-order GCMs have been
assessed and compared in the calculation of the normal
boiling point and critical properties of pure compounds.
,is study has focused on the evaluation of first-order GCMs
because they are a straightforward option to estimate these
thermodynamic properties and are already available in
commercial process simulators. In contrast to higher-order
GCMs, they do not require additional information on
molecules and are easy to implement by the users.,erefore,
the novelty of this study relies on a reliable comparison of
GCMs based on the application of the same analytical
framework. First, this comparison was carried out via a
standardized approach to establish the group contributions
with the same thermodynamic data (correlation and vali-
dation sets) and an identical numerical procedure to solve
the corresponding parameter estimation problems. A set of
statistical metrics was applied to characterize the limitations
and capabilities of tested models including a detailed per-
formance analysis for different compound families where the
best model was identified. ,en, an ANN-based approach
was assessed to improve the estimations obtained with the
GCMs. Finally, a comparative analysis of these models was
carried out using the GCMs implemented in the Aspen
Plus® simulator. ,erefore, this study highlights some gaps
to be resolved for GCMs with the aim of developing reliable
thermodynamic models for the calculation of pure com-
pound properties.

2 International Journal of Chemical Engineering



2. Approach to Analyze and Compare the
Performance of First-Order Group
ContributionModels to Calculate the Critical
Properties and Normal Boiling Point of
Pure Compounds

2.1. Experimental Database. A database with experimental
information on critical volume (Vc), critical pressure (Pc),
critical temperature (Tc), and normal boiling point (Tb) of
different compound families was integrated for this study.
,is information was extracted from the National Institute
of Standards and Technology (NIST), a compilation of ar-
ticles from the American Chemical Society [36–46], and
other sources of physicochemical properties were also
consulted to integrate this database [47–49]. A preliminary
analysis of the available experimental information on these
properties was performed to identify inconsistencies in the
values reported in different sources for the same compound.
,e experimental values that displayed inconsistencies be-
tween two or more sources were discarded to reduce the
uncertainty in the determination of the contributions of
functional groups for the calculation of the corresponding
thermodynamic properties. Table 1 shows the number of
experimental values that were employed in the database of
this study. In short, this database included the next ex-
perimental values of pure compounds: 397 for Tb, 514 for Tc,
445 for Pc, and 312 for Vc. ,is experimental database in-
cluded organic compounds with carbon numbers fromC1 to
C60 and molecular weights ranging from 26.04 to 843.6 g/
mol, organic compounds with metals (e.g., iron and tita-
nium) as well as silicon and boron groups. ,ese groups are
usually not included in other GCMs reported in the liter-
ature such as the models proposed by Marrero and Gani [1],
Marrero-Morejón and Pardillo-Fontdevila [14], Con-
stantinou and Gani [12], Joback and Reid [11], Wen and
Qiang [50], Dalmazzone et al. [15], Valderrama and Alvarez
[51], Wang et al. [25], Wang et al. [26], Jia et al. [27], Deng
et al. [34], Ghasemitabar and Movagharnejad [29], Mon-
dejar et al. [8] and Tahami et al. [5]. ,erefore, this database
was used to define the numerical values of group contri-
butions for the set of first-order GCMs reported in this
study.

2.2.Definition of FunctionalGroups forGCMs. Table 2 shows
the functional groups of first-order GCMs to estimate each
thermodynamic property. ,e criteria applied to determine
these functional groups included:

(a) ,e molecular groups were defined to represent a
wide range of compounds including multifunctional
oxygen, nitrogen, sulfur, halogenated, organome-
tallic, silicon, and boron substances.

(b) ,e molecular groups were defined as simple as
possible but representative of all the compounds
included in the database.

(c) ,e molecular groups contained in chemical struc-
tures with and without rings (e.g., benzene and

phenol) were differentiated. ,is aspect was already
evaluated by Marrero and Gani [1] showing that the
performance of GCMs was better when there was a
differentiation of the groups inside and outside the
cyclic molecular structures.

2.3. Description of GCMs Used and Compared for the Cal-
culationofVc,Pc,Tc, andTbofPureCompounds. A set of first-
order GCMs that do not consider group interactions were
applied and compared in the calculation of the thermody-
namic properties. Different equations (i.e., functionalities)
reported for other GCMs were used in this study (see
Table S1 of Supporting Information). A comparison and
evaluation of these functionalities to estimate Vc, Tc, Pc, and
Tb of pure compounds was performed. ,e group contri-
butions and parameters of these functionalities were cal-
culated using the same numerical framework (i.e., database,
correlation and validation sets, objective function, and
optimization method). ,ese GCMs are described below for
each thermodynamic property.

2.3.1. Normal Boiling Point. ,ree GCMs (i.e., MTB1,
MTB2, andMTB3) were used and assessed to estimate Tb of
pure compounds. In particular, the MTB1 model was based
on the equation proposed by Joback and Reid [11] for the
calculation of the normal boiling point of pure compounds.
,e equation proposed is given by

Tb � A1 + 􏽘
k

Nktbk, (1)

where Nk is the number of repetitions of the functional
group k in the molecule of the tested compound, tbk is the
contribution of the functional group k to estimate the
normal boiling point, and A1 is a constant value for all
compounds.

MTB2 model corresponded to the equation proposed by
Nannoolal et al. [24].,e expression of thismodel is defined by

Tb �
􏽐kNktbk

n
A2
t + A3

+ A4, (2)

where nt is the atoms number in the molecule (except hy-
drogen) and A2, A3, and A4 are constant values for all the
compounds.

MTB3 model was a modification of the model proposed
by Joback and Reid [11] where a relationship between the
molecular weights of the functional group (MMk, g/mol)
and the pure compound (MM, g/mol) was incorporated as
follows:

Tb � A5 + 􏽘
k

MMk/MM( 􏼁Nktbk, (3)

where A5 is a constant value for all the compounds.

2.3.2. Critical Temperature. Four GCMs were implemented
to calculate the critical temperature.MTC1model was based
on the equation proposed by Lydersen [23].
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Tc �
Tb

B1 + 􏽐k Nktck( 􏼁 − 􏽐kNktck( 􏼁
2, (4)

where tck is the contribution of the functional group k to
estimate the critical temperature and B1 is a constant value of
this GCM.

MTC2model was an expression proposed by Joback and
Reid [11] and corresponded to a modified version of
equation (4) that was given by

Tc �
Tb

B2 + B3􏽐k Nktck( 􏼁 − 􏽐kNktck( 􏼁
2, (5)

where B2 and B3 are constant parameters.
,e third model (MTC3) was a modified version of the

Joback and Reid [11] model. ,is model included a rela-
tionship of MMk and MM where it was defined as

Tc �
Tb

B4 + B5􏽐k MMk/MM( 􏼁Nktck − 􏽐k MMk/MM( 􏼁Nktck( 􏼁
2, (6)

where B4 and B5 are constant parameters.
MTC4 model was also a modified expression of Joback

and Reid [11] that included the atoms number (except hy-
drogen) and rings contained in the molecule under analysis

Tc �
Tb

B6 · Nr( 􏼁 + B7 · n
B8
t􏼐 􏼑 + B9􏽐k Nktck( 􏼁 − 􏽐kNktck( 􏼁

2,

(7)

where Nr is the rings number in the molecule and B6, B7, B8,
and B9 are constant parameters of this GCM.

2.3.3. Critical Pressure. Four GCMswere utilized to estimate
the critical pressure.MPC1model was proposed by Lydersen
[23] to estimate Pc via the following equation:

Pc �
MM

C1 + 􏽐k Nkpck( 􏼁( 􏼁
2, (8)

where pck is the contribution of the functional group k to
estimate Pc and C1 is a constant parameter.

,e second model (MPC2) was based on the equation
proposed by Joback and Reid [11].

Pc �
1

C2 − C3 · nt( 􏼁 − 􏽐k Nkpck( 􏼁( 􏼁
2 , (9)

where C2 and C3 are constant parameters.
MPC3 model was a modification of equation (9) and is

described as

Pc �
MM

C4 − C5 · nt( 􏼁 − 􏽐k Nkpck( 􏼁( 􏼁
2 , (10)

where C4 and C5 are constant parameters of the GCM.
,e fourthmodel (MPC4) was another modified equation

that included the number of rings of the molecule

Table 1: Description of experimental database of thermodynamic properties used in this study.

Compound family
,ermodynamic property†

Tb, K Tc, K Pc, bar Vc, cm
3/mol

No. of data Min Max No. of data Min Max No. of data Min Max No. of data Min Max

Alkane 28 184.6 722.9 32 305.3 974.0 32 3.6 48.7 19 145.5 189.0
Alkene 15 169.0 614.2 17 282.3 772.0 17 11.4 50.4 8 131.1 584.0
Alkyne 3 189.0 310.0 3 308.3 488.0 3 40.6 61.4 3 112.2 275.3
Cyclic hydrocarbon 10 240.0 466.0 12 398.0 707.0 11 25.3 55.4 11 162.0 566.5
Aromatic hydrocarbon 28 353.3 711.2 28 562.1 1013.2 27 15.3 49.0 22 256.0 1078.7
Alcohol 16 337.8 634.6 24 512.5 850.0 24 10.7 80.8 13 117.0 1281.5
Phenol 4 455.0 550.0 4 694.2 836.0 3 43.6 62.4 2 229.0 312.0
Carboxylic acid 16 391.2 672.9 28 590.7 862.0 27 11.1 65.9 13 171.0 1130.0
Aldehyde 3 441.7 481.7 3 639.0 695.0 3 26.0 47.0 2 488.0 598.8
Ketone 14 329.3 550.0 16 508.1 830.0 11 23.2 47.0 15 213.0 896.0
Ether 11 285.0 560.2 12 466.8 824.0 10 18.2 72.0 9 142.0 720.0
Ester 16 330.0 659.0 27 506.5 886.0 24 8.9 47.5 10 228.0 568.2
Nitrogen 61 252.0 628.2 68 400.0 901.0 63 20.0 82.4 41 141.0 584.0
Multifunctional oxygen 16 223.3 557.2 23 380.0 864.0 19 26.6 65.0 9 145.0 549.5
Chlorine 21 247.0 456.4 21 416.3 685.7 11 43.0 66.8 8 140.0 308.6
Fluorine 43 145.1 479.0 50 227.5 673.0 39 14.5 58.7 36 109.0 781.0
Bromine 4 311.5 429.1 4 504.0 670.0 4 41.3 58.0 3 214.0 324.1
Iodine 3 362.4 473.2 3 574.6 749.9 3 43.3 47.3 3 285.5 353.9
Other halogenated 57 191.8 442.0 84 302.0 684.8 64 11.6 58.7 55 147.0 754.0
Sulfur 17 279.1 605.7 16 381.2 897.0 12 18.1 72.3 11 147.0 512.0
Silicon 10 299.7 446.2 31 352.4 893.0 30 4.7 35.3 19 344.0 2524.0
Iron 1 — — 4 784.0 886.0 4 15.9 36.1 — — —
Titanium — — — 4 641.0 751.0 4 9.1 14.0 — — —
†Symbols Min and Max represent the minimum and maximum experimental values of the thermodynamic property in the database.
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Pc �
MM

C6 − C7 · nt( 􏼁 + C8 · Nr( 􏼁 − 􏽐k Nkpck( 􏼁( 􏼁
2 , (11)

where C6, C7, and C8 are constant parameters.

2.3.4. Critical Volume. MVC1, MVC2, MVC3, and MVC4
models were compared in the calculation of critical volume
of pure compounds. MVC1 was proposed by Lydersen [23]
and defined as

Vc � D1 + 􏽘
k

Nkvck( 􏼁, (12)

where vck is the contribution of the functional group k to
estimate the critical volume and D1 is a constant parameter.

MVC2 model was a modification of equation (12) that
included the molecular weights of functional groups and
pure compound

Vc � D2 + 􏽘
k

MMk

MM
Nkvck􏼒 􏼓, (13)

where D2 is a constant parameter of this GCM.
MVC3 and MVC4 were obtained from the modification

of equation (12) where the atoms number in the molecule
(except hydrogen) was included and they were given by the
next equations

Vc � D3 + D4 · nt( 􏼁 + 􏽘
k

Nkvck( 􏼁, (14)

Vc � D5 + D6 · nt( 􏼁 + D7 · MM( 􏼁 + 􏽘
k

Nkvck( 􏼁, (15)

where D3, D4, D5, D6, and D7 are constant parameters for all
the pure compounds.

2.4. Determination of the Contributions of Functional Groups
of GCMs for the /ermodynamic Property Calculation.
Group contributions and constant parameters of GCMs (see
equations (1)–(15)) were determined via a nonlinear re-
gression of the experimental database. 337, 404, 378, and 265
experimental data of Tb, Tc, Pc, and Vc, respectively, were
used in this stage (i.e., 79–85% of the thermodynamic da-
tabase). ,e frequency of each functional group in the
molecules employed in the correlation stage can be found in
an Excel file (Groups_correlation.xlsx) that is provided in
the Supporting Information. ,e objective function utilized
for the correlation of the experimental data was defined as
follows:

FO � min􏽘
m

i�1

Y
exp
i − Ycal

i

Y
exp
i

􏼠 􏼡

2

, (16)

where m is the number of experimental data and Y
exp
i and

Ycal
i are the experimental and calculated values of tested

Table 2: Functional groups of the first-order GCMs used to cal-
culate critical properties and normal boiling point of pure
compounds.

No.
Groups without rings
1 -CH3
2 -CH2-
3 >CH-
4 >C<
5 �CH2
6 �CH-
7 �C<
8 �C�

9 ≡C-
10 ≡CH
Groups with rings
11 -CH2-
12 >CH-
13 �CH-
14 >C<
15 �C<
Groups with oxygen
16 -OH (alcohol)
17 -OH (phenol)
18 -O- (without rings)
19 -O- (with rings)
20 >C�O (without rings)
21 >C�O (with rings)
22 -CHO (aldehyde)
23 -COOH (acid)
24 -COO- (ester)
25 �O (others)
Groups with nitrogen
26 >NH (without rings)
27 >NH (with rings)
28 >N- (without rings)
29 >N- (with rings)
30 -N� (without rings)
31 -N� (with rings)
32 -NH2 (without rings)
33 -NO2
34 -CN
Groups with halogen
39 -S- (without rings)
40 -S- (with rings)
41 �S<
42 ≥S≤
43 -SH
Groups with silicon
44 >Si< (without rings)
45 >Si< (with rings)
46 >SiH-
47 -SiH3

Groups with metals
48 -Fe-
49 >Ti<
Groups with boron
50 >B-
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thermodynamic properties (i.e., Vc, Pc, Tc, and Tb). ,is
objective function was minimized with a combination of a
local optimization method and an evolutionary algorithm.
,is optimization tool was used to determine the parameters
and group contributions of the set of GCMs. Several initial
values were used to resolve the parameter identification
problems because it was assumed as a global optimization
problem and the best solution found was reported in this
study.

,e predictive capabilities of tested GCMs were evalu-
ated using pure compounds (i.e., molecules) not considered
in the data correlation stage. ,ese compounds were in-
cluded in the validation set and represented approximately
15% of the experimental thermodynamic property database
(i.e., 60, 110, 67, and 47 experimental data of Tb, Tc, Pc, and
Vc, respectively). For illustration, Figure 1 shows the flow-
chart of the procedure utilized to determine GCMs pa-
rameters and to perform their evaluation. To reduce the
deviations obtained in the determination of the functional
group contributions and the model parameters, the next
criteria were applied to establish the correlation and vali-
dation sets:

(a) ,e validation set included compounds with ex-
perimental data reported by different sources where
their experimental deviations were higher than 1%
for the normal boiling point and 5% for the critical
properties.

(b) ,e validation set included compounds whose ex-
perimental properties could not be confirmed by at
least two literature sources.

(c) It was established that the validation set did not
include molecules with functional groups that were
not present in the correlation set.

(d) Functional groups with repetitions ≤5 were con-
sidered only in the correlation set.

2.5. Application of ANN to Improve the Predictions of GCMs.
An ANN was applied as a corrector to improve the esti-
mations obtained with GCMs. ANN input variables were the
thermodynamic property calculated with GCMs and mo-
lecular weight (MM) of the pure compound, while the
output variable was the improved (corrected) thermo-
dynamic property value (see Figures S1 and S2). ,e ANN
toolbox of Matlab ® was used in these calculations. A
feed-forward backpropagation ANN was employed. ,e
input data set was randomly divided into three sub-
groups: training set (70% of the database), validation set
(15% of the database), and test set (15% of the database).
ANN training was used to determine the best values of
weights and biases where the Levenberg–Marquardt
training method and a logarithmic sigmoid transfer
function were employed. ,e performance function
corresponded to the mean square error (MSE), which is
given by

MSE �
1
m

􏽘

m

i�1
Y
exp
i − Y

cal
i􏼐 􏼑

2
. (17)

Different ANN configurations (i.e., hidden neurons
ranging from 1 to 10 and layers ranging from 1–2) were
evaluated to identify the simplest one with the best per-
formance (without overfitting) and to establish their impact
on the calculation of thermodynamic properties with the
GCM-ANN approach.

2.6. Statistical Analysis to Compare GCMs Performance.
Statistical metrics were utilized to assess the performance of
all GCMs for the thermodynamic property calculation.
,ese metrics were the absolute relative deviation (ARDi),
average absolute relative deviation (AARD), and standard
deviation (σ), which are defined by

ARDi � 100 ·
Y
exp
i − Y

cal
i

Y
exp
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (18)

AARD �
1
m

􏽘

m

i�1
100 ·

Y
exp
i − Y

cal
i

Y
exp
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (19)

σ �

�������������������

􏽐
m
i�1 ARDi − AARD( 􏼁

2

m

􏽳

. (20)

Additionally, a comparative analysis of these GCMs was
also carried out using the GCMs implemented in Aspen
Plus®. ,ese GCMs were proposed by Riedel [52], Lydersen
[23], Ambrose [53,54], Fedors [55,56], Joback and Reid [11],
and Constantinou and Gani [12]. In particular, the ther-
modynamic properties of some molecules not included in
the training set were calculated with Aspen Plus® and these
results were compared with those estimations obtained with
tested first-order GCMs.

3. Results and Discussion

3.1. Normal Boiling Point. Figure 1 shows the comparison of
the experimental and calculated Tb values using different
GCMs. ,e determination coefficient (R2) was included for
the correlation and validation stages of each model.
Tables S2 and S3 of Supporting Information provide the
group contributions and parameters of MTB1, MTB2, and
MTB3 models for Tb estimation. Overall, these GCMs
showed R2 values of 0.83–0.97 where the highest ARD was
obtained for compounds with Tb higher than 500K. ,e
performance of these GCMs showed the next trend:
MTB2>MTB1>MTB3. In particular, the MTB2 model was
the best to calculate the Tb of tested compounds. Note that
this model included the number of atoms in the molecule as
an additional parameter. Also, it should be highlighted that
the nonlinear functionality of the MTB2 model out-
performed those of the MTB1 and MTB3 models. Table 3
summarizes the statistical metrics used to evaluate the
performances of these models. ARD values ranged from
8.34E-08 to 60.48% in Tb calculation.

For illustration, Figure 2 shows AARD obtained in Tb
estimation for different compound families. ,is analysis
allowed us to identify some compound families with the
highest deviations between experimental and predicted
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values. GCMs were able to calculate the Tb of alkynes,
phenols, multifunctional oxygen, sulfur, and silicon com-
pounds with acceptable accuracy. AARD in these families
ranged from 0.28 to 6.37%, while this statistical parameter
increased for alkanes, carboxylic acids, nitrogen, and ha-
logenated compounds. In general, these GCMs showed the
highest AARD for alkanes, alkenes, cyclic hydrocarbons,
nitrogen, chlorine, and £uorine compounds.  ese results
can be associated with the relatively high uncertainty of the
experimental data reported for di�erent compounds with a
complex chemical structure (e.g., some nitrogen, and ha-
logenated compounds). Figure S3 reports the ARD values of
the MTB2 model as a function of MM and Tb for di�erent
compound families where the magnitude of this statistical

metric is indicated by the size of the symbol “O”. Although
theMTB2model was the best model, it presented the highest
ARD for those compounds with low and high molecular
weights within a homologous series. For example, high
deviations were obtained for alkanes and alkenes with low
molecular weight.  is behavior was identi�ed and high-
lighted by Nannoolal et al. [16]. Low molecular weight
compounds usually do not follow the general trend of the
homologous series of a given chemical family. However, the
experimental data of Tb for these compounds are commonly
available in the literature and there is no need to estimate them
using GCMs. For some halogenated compounds with mo-
lecular weights <100 g/mol, high deviations were obtained.
Ethanedinitrile and 1,1,1,3,5,5,5-heptamethyltrisiloxane were
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Figure 1: Results of the calculation of the normal boiling point of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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the compounds with the maximum (29.31%) and minimum
(8.34E-08%) ARD to calculate their Tb using MTB2. It was
identified that high deviations (i.e., ARD >20%) were obtained
for some molecules containing functional groups with halogen
and nitrogen atoms (e.g., -F, -CN, and -NH2).

3.2. Critical Temperature. Figure 3 and Table 3 show the
results of Tc calculation with GCMs and the corresponding
model parameters are reported in Tables S4 and S5 of Sup-
porting Information. It was identified that the highest ARD
was obtained for pure compounds with Tc>600K. It should
be highlighted that for these compounds, Tc experimental
data reported in the literature showed high deviations.MTC4
model displayed the best performance for the calculation of
Tc. ,is model considered the number of atoms and rings in
themolecule as parameters. Overall, ARD ranged from 6.36E-
08 to 72.39% forMTC1, from 1.22E-07 to 65.52% forMTC2,
from 4.95E-04 to 107.69% for MTC3 and from 3.43E-04 to
70.23% for MTC4, respectively. AARD values for Tc esti-
mation of different compound families are reported in Fig-
ure 4. All GCMs showed high AARD for alkanes, alcohols,
carboxylic acids, ethers, esters, nitrogen, halogenated, and
silicon compounds. On the other hand, the calculation
performance of these GCMs was acceptable (i.e., AARD
<2.5%) for families of alkenes, cyclic and aromatic hydro-
carbons, ketones, and multifunctional oxygen compounds.
All GCMs presented the highest ARD for organometallic
compounds. ,e highest deviations in the calculation of Tc
could be associated with the uncertainty of the experimental
values used to determine the group contributions, especially
for complex molecules with high molecular weight. MTC4
outperformed other models to calculate this thermodynamic
property where MTC3 was the worst GCM.

Figure S4 reports the ARD values of the MTC4 model.
,is model showed the highest deviations for calculating Tc
for those compounds with high molecular weight within a
homologous series. ,is trend was also observed for alkanes

where the deviations were higher for compounds with mo-
lecular weights >500 g/mol, alkenes with molecular weights
>200 g/mol, esters with molecular weights >300 g/mol, and
silicon compounds with molecular weights >400 g/mol. Also,
the modeling errors were higher for high molecular weight
aromatic hydrocarbon and alcohol compounds. (2R, 4R, 6R)-
2,4,6-trimethyl-2,4,6-triphenylcyclotrisiloxane was the com-
pound with the maximum ARD (i.e., 70.23%) to calculate Tc
using MTC4. ,is compound was a silicon compound with a
high molecular weight (408.67 g/mol). It could be anticipated
that GCMs could showhighmodeling errors for the calculation
of critical properties of high molecular weight compounds. As
indicated, the procedures utilized in the experimental deter-
mination of critical properties may have some limitations,
mainly for the high molecular weight compounds where these
type of chemicals can degrade before reaching the critical point.
,ese deviations in the experimental determination of the
critical point introduced uncertainties in the determination of
the group contribution values of tested GCMs. Higher mod-
eling errors (ARD >30%) were obtained in the Tc prediction of
some molecules containing silicon, nitrogen, and halogenated
functional groups (e.g., >Si<, -F, -CN, -NO2).

3.3. Critical Pressure. Results of the calculation of Pc with
tested GCMs are reported in Figure 5 and Table 3, while the
estimated group contributions and additional model pa-
rameters are given in Tables S6 and S7 of Supporting In-
formation. Overall, ARD values ranged from 3.43E-07 to
46.17% where GCMs followed the next performance in
terms of the deviations for the estimation of Pc:
MPC2>MPC1>MPC3>MPC4. In particular, MPC2
showed high ARD (i.e., >10%) to estimate Pc at>60 bars. On
the other hand, the MPC4 model showed the best perfor-
mance for the prediction of this thermodynamic property.
,is model also included the number of atoms and rings in
the molecule as additional parameters. Table 3 summarizes
the statistical metrics used in the comparison of these GCMs.

Table 3: Results of statistical metrics used to compare the performance of first-order GCMs for the calculation of critical properties and
normal boiling point of pure compounds.

Property Model
Correlation Validation

No. of data
Statistical metric, %

No. of data
Statistical metric, %

Max ARDi Min ARDi σ Max ARDi Min ARDi σ

Tb

MTB1
337

35.16 4.90E-07 5.58
60

44.27 0.05 7.29
MTB2 29.31 8.34E-08 4.37 28.53 0.29 5.00
MTB3 52.14 1.05E-03 6.81 60.48 0.22 11.10

Tc

MTC1

404

21.85 6.36E-08 2.57

110

72.39 0.01 16.83
MTC2 21.82 1.22E-07 2.47 65.52 0.05 14.98
MTC3 23.42 4.95E-04 2.71 107.69 0.10 22.97
MTC4 21.44 3.43E-04 2.43 70.23 0.22 15.06

Pc

MPC1

378

36.08 3.43E-07 5.46

67

46.17 0.23 8.71
MPC2 35.87 4.34E-07 6.26 40.85 0.17 9.67
MPC3 36.08 3.27E-05 5.46 46.17 0.23 8.71
MPC4 36.08 2.35E-04 5.47 46.17 0.15 8.72

Vc

MVC1

265

29.98 4.41E-04 3.47

47

17.82 0.10 3.36
MVC2 73.94 4.05E-07 16.50 52.07 0.56 12.97
MVC3 29.98 1.98E-03 3.47 17.82 0.10 3.37
MVC4 29.97 1.01E-03 3.47 17.82 0.09 3.37
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Figure 6 shows the values of AARD in Pc estimation for
di�erent compound families.  ese results indicated that the
Pc prediction from these GCMs showed the highest ARD for
nitrogen, multifunctional oxygen, halogenated, and silicon
compounds. All models showed high modeling errors to
calculate Pc of iron compounds. For illustration, ARD values
of the MPC4 model for di�erent families of chemicals are
reported in Figure S5. In general, there were no clear trends in
model performance with respect to the molecular weight and
compound families. However, ARD >10% was obtained for
alkanes with molecular weights higher than 400 g/mol. For
some halogenated compounds (e.g., £uorine compounds),
the performance of this GCM was better for substances with
intermediate molecular weights within the homologous se-
ries. Tri£uoroethanoic acid was the compound with the
maximumARD (46.17%) to calculate Pc usingMPC4. e low

precision in the experimental information reported for the
halogenated compounds could be the source of these mod-
eling errors. It was also identi�ed that the highest deviations
(i.e., ARD >20%) were obtained for molecules constituted by
functional groups containing iron, nitrogen, silicon, and
halogen atoms (e.g., >Si<, -F, >N-, -Fe, and -NO2).

3.4. Critical Volume. Results of the calculation of Vc using
MVC1, MVC2, MVC3, and MVC4 models are reported in
Figure 7, while the corresponding statistical metrics for
model comparison are given in Table 3. It was clear that
MVC1, MVC3, and MVC4 displayed a similar performance
with ARD ranging from 4.41E-04 to 29.98%, while MVC2
was the worst option to calculate this critical property.
Tables S8 and S9 of Supporting Information contain the
group contributions, and parameters of these GCMs. In
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Figure 2:AARD for the calculation of the normal boiling point of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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Figure 3: Results of the calculation of the critical temperature of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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general, these GCMs had the highest AARD to predict Vc of
nitrogen, multifunctional oxygen, £uorine, and silicon
compounds, see Figure 8. Statistical metrics indicated that
theMVC4model was the best to estimate critical volumes of
pure compounds.  is model also included the number of
atoms and the molecular weight as additional parameters.
Figure S6 illustrates theMVC4model performance for theVc
calculation of di�erent compound families. ARD increased
with respect to the molecular weight for alkanes, carboxylic
acids, ketones, and £uorine compounds.  ese results also
con�rmed that the calculation of critical properties of high
molecular weight compounds is challenging via GCMs.  is
GCM showed the highest ARD values for alcohols, ketones,
nitrogen, and silicon compounds with lowmolecular weight.
1,1,1,5,5,5-hexa£uoro-2,4-pentanedione was the compound
with the maximum ARD (29.97%) for Vc calculation using
MVC4. Di�erent molecules containing some functional

groups with halogen and nitrogen (e.g., -F, >NH, -NH2)
showed the highest deviations (i.e., ARD >10%).

Finally, the Supporting Information contains an Excel
�le (Properties_calculation.xlsx) that can be utilized to
calculate Tb and critical properties of pure compounds using
the best GCMs reported in this paper.

3.5. Correction of the­ermodynamic Property Estimations of
GCMswithANN. AARD values for the calculation ofVc, Pc,
Tc, and Tb using ANN to correct the GCM estimations are
shown in Figure 9.  ese results corresponded to
di�erent ANN con�gurations in terms of the number of
hidden layers and their neurons.  e application of
ANN allowed improving the estimations of thermody-
namic properties obtained with GCMs. For the case of Tb,
the AARD value of MTB1 was 5.82% and decreased
to 4.48% with the implementation of ANN with 1

MTC3
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Figure 4: AARD for the calculation of the critical temperature of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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hidden layer and 5 hidden neurons.MTB2 plus ANNwith 2
hidden layers and 3 hidden neurons achieved an AARD of
3.90%, in contrast to 4.25% AARD of the original MTB2.
AARD values of MTB3with and without ANN (1 hidden

layer and 10 hidden neurons) were 8.90 and 5.74%,
respectively.

For Tc prediction, the AARD value of MTC1 decreased
from 14.56 to 9.76% using an ANN model with 2 hidden
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Figure 5: Results of the calculation of critical pressure of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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layers and 5 hidden neurons.  e application of ANN with
1 hidden layer and 7 hidden neurons decreased the AARD
ofMTC2 from 13.66 to 9.79%. Similar results were obtained
for MTC3 and MTC4 after applying the ANN as a model
corrector where AARD decreased from 19.16 to 10.93%
(using ANNwith 1 hidden layer and 3 hidden neurons) and
from 13.68 to 8.15% (using ANN with 1 hidden layer and 7
hidden neurons), respectively.

 e ANN application also improved Pc estimations
obtained with all GCMs. AARD decreased from 8.48
(MPC1) to 7.75% (MPC1 plus ANN with 1 hidden layer and
3 hidden neurons), from 9.05 (MPC2) to 7.59% (MPC2 plus
ANN with 1 hidden layer and 5 hidden neurons), from 8.48
(MPC3) to 7.36% (MPC3 plus ANN with 1 hidden layer and
5 hidden neurons), and from 8.48 (MPC4) to 7.28% (MPC3
plus ANNwith 2 hidden layers and 5 hidden neurons). ese

results showed that ANN with several hidden layers and
neurons was required to obtain an accurate estimation of
this thermodynamic property. However, it is important to
indicate that the best ANN structure should be identi�ed to
avoid model over�tting.

Finally, the approach GCM+ANN also improved the
prediction of Vc although the �nal result was highly de-
pendent on the model and ANN structure. For example, the
AARD value ofMVC2 decreased from 18.24 to 11.13% using
ANN with 2 hidden layers and 3 hidden neurons. In con-
trast, Vc calculations performed with other GCMs (MVC1,
MVC3, MVC4) plus ANN did not show a signi�cant re-
duction of AARD for di�erent con�gurations of hidden
layers and neurons (see Figure 9).

In summary, these results were consistent with the
study of Mondejar et al. [8] where GCMs and ANN models
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Figure 6: AARD for the calculation of critical pressure of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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Figure 7: Results of the calculation of critical volume of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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were also applied. However, these authors only analyzed a
speci�c group of chlorine and £uorine compounds with
carbon numbers from C2 to C20 in contrast to the present
study where a broad spectrum of chemical families was
analyzed.

3.6. ComparativeAnalysis ofGCMsReported in theLiterature.
A comparison of the performances of di�erent GCMs was
carried out and the results are given in Table 4. Figure 10
shows the distribution of AARD for the calculation of tested
thermodynamic properties of pure compounds using the
�rst-order GCMs and ANN. As stated, the Aspen Plus®simulator was also employed to calculate these thermody-
namic properties.  is process simulator o�ers the possi-
bility of using the next GCMs: R–Riedel [52], LS–Lydersen
[23], A–Ambrose [53,54], F–Fedors [55,56], JR–Joback and

Reid [11], and CG–Constantinou and Gani [12].  erefore,
this comparison was carried out using a speci�c group of
molecules where all the models were applicable, and the
results obtained with Aspen Plus® were compared with the
best �rst-order GCMs identi�ed in this study.

Results reported in Table 4 and Figure 10 showed that the
estimations of normal boiling point with MTB2 and
MTB2+ANN with 2 hidden layers and 3 hidden neurons
were better than those obtained with the models of Con-
stantinou and Gani [12] and Joback and Reid [11]. For Tc
calculation, MTC4 and MTC4+ANN with 1 hidden layer
and 7 hidden neurons showed higher modeling errors than
those of models proposed by Lydersen [23], Ambrose [53],
Fedors [56], Joback and Reid [11], and Constantinou and
Gani [12]. MPC4 (with and without ANN) outperformed
Lydersen [23], Ambrose [54,] and Constantinou and Gani
[12] models. Also,MVC4 (with and without ANN) provided
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Figure 8: AARD for the calculation of critical volume of pure compounds using di�erent �rst-order GCMs. (a) Correlation and (b)
validation.
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Figure 9: AARD for the calculation of normal boiling point, critical temperature, critical pressure, and critical volume of pure compounds
using �rst-order GCMs, and ANN. (a) Normal boiling point, (b) critical temperature, (c) critical pressure, and (d) critical volume.

Table 4: Comparison of the performance of di�erent GCMs in the calculation of critical properties and normal boiling point of pure
compounds.

Statistical metric, % MTB2 MTB2+ANN (2,3) JR CG LS F A R
AARD 4.24 3.90 5.10 7.93 — — — —
MaxARDi 28.53 32.06 48.95 100.42 — — — —
MinARDi 0.29 0.18 0.21 0.07 — — — —
σ 5.24 5.50 7.72 15.80 — — — —

MTC4 MTC4+ANN (1,7)
AARD 9.82 8.15 5.82 6.19 6.42 14.05 3.94 —
MaxARDi 56.72 60.53 128.59 35.15 182.95 79.90 40.76 —
MinARDi 0.25 4.31E-03 0.11 0.14 0.16 0.12 0.01 —
σ 10.38 10.12 15.22 6.50 19.20 16.95 5.95 —

MPC4 MPC4+ANN (2,5)
AARD 8.14 7.28 7.92 8.38 10.44 — 8.93 —
MaxARDi 46.17 45.70 48.64 36.77 34.79 — 35.70 —
MinARDi 0.49 0.31 0.62 0.02 0.22 — 0.06 —
σ 9.23 7.82 9.30 8.09 8.47 — 9.11 —

MVC4 MVC4+ANN (1,3)
AARD 3.12 3.34 4.61 7.03 4.92 4.92 — 7.40
MaxARDi 10.00 17.08 32.11 33.51 32.60 32.70 — 33.79
MinARDi 0.09 0.04 0.08 0.00 0.07 0.02 — 0.31
σ 2.75 3.38 5.72 6.06 6.07 5.66 — 7.66
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better predictions of Vc than those obtained with the models
of Riedel [52], Lydersen [23], Fedors [55], Constantinou, and
Gani [12], and Joback and Reid [11].

Finally, the performance of MTC4, MPC4, and MVC4
was compared with the ANN model proposed by
Gharagheizi et al. [6].  is ANN-based model has a
complex network con�guration with a substantial
number of weights and biases parameters (i.e., more than
2000 parameters of ANN) and, as expected, its accuracy
for the prediction of these thermodynamic properties is
high. For this comparison, the critical properties of 200
additional molecules reported by Gharagheizi et al. [6]
were estimated using the three GCMs. Figure 11 shows
the percentage deviation between the predictions gen-
erated by these models taking as a reference the result
obtained with the model of Gharagheizi et al. [6]. In
general, most of the estimated properties di�ered by less
than 10% from those calculations with the model of
Gharagheizi et al. [6]. It was clear that the �rst-order
GCMs (i.e., MTC4, MPC4, and MVC4) can predict the
critical properties of pure compounds with acceptable
accuracy compared to this complex ANN model. Note
that these results also highlighted the importance of

utilizing a reliable approach to develop and implement
GCMs for the calculation and prediction of pure com-
pound thermodynamic properties.

3.7. Perspectives and Recommendations for Future Applica-
tions of GCMs for the Calculation of Critical Properties and
Normal Boiling Point of Pure Compounds.  e estimation of
critical properties of pure compounds using predictive
models is challenging. First-order GCMs are a suitable and
straightforward alternative to perform these calculations.
However, these models can show high errors to calculate the
thermodynamic properties of compounds with high mo-
lecular weight besides the contribution values for some
functional groups are not reported.  ese drawbacks are
strongly related to the lack of experimental information on
the critical properties reported in the literature and to the
uncertainties in the databases utilized to obtain the group
contribution values.

Some e�orts still should be performed to improve the
performance of �rst-order GCMs to obtain reliable esti-
mations of critical properties of pure compounds.  ese
attempts could be focused on the following directions:
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Figure 10: Distribution ofAARD for the calculation of normal boiling point, critical temperature, critical pressure, and critical volume of pure
compounds using �rst-order GCMs, and ANN. (a) Normal boiling point, (b) critical temperature, (c) critical pressure, and (d) critical volume.
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(a) It is important to establish proper experimental
strategies to quantify the critical properties of novel
compounds and those with limited experimental data
to create a reliable experimental thermodynamic
database.  is aspect is essential for the development
of reliable GCMs with a wide applicability spectrum
to calculate the thermophysical properties of pure
compounds. In this direction, it is recommended to
recalculate the group contributions of available GCMs
after incorporating new experimental information.

(b) It is also suggested to improve the strategies based on
hybrid models GCM+ANN to estimate critical
properties of pure compounds. Other arti�cial intel-
ligence tools could also be tested for these calculations.

4. Summary and Conclusions

 is study has covered the next topics:

A comparative analysis of di�erent �rst-order GCMs
for the calculation of normal boiling point and critical
properties of pure compounds was performed.
 e incorporation of parameters associated with mo-
lecular characteristics in these thermodynamic models
(e.g., molecular weight, number of atoms, and rings)
contributed to improve their performance.
 e critical temperature was a challenging property to
be calculated, while GCMs were more accurate to es-
timate the critical volume.

 ese GCMs showed higher modeling errors in the
thermodynamic property calculation of nitrogen, al-
kanes, halogenated, and silicon compounds.  e
highest deviations were also obtained in the estimation
of critical properties and normal boiling points of
molecules with low and high molecular weights within
a homologous series, which usually did not follow the
trend of property behavior of the chemical family under
analysis.
 e incorporation of an ANN as a corrector to
improve the estimations obtained with GCMs is an
interesting approach for the simulation of thermo-
dynamic properties.  is arti�cial intelligence al-
gorithm can be used to enhance the capabilities of
models proposed in the literature including those
that are available and implemented in commercial
simulation software.
Results also showed that the predictive models incor-
porated in the commercial Aspen Plus® software can
provide inaccurate estimations of the critical thermo-
dynamic properties for some compounds.
 is study contributes with straightforward �rst-order
GCMs that can be employed to calculate the critical
volume and pressure besides the normal boiling point
of pure compounds with better accuracy than that
obtained with other models reported in the literature
even those incorporated in commercial process
simulators.
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Figure 11: Deviations between the calculations of MTC4, MPC4, and MVC4 models and the model proposed by Gharagheizi et al. [6].
(a) Critical temperature, (b) critical pressure, and (c) critical volume.
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Nomenclature

AARD: Average absolute relative deviation
Ai, Bi, Ci,
Di:

Constant parameters of the models

ARDi: Absolute relative deviation
m: Number of experimental data
MM: Molecular weight of the pure compound
MMk: Molecular weight of the functional group k

Nk: Number of repetitions of the functional group k

in the molecule of tested compound
Nr: Number of rings in the molecule
nt: Number of atoms in the molecule (except

hydrogen)
Pc: Critical pressure
pck: Contribution of the functional group k to

estimate the critical pressure
R2: Determination coefficient
σ: Standard deviation
Tb: Normal boiling point
tbk: Contribution of the functional group k to

estimate the normal boiling point
Tc: Critical temperature
tck: Contribution of the functional group k to

estimate the critical temperature
Vc: Critical volume
vck: Contribution of the functional group k to

estimate the critical volume
Y
exp
i : Experimental values of tested thermodynamic

properties (i.e., Vc, Pc, Tc,Tb)
Ycal

i : Calculated values of tested thermodynamic
properties (i.e., Vc, Pc, Tc,Tb).
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