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Accurate determinations of water (H2O) content in natural gases especially in the methane (CH4) phase are highly important for
chemical engineers dealing with natural gas processes. To this end, development of a high performance model is necessary. Due to
importance of the solubility of methane in the aqueous solutions for natural gas industries, two novel models based on the
Decision Tree (DT) and Adaptive Neuro-Fuzzy Interference System (ANFIS) have been employed. To this end, a total number of
204 real methane solubility points in aqueous solution containing NaCl under di�erent pressure and temperature conditions have
been gathered. �e comparisons between predicted solubility values and experimental data points have been conducted in visual
and mathematical approaches. �e R2 values of 1 for training and testing phases express the great ability of proposed models in
calculation of methane solubility in pure water systems.

1. Introduction

In the natural gas industry, the precision estimations of
water content in the methane-rich gas phase have vital
importance. An accurate approach is necessary for predic-
tion of vapor-liquid equilibria (VLE) of methane (CH4) and
water (H2O) binary systems. �ere are several equations of
state (EOS) to estimate VLE of CH4-H2O systems. Luedecke
et al. used the Mansoori expression and Van der Waals
equation as repulsive and attractive parts, respectively. �eir
estimation for binary systems was acceptable approximately,
but the model was not completely successful in prediction of
VLE for ternary systems [1]. Bakker used an EOS for the
ternary system of CH4-H2O-NaCl. However, this approach
does not perform well near critical points [2]. �en, Chapoy
and workers used a static-analytic apparatus to measure the
solubility of methane in H2O for conditions of 0.1–18MPa

and 275.11–313.11K. For this system, the binary interaction
coe¥cients were calculated based on the measured data to
enhance the performance of Patel–Taja EOS [3]. Moham-
madi and coworkers developed a new approach by using
mixing rules and Patel–Teja EOS [4]. After that, Haslam
used the Hudson–McCoubrey rule and expressed that in the
CH4-H2O system, and the square-well potential had better
performance than the Lennard–Jones potential [5]. Mar-
kocic implemented the Redlich–Kwong EOS to evaluate the
binary system by using nine sets of data [6]. Li and Nghiem
developed an approach to estimate the VLE of CH4-H2O-
NaCl and CH4-H2O systems based on Henry’s law and the
Peng–Robinson EOS [7]. Carroll and Mather developed a
method by using Henry’s law and the Peng–Robinson EOS
to estimate the solubility of CH4 in alkanolamines aqueous
solutions and pure H2O [8]. Wu and Prausnitz applied the
Peng–Robinson EOS to determine the Helmholtz energy for
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CH4-H2O systems [9]. Yarrison applied the Peng–Robinson
EOS and liquid model for prediction of VLE of CH4-H2O
systems. 3e model estimations concluded with the average
absolute relative deviation (AARD) of more than 6% [10].
Abudour et al. investigated the coalbed gas and water system
by using the Peng–Robinson EOS in the model; however, its
performance was not accurate [11, 12]. Li combined the
Peng–Robinson and Pitzer models for determination of the
aqueous phase and gas phase based on 18 adjustable pa-
rameters [13].3en, another method was developed by Zhao
for pure water systems in the range of 0.1–150MPa and
274–573K. 3e AARD values of 7% and 4% were deter-
mined for liquid and gas phases, respectively [14].

3ere are numerous studies on applications of machine
learning in different industries [15–18]. Najafzadeh and
Azamathulla used the neuro-fuzzy-based group method of
data handling (NF-GMDH) to estimate the scour process at
pile groups due to waves in terms of wave characteristics
upstream of group piles, arrangement of pile group, pile
spacing, geometric property, and sediment size [19].
Najafzadeh et al. employed NF-GMDG combined with the
gravitational search algorithm, genetic algorithm, and par-
ticle swarm optimization to determine scour depth [20]. In
another study, ANFIS and Support Vector Machine were
used to study the local scour depth in long contractions of
the waterway [21]. Saberi-Movahed et al. used the group
method of data handling (GMDH) in the determination of
the longitudinal dispersion coefficient (LDC) as a critical
variable in investigation of pollution profiles in the water
pipeline [22]. Nazari et al. used machine learning models to
determine energy and energy efficiencies in terms of pro-
ductivity, wind velocity, ambient temperature, nanofluid
temperature, basin temperature, solar radiation, fan power,
and nanoparticle volume fraction [23]. Najafzadeh and
Oliveto studied the scouring propagation rate around
pipelines in terms of the current angle of attack to the
pipeline, the Shields parameter, the ratio of embedment
depth to pipeline diameter, and the approaching flow Froude
number by using machine learning models [24].

3e wide application of machine learning approaches
shows that these approaches can be employed in complex
issues. 3e Adaptive Neuro-Fuzzy Interference System and
Decision Tree are two user-friendly and simple models
which can be used by engineers working in different fields
[25]. A little knowledge in machine learning can provide
ability to develop DT and ANFIS algorithms. In the present
study, Adaptive Neuro-Fuzzy Interference System and
Decision Tree algorithms have been used to predict the
solubility of methane in the pure water system. Furthermore,
the CPA-vdW [26], CPA-HV [27], and SRK-HV [28]
models have been employed to compare with proposed
model results.

2. Methodology

2.1. Experimental Databank. In order to prepare and vali-
date the ANFIS and DT algorithms, a comprehensive
databank of 470 actual methane solubility points in the pure
water system in a wide range of temperature and pressure

has been collected from various papers. 3e details of this
databank are reported in the following reference [27]. 3is
databank has been divided into 353 and 117 data points for
training and testing sets.

2.2. Adaptive Neuro-Fuzzy Interference System. In the lit-
erature for the first time, Zadeh introduced fuzzy logic (FL)
[29]. 3e capacity of alteration of linguistic variables to
mathematical forms is known as the major feature of fuzzy
logic. Sometimes, this approach fails to achieve appropriate
results because of contrasts in assessment or insufficient
data. To solve this issue, other methods including the ar-
tificial neural network (ANN) can be combined with fuzzy
logic for process modeling. 3e FL and ANN approaches
are combined together and produce a new algorithm,
namely, the Adaptive Neuro-Fuzzy Interference System
(ANFIS). 3e combination of these methods performs
based on definition of membership functions (MFs) and IF-
THEN rules. 3ere are several popular MFs including
Gaussian, triangular, generalized bell-shaped, and trape-
zoidal. In the literature, there are two structures for ANFIS
called Takagi–Sugeno and Mamdani types [30]. In the
present work, Takagi–Sugeno has been implemented be-
cause of its ability in solving the nonlinear relationship
between the output and the inputs. 3e main processes of
designing an ANFIS algorithm are shown in Figure 1. In its
different layers, there are various relations which are
explained as follows [31, 32]:

3e achievement of linguistic terms from the raw input
data occurs in the first layer. Inputs are connected to nodes
which are used for defining linguistic terms. 3is definition
is constructed by the MFs [33–35]. 3e utilized MF in this
study is the Gaussian type which described as follows:

O
1
i � exp −

(x − z)
2

2σ2
 , (1)

where O stands for the output of the first layer, and σ and z
represent the variance term and Gaussian MF center,
respectively.

3e second layer or the firing strength layer in which the
accuracy and adequacy of the previous sections conditions
are investigated. 3e formulation of firing strength is as

O
2
i � ωi � βAi(x) · βBi(x). (2)

Here, β and ω stand for MF and the rule’s firing strength.
After that, the normalization of the rule is performed in

the third layer. 3e following formulation expresses the
process of normalization:

O
3
i � ωi �

ωi

iωi

. (3)

3e fourth layer has characterized the model’s output
linguistic terms. 3e following expression is used to de-
termine the level of each rule that influences the model’s
output:

O
4
i � ωi pix1 + qix2 + r( i. (4)
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In this equation, the linear variables are obtained by
optimization of ANFIS.

Finally, the fifth layer sums up the existing rules and
changes them to a quantitative form as follows [36, 37]:

O
5
i � 

i

ωfi �
iωifi

iωi

. (5)

2.3. Decision Tree. In the recent years, one of the most
applicable machine learning tools is the decision tree clas-
sifier [38]. 3is method is constructed based on a tree-like
hierarchy to create a classification tree that has a simple
scheme in which the terminal nodes stand for decision
outputs and nonterminal nodes represent the attributes [39].
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Figure 1: 3e scheme of the ANFIS algorithm.
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Table 1: Statistical evaluation of DT and ANFIS models.

R2 MRE (%) MSE RMSE STD

ANFIS
Train 1 4.553 5.10E− 08 0.0002 0.0002
Test 1 4.624 2.00E− 08 0.0001 0.0001
Total 1 4.571 4.33E− 08 0.0001 0.0002

DT
Train 0.999 6.443 8.91E− 08 0.0003 0.0003
Test 0.999 7.356 8.99E− 08 0.0003 0.0002
Total 0.999 6.67 8.93E− 08 0.0003 0.0003
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Figure 4: Simultaneous comparison of predicted and experimental methane solubility values for (a) ANFIS (b) DT.
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In this method, the major advantage is that the classification
can have an easy visual representation. However, there are
some disadvantages that include it cannot produce multiple
outcomes, and it is approximately susceptible to the data
noise [40]. Recently, many decision trees based on C4.5 [41],
ID3 [42], the chi-square automatic interaction detector [43],
and the classification and regression tree [44] have been
suggested. 3e J48 decision tree or C4.5 algorithm has been
applied as the fundamental classifier in ensemble

frameworks. Although the C4.5 decision tree is an inter-
esting approach for classification, its estimative ability can be
enhanced by utilization of ensemble approaches [45]. In this
study, the ensemble approach, namely, bagging has been
used. It is one of the recent ensemble approaches which uses
the bootstrap sampling strategy. 3is strategy samples
randomly by replacing to produce multiple samples creating
a training subset. 3ese created subsets are used to generate
the decision tree, and at last, they are aggregated into the
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Figure 5: 3e cross plot of actual and estimated methane solubility values for (a) ANFIS (b) DT.
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final model. 3e mentioned strategy improves the classifi-
cation performance by reducing the variance in the errors
[46].3e scheme of the bagging process is shown in Figure 2.

3. Results and Discussion

In this part, the proposed ANFIS and DTmodels results have
been evaluated in different stages including training and
testing. In training of the ANFIS algorithm, particle swarm
optimization (PSO) has been used. 3e selected cost func-
tion in this work is the mean squared error function, whose
variations in terms of iterations are shown in Figure 3. After
optimization of the ANFIS algorithm, comprehensive

statistical comparison has been carried out. 3e number of
clusters, population size, and iterations in training of the
ANFIS model are 6, 65, and 1500, respectively. For DT, the
learning rate and number of additive terms are 0.1 and 300,
respectively. To this end, various indexes expressing the
quality of the match between predicted and actual methane
solubility values are determined and reported in Table 1. 3e
R2 values of 1 for both stages and low values of errors in-
cluding MRE� 4.571, MSE� 4.33045E− 08, RMSE� 0.0001,
and STD� 0.0002 for total dataset express the high ability of
the ANFIS model in estimating methane solubility in pure
water systems. 3e MRE� 4.624, MSE� 1.99892E− 08,
RMSE� 0.0001, and STD� 0.0001 in the testing phase
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Figure 6: Relative deviation between the predicted and experimental methane solubility values for (a) ANFIS (b) DT.
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confirm the performance of the developed ANFIS model for
prediction of other unseen conditions.

3e visual comparison of predicted and experimental
methane solubility values is a necessary part of evaluation of
models. To that end, the model outputs and actual methane

solubility points are shown simultaneously in Figure 4. In
addition, this excellent agreement between forecasted and
actual methane solubility values are shown by cross plot
depiction in Figure 5. As can be seen, the methane solubility
points are located on the bisector line for both phases. In
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Figure 7: Comparison of predicted and experimental methane solubility values in wide ranges of pressure and temperature for different
models.

International Journal of Chemical Engineering 7



addition, the relative deviation between forecasted and ex-
perimental methane solubility points are determined and
shown in Figure 6. It can be seen that the relative deviation
points are highly close to zero.

In the present work, three other models are borrowed
from the literature to compare with ANFIS and DT algo-
rithms in prediction of solubility of methane in pure water
systems. As shown in Figure 7, CPA-HV, CPA-vdW, SRK-
HV, DT, and ANFIS models have been employed to predict
methane solubility in different temperatures and pressures.
3is figure shows that the ANFIS algorithm has the most
accuracy between the aforementioned models. Moreover,
the accuracy of four other models can be affected by pressure
and temperature, while the accuracy of the developed ANFIS
algorithm is interesting for a full range of investigated
conditions.

4. Conclusions

3e main aim of the present work is development of in-
novative and accurate methods for estimation of the solu-
bility of methane in pure water systems for extensive ranges
of pressure and temperature. 3ese methods have been
constructed based on ANFIS and DT algorithms by using
470 methane solubility points. 3is databank has been used
in determination of optimum parameters of ANFIS and DT
algorithms in the training step and performance evaluation
of suggested ANFIS and DT algorithms in determination of
unseen methane solubility points. For ANFIS model as the
most accurate method, the determined R2, RMSE, MSE,
MRE, and STD are 1, 0.001, 4.33045E− 08, 4.571, and 0.0002,
respectively. On the other hand, results of three othermodels
from the literature have been compared with the ANFIS
algorithm. 3is comparison shows that the ANFIS model is
the best tool for estimating methane solubility in aqueous
systems. Due to these results, the present algorithms are
useful tools for chemical engineers dealing with the natural
gas industries.

Data Availability

Data are included within the manuscript.

Conflicts of Interest

3e authors declare that they have no conflicts of interest.

Acknowledgments

3is work was financially supported by the National Natural
Science Foundation of China (Grant no. 61801301), General
Support Projects of Shenzhen Colleges and Universities
(Grant no. SZWD2021002), and the Natural Science
Foundation of Top Talent of SZTU (Grant no. 2019203).

References

[1] D. Luedecke and J. M. Prausnitz, “Phase equilibria for strongly
nonideal mixtures from an equation of state with density-

dependent mixing rules,” Fluid Phase Equilibria, vol. 22, no. 1,
pp. 1–19, 1985.

[2] R. J. Bakker, “Adaptation of the bowers and helgeson (1983)
equation of state to the H2O-CO2-CH4-N2-NaCl system,”
Chemical Geology, vol. 154, no. 1-4, pp. 225–236, 1999.

[3] A. Chapoy, A. H. Mohammadi, D. Richon, and B. Tohidi,
“Gas solubility measurement and modeling for methane-
water and methane-ethane-n-butane-water systems at low
temperature conditions,” Fluid Phase Equilibria, vol. 220,
no. 1, pp. 113–121, 2004.

[4] A. H. Mohammadi, A. Chapoy, D. Richon, and B. Tohidi,
“Experimental measurement and thermodynamic modeling
of water content inmethane and ethane systems,” Industrial &
Engineering Chemistry Research, vol. 43, no. 22, pp. 7148–
7162, 2004.

[5] A. J. Haslam, A. Galindo, and G. Jackson, “Prediction of
binary intermolecular potential parameters for use in mod-
elling fluid mixtures,” Fluid Phase Equilibria, vol. 266, no. 1-2,
pp. 105–128, 2008.
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