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+e present work introduces a quantitative structure-property relationship (QSPR)-based stochastic gradient boosting (SGB)
decision tree framework for simulating and capturing of the thermal decomposition kinetics of biomass considering effective
parameters of the ultimate analysis (such as carbon, hydrogen, oxygen, nitrogen, and sulfur content) and process heating rate.
+rough a total of 149 pyrolysis kinetics, this study developed an artificial model and subjected it to training and testing phases.
+e proposed model was validated using error analysis, sensitivity, regression, and outlier detection. +e coefficient of deter-
mination (R2) andmean relative error (%MRE) were calculated to be 0.993 and 4.354%, respectively, suggesting good performance
in the estimation of the pyrolysis kinetic parameters. Also, the sensitivity results indicated the process heating rate to have the
strongest effect on the model output with a relevancy factor of 0.43. Eventually, the proposed model showed superior performance
compared to earlier frameworks.

1. Introduction

+e thermochemical pyrolysis procedure is usually per-
formed in an oxygen-free setting at 300 to 700 degrees
Celsius [1, 2]. Modeling biomass thermal breakdown ki-
netics is a challenging but critical part of pyrolysis tech-
nology [3–5].

Many semiempirical, empirical, and theoretical methods
are used to model the kinetics of biomass thermal break-
down [6–8]. For all their ability to describe thermochemical
breakdown, these models fail to account for the interactions
between biomass mixture and construction variables and are
only linked to a few key variables (such as pyrolysis duration
and heating rate) [9–11]. +at is why researchers must
discover a comprehensive approach that can include a va-
riety of factors [12, 13].

+e relationship between biomass thermal breakdown
kinetics and related process factors is complex and non-
linear, making developing a general mathematical model
difficult [14, 15]. In recent years, the application of new
methods of data analysis for complex problems in various
sciences has become widely used [16–21]. Nevertheless,
many computational intelligence methods, like the ANN
(artificial neural network) methodology and its expansions,
could successfully solve this problem [22–27]. +e pyrolysis
kinetics (mass loss) of different biomass feed-stocks have
been modeled using experimental data in many case-specific
neural models described in various researches [28, 29]. For
example, using an ANN built according to the heating ve-
locity and the reaction temperature, Çepeliogullar and
colleagues [30] could effectively model the refuse-derived
fuel mass loss throughout the pyrolysis process.
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Ahmad and colleagues were able to correctly estimate the
bulk reduction of Typha latifolia during the pyrolysis
mechanism using an ANN approach based on the speed of
warming and the reaction temperature [31]. Rasool and
others [32] created an ANN model built based on the
temperature of the reaction and rate of heating to accurately
predict walnut shell mass loss throughout the pyrolysis
mechanism. Naqvi and colleagues were able to correctly
predict the bulk degradation of rice shells and wastewater
sludge in the pyrolysis pathway, employing an ANN ap-
proach centered on warmth and combination formation
[33].

In the presence of a microalgae ash catalyst, Bong and
colleagues [34] utilized an ANN model based on warming
frequency and reaction temperature to correctly estimate the
mix bulk reduction of peanut husk and Chlorella vulgaris
throughout the pyrolysis mechanism. Bi and coworkers
reported that using an ANN design based on temperature,
warming velocity, and combining proportion, they could
accurately predict how much charcoal gangue and peanut
husk mixture would be left once the pyrolysis mechanism
was completed [35, 36]. To forecast the remaining bulk % of
the wastewater sludge and peanut husk mixture during the
pyrolysis operation, Bi and colleagues [36] utilized an ar-
tificial neural network model focused on warming velocity,
the proportion of blending, and temperature.

Despite the promising findings previously described, no
general neural methods can be established for different
biomass feed-stocks and reaction circumstances. In other
words, without retraining, neural networks which were
developed for particular biomass within selected reaction
conditions cannot be used for diverse biomass. As a result, a
broader approach to biomass feedstock and reaction con-
ditions has to be installed.

Sunphorka and coworkers [22] thus attempted to con-
struct a generic neural framework focused on biomass
constituent assessment that could forecast the pyrolysis
kinetics characteristics. +e analytical model was then used
to estimate biomass thermal breakdown kinetics using the
obtained reaction kinetic parameters. As a consequence,
they concluded that the novel method might correctly
forecast biofuel pyrolysis kinetics in the future. Additionally,
Aghbashlo and colleagues improved the Sunphorka and
colleagues’ neural models by utilizing the neurofuzzy ap-
proach refined by a particle swarm optimizing technique
[22]. Aghbashlo and colleagues [37] included the process
heating rate as an additional input variable in addition to
cellulose, lignin, and hemicellulose. +e proposed intelligent
hybrid model was able to predict the thermal breakdown
kinetic parameters accurately and, as a result, the thermal
breakdown kinetics of lignocellulosic biomass.

+is research claims that by using experimental data and
learning from them, computational intelligence methods
might generalize biomass thermal breakdown kinetics.
Despite the encouraging findings, both intelligent tech-
niques were created using lignocellulosic materials com-
positional analysis (such as lignin cellulose and
hemicellulose). Empirical kinetic, sulfuric acid hydrolysis,
and near-infrared spectroscopy techniques could be used to

analyze the composition of lignocellulosic biomass [38]. +e
retrieval of meaningful data requires statistical techniques,
even though the near-infrared spectroscopic technique is
quick and efficient. Several statistical methods include partial
least squares discriminant assessment, fundamental con-
stituent evaluation, hierarchical cluster assessment, soft
independent simulation of category similarities, k closest
neighbor, and support vector device. +e sulfuric acid hy-
drolysis technique is accurate but is a lengthy and laboring
procedure [38].

Overall, it is not easy to do a compositional study of
biomass utilizing the time-consuming, expensive, and labor-
intensive methods described previously. Also, the significant
components’ monomer concentration and chemical linkages
(especially lignin) vary significantly in lignocellulosic bio-
mass [39]. Genetic variations, regional circumstances, cli-
matic conditions, management methods, and harvest season
contribute to this diversity. It is impossible to estimate the
kinetics of the thermal decomposition of nonlignocellulosic
materials, including fats and proteins, using compositional
analysis-based algorithms. It is possible to resolve the pre-
viously mentioned problems using a widely accepted ulti-
mate analytical technique that measures lignocellulosic
biomass’s carbon, nitrogen, oxygen, hydrogen, and sulfur
content. However, because of the wide range of lignocel-
lulosic materials, it is challenging to create a comprehensive
mathematical model that links the kinetics of biomass
breakdown with its ultimate analysis. +is complex problem
may be solved using neurofuzzy methods such as the ANFIS,
ANN, LSSVM, and ELM techniques [40–42].

Consequently, based on the final evaluation utilizing
oxygen, sulfur, hydrogen, carbon, nitrogen content, and the
frequency of warming throughout themechanism, this study
sought to develop an intelligent generic framework to de-
scribe biomass pyrolysis kinetics known as the quantitative
structure-property relationship (QSPR)-based stochastic
gradient boosting (SGB) decision tree model. Generalization
of biomass pyrolysis kinetic variables from ultimate quan-
titative data and warming velocity was accomplished using
intelligent modeling. In order to perform the modeling
process, 149 actual data from previously reported work were
collected [4]. We separated 75% of this data to build the
model and kept the rest for the testing phase. In this re-
search, various statistical methods have been used to analyze
and evaluate the accuracy of the proposed model in pre-
dicting the target parameter.

2. SGB Model

Friedman’s [33] SGB is a novel variant of the statistical
learning and approximation function. It enhances regression
trees. +e SGB method calculates a simple tree sequence in
which a new tree is constructed using the prediction re-
siduals of the preceding tree [43]. Tree complexity is de-
termined by a split of a root node with two child nodes. SGB
partitions data in a stepwise procedure, calculating the
observation-residual differences of the partitions [44, 45].
+en, a new partition is established through the residual-
fitted tree-node tree. Such a partition reduces the data
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residual variance in the tree sequence. Statements are
classified, accumulating the constructed trees. +is dimin-
ishes the dependence of SGB on outliers, training datasets,
and unbalanced data.

Additionally, an ensemble learning technique (e.g.,
bagging and boosting) integrates predictions of various
models. Ensemble learning has robust performance in data
mining and machine learning applications [39]. +is ap-
proach assumes the following [46, 47]:

F(x) � α0 + 􏽘
k

k�1
αkfk(x), (1)

where k denotes the base learner and ensemble sizes, while
fk(x) stands for the function of input x from the training
dataset. Ensemble prediction (x) linearly combines the base
learner estimates, where ak􏼈 􏼉

k

0 denotes the linear combi-
nation parameters. +rough boosting, (x) is estimated based
on the following expansion [48]:

F(x) � 􏽘
k

k�0
βkg x; αk( 􏼁. (2)

It should be noted that g (x; ak), a� (a1, a2, . . .) is a
simple function of x. Expansion coefficients βk􏼈 􏼉

k
0 and pa-

rameters a{ }k
0 are fitted to the training dataset through a

forward-stage procedure that calculates estimation F0 (x).
+en,

βk, αk( 􏼁 � argminβ,α 􏽘

N

i�1
L yi, Fk−1 xi( 􏼁( 􏼁 + βg xi; α( 􏼁, (3)

Fk xi( 􏼁 � Fk−1 xi( 􏼁 + βg xi; α( 􏼁, (4)

where k is 1, 2, . . ., K. To solve equation (1), arbitrary and
differentiable loss functions are subjected to a gradient
boosting-based two-step procedure. +e base learner
function g (x; ak) is fitted to the current pseudoresiduals
yik � [zL(yi, F(xi))/zF(xi)]F(x)�Fk−1(x) through least-
square criterion αk � argminα,ρ 􏽐

N
i�1 (yik − ρg(xi; α))2.

Subsequently, the optimal coefficient is obtained as
follows:

βk � argminβ 􏽘

N

i�1
L yi, Fk−1 xi( 􏼁( 􏼁 + βg xi; α( 􏼁. (5)

+erefore, equation (2) replaces equation (1) (the
complex function optimization problem in). It utilizes least
squares and a single value optimization (equation (3)) on the
basis of the loss criterion L. SGB resolves observations close
to data model-defined decision boundaries in boosting
[49, 50]. Particular in-tree observations close to the other
classes are more likely to be identified and corrected in
boosting [51, 52].

3. Sensitivity Analysis

To explore the effects of inputs on the target, a sensitivity
analysis of the input parameters was carried out. +e effects

of the parameters were quantified by the relevancy factor as
follows [53, 54]:

r �
􏽐

n
i�1 Xk,i − Xk􏼐 􏼑 Yi − Y( 􏼁

����������������������������

􏽐
n
i�1 Xk,i − Xk􏼐 􏼑

2
− 􏽐

n
i�1 Yi − Y( 􏼁

2
􏽱 , (6)

where n denotes the total number of data points, Xk,i rep-
resents input i of parameter k, and Yi stands for output i.
Also, Xk is the average of input k, while Y is the average of
the output. +e relevancy factor varies from −1 to 1; the
parameter with a larger absolute value has a stronger in-
fluence on the target [55]. A positive (negative) relevancy
factor stands for a direct (inverse) influence. +us, it can be
said that a rise in a parameter raises (diminishes) the variable
under a positive (negative) r-value.

+e present work examined a total of 2 inputs directly
affecting the output. Figure 1 depicts the results of the
sensitivity analysis. According to Figure 1, k0 was found to
have the largest eigenvalue (relevancy factor� 0.43).

4. Preanalysis Phase

+e SGB-derived values were estimated and validated by 5
statistical measures. +e developed model was executed in
MATLAB. +e collected data were exploited in the training
phase. Nearly one-fourth of the data was utilized as the
testing dataset. Moreover, the data were normalized.

Dk � 2
x − xmin

xmax − xmin
− 1, (7)

where x represents parameter n. Also, Dk was expectedly
found to have an absolute value below 1. +e output value is
estimated by introducing the other variables as inputs to the
SGB model.

5. Outlier Detection

Differing from the data bulk, outliers may exist in large
experimental datasets and impact the reliability and
accuracy of empirical frameworks. As a result, outlier
data must be identified when developing a model, par-
ticularly in the training phase. Failure to consider par-
ticular unexplained influences would diminish model
performance. Such performance declines can be evalu-
ated by accurately examining outliers [56]. +is includes
calculating the model deviation using the associated
empirical data. Such deviations are standardized cross-
validated residuals forming the hat matrix. Previous
studies provide more detailed descriptions in this respect.
+e present work identified outliers by the leverage
process, calculating the hat matrix as follows [57]:

H � X X
T
X􏼐 􏼑

− 1
X

T
, (8)

where X is anN× pmatrix, in whichN is the total number of
data points, p is the total number of inputs, and Tdenotes the
transposed operator “−1” stands for the inverse operator.
Also, warning leverage was defined as follows:
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H
∗

�
3(p + 1)

N
. (9)

+e present work adopted a rectangular represented by
R�±3 and 0≤H≤H∗ as the feasible area. According to
Figure 2, a total of 4 outliers were identified among the data
points (457).

6. Model Development and
Verification Methodology

It is necessary to validate the model and measure its accuracy
under parameter range extensions. +e proposed model was
validated using the mean relative error (MRE), root-mean-
square error (RMSE), standard deviation (STD), mean squared
error (MSE), and the coefficient of determination (R2). +ese
measures are calculated as follows:

MRE �
100
N

􏽘

N

i�1

X
actual
i − X

predicted
i

X
actual
i

⎛⎝ ⎞⎠, (10)

RMSE �

������������������������

1
N

􏽘

N

i�1
X

actual
i − X

predicted
i􏼐 􏼑

2
􏼒 􏼓

􏽶
􏽴

, (11)

STD �
1

N − 1
􏽘

N

i�1
(error − error)⎛⎝ ⎞⎠

0.5

, (12)

MSE �
1
N

􏽘

N

i�1
X

actual
i − X

predicted
i􏼐 􏼑

2
, (13)

R
2

� 1 −
􏽐

N
i�1 X

actual
i − X

predicted
i􏼐 􏼑

2

􏽐
N
i�1 X

actual
i − X

actual
􏼐 􏼑

2 . (14)

7. Results and Discussion

Figure 3 compares the training and testing datasets of the
output values. As can be seen, the developed model showed
good predictive performance. Model validity was evaluated
using several graphical and statistical measures.

Figure 4 plots the regression results. As can be seen, the
proposed model showed good predictive power for the
output data based on the significant data density around line
Y�X.

Figure 5 plots the output versus relative error for both
datasets. According to Figure 5, the errors were found to
have a distribution concentrated around zero deviation. +e
MRE was found to be smaller than 50%, suggesting good
predictive performance.

Table 1 reports the performance evaluation measures. As
can be seen, STD, RMSE, R2, and AARD were obtained to be
small. +is is suggestive of high predictive accuracy in the
output estimates.
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Table 1: Statistical values calculated to estimate the accuracy of the proposed model.

Phase R2 MRE (%) MSE RMSE STD
Train 0.992 4.507 19.59343703 4.4264 3.5678
Test 0.995 3.892 12.52049245 3.5384 2.6979
Total 0.993 4.354 17.83706825 3.5384 3.3668
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8. Conclusions

+e present study provided new physical insights into the
estimation of the thermal decomposition kinetics of bio-
mass. A model was introduced based on SGB decision trees.
+e model was validated using training and testing data.
Furthermore, the proposed prediction approach could in-
troduce an efficient and effective measurement framework.
+e MRE was calculated to be 4.354 for this model. +e
proposed approach was found to outperform earlier works
in terms of accuracy, generalizability, and validity.
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