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�ermal conductivity (TC) of a phase change material (PCM) may be enhanced by distributing nanostructured materials (NSMs)
termed nano-PCM. It is critical to accurately estimate the TC of nano-PCM to assess heat transfer during phase transition
processes, namely, solidi�cation and melting. Here, we propose Gaussian process regression (GPR) strategies involving four
various kernel functions (KFs) (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) to
predict TC of n-octadecane as a PCM.�e accessible computational techniques indicate the accuracy of our proposed GPRmodel
compared to the previously proposed methods. In this research, the foremost forecasting strategy has been considered as a GPR
method. �is model consists of the matern KF whose R2 values of training and testing phases are 1 and 1, respectively. In the
following, a sensitivity analysis (SA) is used to explore the e�ectiveness of variables in terms of outputs and shows that the
temperature (T) of nano�uid (NF) is the most e�cient input parameter.�e work describes the physical properties of NFs and the
parameters that should be determined to optimize their e�ciency.

1. Introduction

PCMs are extensively utilized in thermal storage devices to
store heat [1].�eymay be categorized chemically as organic
PCMs (fatty acids and para�n), inorganic PCMs (salt hy-
drates and metallic), or eutectics PCMs [2]. �ough PCMs
exhibit higher latent fusion heat at relatively constant T, they
have a relatively poor TC [3]. �is has a remarkable and
considerable e�ect on the pace of PC [4, 5]. To improve the
thermal storage of PCMs, their thermal conductance must
be increased. As a result, many improvement techniques

have been suggested, including incorporating highly ther-
mally conductive materials, including metallic and graphene
porous foams [6–9] into the PCM, microencapsulation of
the PCM [10, 11], high-TC �ns [12], and integrated heat
pipes PCM [13].

High-TC NSMs have been developed and marketed
during the last several decades due to nanotechnology ad-
vancements. �ese nanostructures are made of a variety of
materials, including metallic, carbon-based, and nonmetallic
compounds [14]. NFs are a new category of heat transfer
�uids made via incorporating nanoscale components into a
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base fluid [15]. Among the alluring properties of NFs is the
increased TC as opposed to the base fluid. *e concept of
enhancing the NFs’ TCmay be used to introduce PCMs with
scattered NSMs that had increased TC compared to the basic
PCMs [16]. In contrast to stationary enhancer structures,
nanomaterials can retain the PCM’s fluidity in the liquid
state and prevent contact conductance issues; furthermore,
nano-PCMs would be recyclable [16]. Numerous researchers
have performed significant studies on the increased TC of
PCMs incorporating various nanomaterials, including oxide
nanoparticles (NPs) [17–19], carbon nanomaterials [20–22],
and metallic NPs [23, 24].

Along with standard measures of the thermophysical
characteristics of nano-PCMs, several academics have lately
proposed various experimental studies to estimate these
parameters [20, 25, 26]. Algorithms for machine learning
(ML), such as artificial neural networks (ANNs), are
founded on human neurons. *ese techniques have been
widely employed in the last few years to forecast the ther-
mophysical characteristics of newmaterials, particularly NFs
[27]. Toghraie et al. [28] investigated the dynamic viscosity
(μ) of an EG/AG NF. Ahmadi et al. [29] used the ANN
intelligent technique to determine the dynamic μ of a SiO2/
EG-H2O NF. Hemmat Esfe et al. [30], using an ANN,
predicted the μ of a MWCNTs-ZnO/5W50 nanolubricant
under various shear stresses, Ts, and volume concentrations.
Chen et al. [31] used an ANN to determine the μ of
MWCNTs-TiO2/SAE50 hybrid NFs at various shear rates,
volume fractions (VFs), and Ts. Hemmati-Sarapardeh et al.
[32] have published a paper focused on intelligent tech-
niques for the prediction of the NFs’ TC. Rostamian et al.
[33] used experimental data, ANNs, and nonlinear regres-
sion method to determine the TC of Cu-SWCNTs/EG hy-
brid NFs at various VFs and Ts. Shahsavar et al. [34] used
oleic acid as a surfactant to investigate an alumina-liquid
paraffin NF’s μ and TC. Safaei et al. [35] used an ANN to
predict the increased TC of ZnO/TiO2 in ethylene glycol as a
hybrid NF. *e authors trained the ANNs using experi-
mental data. Using a database containing 715 experimental
data, Adun and his colleagues [36] estimated the TC of
hybrid NFs. *ey accomplished this by developing support
vector regression and multiple linear regression models.
Hemmat Esfe et al. [37] utilized ANNs and response surface
methodology for predicting the TC of TiO2 in H2O NFs.
Peng et al. [38] used the ANN technique and a suggested
correlation to model the TC of an alumina/Cu-ethylene
glycol NF. Li et al. [39] presented novel correlations and an
optimumANN for measuring μ and TC of alumina-ethylene
glycol NFs based on several sets of experiments. VFs and Ts
of NPs are input to a feedforward ANN. Çolak [40] studied
the TC of ZrO2-H2O NFs at a range of concentrations and
Ts. Barewar et al. [41] examined the thermophysical char-
acteristics of Ag/ZnO-EGNFs with VFs ranging from 0.05 to
0.2 vol. % to ZnO-EG NFs. Ghazvini et al. [42] presented a
two-layered ANN for determining the TC ratio of a
CuFe2O4-H2O NF based on experimentally determined
thermal conductivities. He and his colleagues [43] used
ANNs and correlation methods to approximate the TC of a
ZnO/Ag-H2O hybrid NF. *e authors discovered that the

most precise model using an ANNmodel combined with the
Levenberg–Marquardt method. Pare and Ghosh [44] studied
the TC of Al2O3, CuO, and ZrO2 in H2ONFs.*e TC of NFs
was determined at weight concentrations ranging from 0.02
to 2% and Ts ranging from 20 to 90°C. Rostami et al. [45]
used curve fitting and ANNs to estimate the TC ratio of
graphene oxide and copper oxide antifreeze NF.

*e purpose of this research is to expand our under-
standing in a variety of ways. To begin, while the TC of NFs
has been modeled using ANN, to the authors’ information,
GPR methods for projecting the TC of nano-PCMs had not
been investigated. Secondly, since experimental TC mea-
surements of different solid-liquid nano-PCMs are costly
and time-consuming, GPR may be employed to correctly
estimate the TC of nano-PCMs. To train these models, 122
experimental data from previous research are examined,
with Ts ranging from 5°C to 60°C and mass fractions of NPs
ranging from 0.5 to 12wt. % [14, 25, 26, 46]. We used three
quarters of this data in the model making stage and the rest
in the model testing stage. Using this data, models with four
various function kernels are developed and then using
different statistical parameters, the accuracy of these models
is examined and the best model to predict the target pa-
rameter is identified.

2. Methodology (GPR Model)

We follow a nonparametric approach, to model various
inconsistent complex systems [47, 48]. In fact, we want to
use one of the benefits of this method which is the flexibility
of its algorithm to describe the uncertainty sources making it
most attractive to researchers following prediction issues
through that [49]. It is noted that the uncertainty sources are
detected by GPR models [50]. As an instance, these models
distribute the values predicted rather than only a predicted
one. In addition, this model can have the capability to add
characteristics and instruction on forms of models by
employing different KFs manually. So, a covariance function
(CovF), k(x.x′), and mean function, m(x), are used to
model time series as follows [51–53]:

y � f(x) ∼ N m(x), k x, x′( 􏼁( 􏼁, (1)

where output and input are depicted by y and x for training,
respectively. Also, f(x) describes the hidden variable of this
algorithm [54]. It is popular to select the mean function as
zero. CovF function is used to show the similarity between
input variables. Because similar inputs may make similar
outputs that are not useful for our database. *e KFs of this
study are described as follows [55, 56]:
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Where, θ1 and θ2 are the hyperparameters and must be
optimized. Also, d is the Euclidean distance of x and x′.
Matern
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Where the modified Bessel function is shown by Kv,
and a positive parameter by ] [57].
Rational quadratic

k x, x′( 􏼁 � θ21 1 +
r
2

2∝ θ22
􏼠 􏼡, (6)

where a covariance positive parameter is shown by α.
Before training the algorithm, the negative log mar-

ginalized likelihood (NLML) must be minimized and this is
done by hyperparameters of KFs as follows [58]:

NLML � −log(p(y|x, θ)) � −
1
2
log k + σ2nI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

−
1
2
y

T
k + σ2nI􏼐 􏼑

− 1
y −

n

2
log(2π).

(7)

*is is an optimization process that must reach the
minimum of θ. *is process is explained as follows:

􏽢θ � argmin − log(p(y | x, θ)). (8)

During this process, NLML is minimized by optimiza-
tion methods known as off-the-shelf methods. *ese
methods utilize a convex function. *en, the testing phase is
done to predict distribution as follows [59]:

f∗|x,y,x∗∼N f∗,cov f∗( 􏼁􏼐 􏼑,

f∗�m x,x∗( 􏼁+K x,x∗( 􏼁 K(x,x)+σ2nI􏼐 􏼑
−1

(y−m(x)),

cov f∗􏼐 􏼑�K x∗,x∗( 􏼁−K x∗,x( 􏼁 K(x,x)+σ2nI􏼐 􏼑
−1

K x,x∗( 􏼁,

(9)

where f∗ and cov(f∗ ) are the prediction results and
prediction uncertainty, respectively. *e average GPR dis-
tribution is linearly when m(x) � 0. In this case, this dis-
tribution is specified as a linear function of y used for
training (see equation (10)) and defined as follows:

f∗ � K x, x∗( 􏼁 K(x, x) + σ2nI􏼐 􏼑
− 1

y � WGPRY, (10)

where WGPR is the weighting matrix.

3. Evaluating the Accuracy of the
Gathered Databank

Here, outlier data are considered as data points. *ey have
various behaviors compared to other data. *ese outlier
data return data to the faults that occurred in the ex-
perimental method. *ese data result in false estimations
of our proposed models. So, to improve the efficiency and
integrity of our models, we must identify these kinds of
data points. We can use the leverage method to enhance
the databank quality. *is method identifies the outlier
data points by a Hat matrix defined as the following
[60, 61]:

H � U U
T
U􏼐 􏼑

− 1
U

T
, (11)

where U refers to a i∗ j dimensional matrix. *e i and j

show the number of model parameters and training points,
respectively. To test this process, a critical leverage limit is
considered as a parameter to identify the outlier data from
others. *is limit is defined as the following [62–64]:

H
∗

�
3(j + 1)

i
. (12)

Afterward, William’s plot is used to evaluate the authen-
ticity of the TC databank. As you see, the standard residuals are
shown against the Hat values in Figure 1. In Figure 1, to define
a reliable zone to use the dataset, a bounded area is considered
between the critical limitations of leverage and standard re-
siduals of −3 to 3. *en, William’s plot is used to show the
reliability of resulted TC data points. *e value of outlier data
for M, SE, E, and RQ models, was obtained 2, 3, 1, and 0,
respectively. So, they are appropriate to test and train models.

4. Results and Discussion

4.1. SA. It is noted that researchers and engineers always
track the way to identify the impact of input numbers on the
TC to suggest an accurate model. So, a SA is the best way to
achieve this goal. In this regard, they follow the relevancy
factor, r, for every input variable as follows [65–67]:

r �
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where Xk.i and Yi are the input and output, respectively. Xk

and Y are means of inputs and outputs, respectively.
*e impact of every parameter on the TC is shown in

Figure 2. Here, when the absolute value, r, of an input
number increases, it influences on the TC more and con-
versely. Additionally, here the positive value depicts that
every input variable has a direct relationship with TC.
Moreover, the results show that Ts with positive r values,
e.g., 0.98, are the most efficient variables to detect the TC.

4.2. Modeling Results. In this part, to explore the fulfillment
of suggested models, many more attempts have been per-
formed to predict the TC. Here, the assessment of the
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performance of our models is conducted in two main ways
employing graphical comparisons andmatching parameters.
To �nd out a match between the actual and predicted
databank, the matching parameters have been utilized [68].

Table 1 reports the statistical parameters calculated for
testing, training, and the whole dataset. You can see in this
table that GPR models with RQ, E, M, and SE kernel
functions have R2 values of 0.999, 1, 1, and 0.999, respec-
tively. In addition, lower values of other parameters in-
cluding STD, MSE, MRE, and RMSE during the training
phase show that they have had acceptable precision. In
particular, this acceptable value is very important regardless
of the model performance for estimating unseen TC points.

Figure 3 compares the experimental and predicted TC
values of these models simultaneously. In the GPR models,
there is a superior agreement between various GPR models
and real TC.

Here, the experimental TC of all proposed models is
exactly covered by the estimated TC. So, these models have
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Figure 1: Detection of suspected data points using Hat analysis for models: (a) M, (b) E, (c) SE, and (d) RQ.
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Figure 2: SA on the input parameters using relevancy factor for
models: (a) M, (b) E, (c) SE, and (d) RQ.
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the reliability to perform and predict TC. In the following,
Figure 4 depicts the cross plots of 4 GPR proposed models.
�ey illustrate that the whole estimated TC is placed in its
real values. We see their �tting lines and the bisector line of
the �rst quarter have near similarity. Generally, the bisector

line is used to measure the precision of the proposed models.
Precision is higher when the data are very close to the 45°line.

Next, Figure 5 shows the relative deviations (RDs) be-
tween predicted TC and real values for all suggested models.
In this study, M and KF have absolute deviation points less

Table 1: Determining statistical parameters in di�erent phases for models (a) M, (b) E, (c) SE, and (d) RQ.

Model Set R2 MRE (%) MSE RMSE STD

M
Train 1.000 0.610 2.77298E− 06 0.0017 0.0011
Test 1.000 0.465 1.0165E− 06 0.0010 0.0006
Total 1.000 0.574 2.34106E− 06 0.0010 0.0010

E
Train 0.999 0.732 6.37106E− 06 0.0025 0.0018
Test 1.000 0.639 4.38691E− 06 0.0021 0.0015
Total 1.000 0.709 5.88315E− 06 0.0021 0.0017

SE
Train 0.999 0.847 6.65673E− 06 0.0026 0.0018
Test 0.999 0.998 7.82742E− 06 0.0028 0.0019
Total 0.999 0.884 6.94461E− 06 0.0028 0.0018

RQ
Train 0.999 1.078 1.11893E− 05 0.0033 0.0022
Test 0.999 0.898 7.14543E− 06 0.0027 0.0018
Total 0.999 1.034 1.01949E− 05 0.0027 0.0021
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Figure 3: Visual and simultaneous comparison of actual and modeled output data using various KFs: (a) M, (b) E, (c) SE, and (d) RQ.
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Figure 4: Cross plot analysis to determine the accuracy of di�erent models in predicting target values using various KFs: (a) M, (b) E, (c) SE,
and (d) RQ.
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Figure 5: Continued.
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than 3%, whereas various KFs of RQ, SE, and E have less
than 4%.

5. Conclusions

In this research, we reach a high-degree match between real
and predicted TC numbers with the help of evaluation of our
suggested models and the collected databank. Our visual and
mathematical comparisons show that our GPRmodels have an
excellent capability to determine the enhanced TC of PCM-
containing oxide NPs. Moreover, the SA illustrates that there is
a direct relationship between all input parameters and TC.�is
study is a road map for the engineering communities to
forecast the behavior of the heat exchanger and that of re-
frigeration systems even though having little knowledge about
arti�cial intelligence techniques and nanoscience.
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