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Alkali metals are widely used as industrial materials in products such as electrochemical cells because of their properties that make
them suited to high temperatures. In this study, three computational approaches including gene expression programming (GEP),
least squares support vector machine (LSSVM), and adaptive neuro fuzzy inference system (ANFIS) have been suggested to
estimate density of di�erent liquid alkali metals in extensive ranges of pressure and temperature. An experimental databank
involving 595 experimental alkali metals’ densities has been gathered to prepare and test the models.  e mathematical and visual
comparisons of these models’ outputs and real density values are used to assess capacities of GEP, LSSVM, and ANFIS models in
prediction of alkali metals’ density.  e determined R-squared values for GEP, LSSVM, and ANFIS are 0.9999, 1, and 1, re-
spectively.  e MSE values are estimated to be 0.9184, 0.815, and 0.154 for GEP, ANFIS, and LSSVM, respectively. According to
these results, these models can be suggested as simple and accurate ways for determining alkali metals’ properties. Results showed
that LSSVMhas the best performance in comparison with GEP and ANFIS. Moreover, the parametric analysis of input parameters
is carried out to show the impact of them on alkali metals’ density. According to this analysis, the amount of lithium can be the
most e�ective parameter on the mixture density.

1. Introduction

 e investigation of alkali metals’ properties is one of the
interesting topics for many researchers because of their
desirable and impressive advantages in high-temperature
conditions.  ese speci�c properties such as good thermal
stability, high thermal conductivity, high boiling point, and
low vapor pressure can be applicable in low-pressure per-
formance of coolant systems at high radiation �uxes and
temperatures [1–5].  e production of magneto-hydrody-
namic and thermionic converters and high-energy elec-
trochemical cells is highly dependent on alkali metals. Liquid
form of alkali metals can be used as coolant for nuclear
power plants [6]. Typically, the applicable temperatures for
the industries mentioned above are higher than those for
which liquid metal's physical properties can be

experimentally studied. Determination of properties of alkali
metals at high-temperature conditions by experimental
methods is so di£cult because of their high level of chemical
reactivity.  e atmosphere components such as water vapor,
carbon dioxide, and oxygen can easily react with them, so it
is hard to obtain materials with high grade of purity. In
addition to this, researchers have become interested in the
bene�ts of computing works in predicting alkali metal
properties by developing a reliable and user-friendly ap-
proach [7–11]. Mousazadeh and Marageh proposed the
perturbed Lennard-Jones chain (PLJC) equation of state for
prediction of liquid density of these metals [12]. Ghatee et al.
developed the linear exp-6 isotherm and virial-like equation
to estimate thermodynamic properties of alkali systems
[13, 14]. Eslami used the Parsafar equation of state to es-
timate isothermal compressibility, isobaric expansion, and
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density of liquid metals in high temperature and pressure
[15]. Sabzevari and Mousavi predicted the density of these
liquids by using artificial neural network and a new equation
of state in different operational conditions [16, 17].

Machine learning approaches have wide applications in
different issues such as prediction of CO2 diffusion coeffi-
cient [18], CO2 viscosity [19], CO2 adsorption, pressure loss
[20, 21], performance of low salinity flooding [22], and
interfacial tension [23, 24]. Due to this ability, usingmachine
learning methods becomes an interesting topic for predic-
tion of alkali metals’ density. In the current work, three novel
models including GEP, LSSVM, and ANFIS methods are
implemented to forecast density of liquid alkali metals or
their mixtures. Furthermore, the accuracy of the collected

dataset is evaluated based on an outlier detection method.
Moreover, a new analysis is proposed to identify effects of
different parameters on density of liquid alkali metals.

2. Methodology

2.1. Experimental Dataset. *is study utilizes 595 measured
liquid density points of alkali metals and their alloys to
prepare and validate the models. *is collection of alkali
density data has been gathered from reliable sources
[25–27]. *ese data points are divided into two sets with size
of 446 and 149 points for training and testing, respectively.
*e summary of these experimental conditions is given in
Table 1.

Table 1: Details of experimental data.

System Range of temperature (K) Range of pressure (MPa)
Li 500–2000 10–100
Na 400–2000 10–100
K 400–1800 10–100
Rb 400–1600 10–100
Cs 400–1600 10–100
Na+K 400–1200 2.23×10− 7–0.409
K+Cs 350–1300 1.499×10− 8–1.1
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Figure 1: Training of LSSVM algorithm.
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2.2. Least Squares Support Vector Machine (LSSVM). A
machine learning strategy used in classification and rec-
ognition of regression pattern is called support vector
machine [28, 29]. In order to tackle drawbacks of SVM
algorithm, a new version of this approach named LSSVM is
suggested. *is algorithm applied regression error to con-
straints of optimization. In other words, LSSVM solves and
determines the regression error. *e following expression
defines the main function in this approach:

QLSSVM �
1
2
w

T
w + c 

N

k�1
e
2
k, (1)

in which c and Tpoint to regression errors’ summation and
transpose matrix. *e following constraint is related to
previous equation:

yk � w
T∅ xk(  + b + ek, k � 1, 2, . . . , N, (2)

in which, b, y, T, ek, and w are bias, output vector, transpose
matrix, regression error, and regression mass, respectively.
Furthermore, the following equation formulates mass
coefficient:

w � 
N

k�1
αk∅ xk(  , in which αk � 2cek. (3)

Rewriting the above equation based on the LSSVM
approach, we get

w � 
N

k�1
αkx

T
k x + b. (4)

*us, the multipliers of Lagrange can be expressed as
follows:

ak �
yk − b

x
T
k x +(2c)

− 1. (5)

*e aforementioned linear regression equation is
changed by applying kernel function:

f(x) � 
N

k�1
αkK xi, xj  + b, (6)

in which K(xi, xj) points to kernel function which is de-
termined by the succeeding formulation [30]:

Ωij � ∅ xi( ∅ xj  � K xi, xj . (7)

In the current paper, the radial basis kernel function is
employed:

K xi, xj  � e
− xi − x2

j

����
����/σ2 

. (8)
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Particle swarm optimization (PSO) is used to optimize
LSSVM algorithm as shown in Figure 1. *e kernel pa-
rameter (σ2) and regularization index (c) are 0.759 and
8063.72, respectively.

2.3. AdaptiveNeuro Fuzzy Inference System. Jang introduced
a new artificial intelligence method called ANFIS which
usually has five layers. A typical form of ANFIS algorithm is
prepared by utilizing optimization approaches. Actually,
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Figure 4: Trained membership function.
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ANFIS applies the abilities of neural network and fuzzy logic
approaches. *e scheme of ANFIS is shown in Figure 2. *e
first layer is defined as follows [31]:

O
1
i � β(x) � e

− (x− Z)2/2σ2
i( ), (9)

where Z and σ denote Gaussian parameters and x represent
input parameters. *e Gaussian function is used as a
membership function for this approach. *ere are several
constant nodes and weighted terms in second layer:

O
2
i � βAi(x)βBi(y), ∀i ∈ 1, 2{ }. (10)

*e weight averages are determined by the following
formulation in the third layer:

O
3
i � ωi �

ω1

ω1 + ω2
, ∀i ∈ 1, 2{ }. (11)

In the fourth layer, the weight averages and their as-
sociated functions are multiplied as follows:

O
4
i � ωifi � ωi pix + qiy + ri( , ∀i ∈ 1, 2{ }, (12)

where r, p, and q point to resulting parameters. Finally, the
output is determined as follows in the last layer [32]:

O
5
i � 

i

ωifi �
iωifi

iωi

. (13)

2.4. Gene Expression Programming Method. *e first algo-
rithm of genetic-based approaches is genetic algorithm
(GA). For long time, this approach has extensively been
applied as a useful tool for solving various problems in
petroleum and chemical industries. Afterwards, a new
version of this method called GP was developed. Based on
the scheme of this new form, the solutions of problem are
suggested in terms of function type instead of considering

them as fixed length binary systems. Nonlinear parse trees
systems are chosen as solution functions in this method
[33, 34]. After that, Ferreira proposed the GEP approach as a
new scheme of GP [35]. In the new approach, the limitations
of previous GA and GP algorithms were modified dra-
matically by achieving best solutions in regression issues.
*e GP method uses expression trees (ETs) to indicate
population individuals. In contrast to the GP approach,
linear chromosomes which express the population indi-
viduals will be altered to the genotype and phenotype
[36, 37]. *ese alterations represent expression parse trees.
According to above explanations, ET and chromosome are
known as the most important components of GEP algo-
rithm. Moreover, it is necessary to mention that the chro-
mosomes have the potential of being encoded solutions and
can be changed to actual solutions in form of ETs. *e main
parts of chromosomes are terminals and functions. *ese
functions are composed of several genes and terminals are
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made up of two types of elements including variables and
constants. For each functional gene, a head and a length can
be found in its structure. In order to determine gene’s tail,
equation (1) is applied [38]:

t � 1 +(n − 1)h, (14)

where n and h are the largest function and head function,
respectively, and t denotes the tail of gene. Figure 3 shows a
common type of two-gene chromosome which has four
functions of /,×√, and + and also three forms of terminals a,
b, and c. [37].
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3. Results and Discussion

In this work, three artificial intelligence methods including
GEP, LSSVM, and ANFIS are used to forecast liquid density
of alkali metals. Figure 4 gives information about the
membership functions of ANFIS algorithm. It shows that all
related alkali metals’ density data are normalized in range of
[− 1, 1]. A new correlation based on the GEP strategy has
been designed to estimate density of alkali metals and their
alloys. *e process of achieving best fitness for the GEP
model is shown in Figure 5. In this model, two parameters
including number of genes and their P values have great

importance, so they are shown in Figure 6. *e effect of each
node is expressed by the P value so that as the value of this
parameter becomes higher, its effectiveness deceases. On the
other hand, pop browser implements an optimal model
based on its accurate performance and minimal complexity.
As depicted in Figure 7, the performance of green point
models is better than the blue ones, but the best choice for
the model is the red circle one which has less complexity in
its scheme. *e suggested GEP-based correlation for esti-
mation of density of alkali metals is as follows:

density � A + B + C + D, (15)

RMS training set error: 0.19773 Variation explained: 99.9866 %

RMS test set error: 0.23471 Variation explained: 99.9868 %
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where the parametersA, B, C, andD are predicted as follows:

A � 0.002047P − 0.01846T + 5.442Mw − 445Cs + 12.55exp Mw/T( ),

B � 85.38exp
��
Cs

√

− 6.12 log|T| + 0.1568 log|K| + 3.906 log|Cs| − 66.53
����
Mw


,

C � 3.904
���
Cs

√
− 0.6169 tanh(P) + 146 tanh(Cs) − 100.9 tanh(Rb) + 160.9,

D � 0.2969 log Mw




��
Li

√
−
0.6169P

T
−
83.36(Li + K)

log|T|
.

(16)

P, T, and Mw are pressure (atm), temperature (K), and
molecular weight (g/mol). Cs, Li, K, and Rb represent the
amount of these elements in the mixtures.

To evaluate performance of these liquid alkali metal
density predictors, actual and estimated values are illustrated
simultaneously in Figures 8 and 9. *e predicted densities
are located near their experimental values. Additionally, the
cross plots of actual liquid metal density versus GEP, ANFIS,
and LSSVM outputs are shown in Figures 10 and 11. *is
graphical analysis shows great accuracy of the models in
estimation of liquid alkali metals’ density. *e abilities of

GEP, ANFIS, and LSSVM algorithms are confirmed in this
field.

*e efficiency of the aforementioned algorithms can be
assessed by mathematical criteria including mean squared
error (MSE), standard deviation (STD), mean relative error
(MRE), R-squared (R2), and root mean square error
(RMSE).

As shown in Table 2, the R2 coefficients for GEP, ANFIS,
and LSSVM algorithms are near one which express their
high-quality ability in prediction of alkali metals’ density. On
the other hand, low values of MSE, STD, MRE, and RMSE

Table 2: *e statistical indexes for suggested models.

R2 MRE MSE RMSE STD

GEP
Train 0.9999 0.7935 0.0391 0.8908 0.1387
Test 0.9999 0.9184 0.0551 0.9583 0.1683
Total 0.9999 0.8559 0.0471 0.9245 0.1435

ANFIS
Train 1 0.766 0.033 0.1816 0.1276
Test 1 0.815 0.0335 0.1829 0.1273
Total 1 0.778 0.0331 0.1829 0.1274

LSSVM
Train 1 0.167 0.0056 0.075 0.0693
Test 1 0.154 0.0042 0.0651 0.0592
Total 1 0.164 0.0053 0.0651 0.0668
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Figure 12: Williams plot of (a) ANFIS and (b) LSSVM.
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for training and testing steps of these models confirm their
success.

*e correctness of algorithm is highly dependent on the
precision of utilized experimental values. *e current study
implements a large number of experimental data, and it
should be considered that some of them may contain
measurement errors. Due to this fact, it is necessary to
recognize suspected experimental data during training the
models. In this paper, the leverage approach is applied to
find suspected data. According to the following equation, a
hat matrix is constructed after determining residual values
[21]:

H � X X
T
X 

− 1
X

T
. (17)

Hat matrix is determined in terms of X matrix m× n
which are number of samples and model parameters, re-
spectively. *is method is visually demonstrated by a
Williams plot which is shown in Figure 12. *e critical
leverage value (H∗) is determined by the following equation:

H
∗

�
3(n + 1)

m
. (18)

In this analysis, the number of outliers and the overall
dataset have acceptable accuracy for training models.

On the other hand, the relevancy factor is one of the
useful parameters to investigate the impacts of input pa-
rameters on target value [21]:

r �


n
i�1 Xk,i − Xk  Zi − Z( 

���������������������������


n
i�1 Xk,i − Xk 

2


n
i�1 Zi − Z( 

2
 , (19)

where Xk,i, Zi, Z, and Xk are the kth input, the target, the
target average, and the input average, respectively. *e
calculated relevancy factors for each input are shown in
Figure 13. According to this analysis, it is worthy to mention
that pressure and amount of Li and Na have straight rela-
tionship with alkali metals’ density while increasing other
parameters causes reduction in target value. Moreover, the
amount of lithium can be the most effective parameter on
the mixture density.

4. Conclusion

In this study, the estimation ability of three groups of ar-
tificial intelligence models has been assessed to calculate the
density of alkali metals in wide condition based on a large
databank in which 595 data were collected from different
research studies. Liquid alkali metals’ density is predicted by
considering composition of their alloys, molecular weight,
temperature, and pressure as input variables. Furthermore,
the training parameters of LSSVM and ANFIS algorithms
were determined by PSO, and the GEP equation was in-
troduced. *e statistical and visual analyses of the suggested
algorithms illustrate very satisfactory estimations compared
with actual data. *e determined R-squared values for GEP,
LSSVM, and ANFIS are 0.9999, 1, and 1, respectively. *e
MSE values are estimated to be 0.9184, 0.815, and 0.154 for
GEP, ANFIS, and LSSVM, respectively. *e STD values of
GEP, ANFIS, and LSSVM are 0.1683, 0.1273, and 0.0592,
respectively. Moreover, the simple and low-cost perfor-
mance of these algorithms makes them attractive for uti-
lizing in different industries.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.02

0.18

-0.72

0.90

-0.31

-0.45

-0.23

0.20
Re

le
ve

nc
y 

Fa
ct

or

T (K)
P (atm)
Mw (g/mol)
x1 (Li)

x2 (K)
x3 (Cs)
x4 (Rb)
x5 (Na)

Figure 13: Sensitivity analysis for alkali metals’ density.

International Journal of Chemical Engineering 9



Data Availability

*e experimental data used to support the findings of this
study are included within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] J. Fink and L. Leibowitz, =ermodynamic and Transport
Properties of Sodium Liquid and Vapor, Argonne National
Lab, Lemont, IL, USA, 1995.

[2] F. Sabzi, H. Eslami, and A. Boushehri, “Modified perturbed
hard-sphere equation of state for alkali metal alloys,” Journal
of Non-crystalline Solids, vol. 352, no. 28-29, pp. 3113–3120,
2006.

[3] V. Mikhailov, V. Evtikhin, I. Lyublinski, A. Vertkov, and
A. Chumanov, Lithium for Fusion Reactors and Space Nuclear
Power Systems of XXI Century, p. 528, Energoatomizdat,
Moscow, Russia, 1999.

[4] B. Alchagirov and K. B. Khokonov, “Alkali metals and their
alloys are perspective materials of modern techniques and
power engineering,” Physics and Chemistry of Perspective
Materials: =e Collection of the Proceedings, p. 40, Kabardino-
Balkarian State University KBSU, Nalchik, Russia, 1998.

[5] P. N. Bistrov, D. N. Kagan, G. A. Krechetova, and
E. E. Shpilrine, Liquid Metallic Coolant in the =ermal Pipes
and Energy Devices, p. 263, Moscow, Russia, 1988.

[6] H. U. Borgstedt and C. Guminski, “Solubilities and solution
chemistryin liquid alkali metals,” Monatshefte für Chemie/
Chemical Monthly, vol. 131, no. 9, pp. 0917–0930, 2000.

[7] H. Fu, M. Wang, P. Li et al., “Tracing knowledge development
trajectories of the internet of things domain: a main path
analysis,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 12, pp. 6531–6540, 2019.

[8] A. Yang, X. Yang,W.Wu, H. Liu, and Y. Zhuansun, “Research
on feature extraction of tumor image based on convolutional
neural network,” IEEE Access, vol. 7, pp. 24204–24213, 2019.

[9] Y. Suo, T. Liu, X. Jia, and F. Yu, “Application of clustering
analysis in brain gene data based on deep learning,” IEEE
Access, vol. 7, pp. 2947–2956, 2018.

[10] A. Yang, Y. Li, C. Liu, J. Li, Y. Zhang, and J. Wang, “Research
on logistics supply chain of iron and steel enterprises based on
block chain technology,” Future Generation Computer Sys-
tems, vol. 101, pp. 635–645, 2019.

[11] H. Fu, G. Manogaran, K. Wu, M. Cao, S. Jiang, and A. Yang,
“Intelligent decision-making of online shopping behavior
based on internet of things,” International Journal of Infor-
mation Management, vol. 50, 2020.

[12] M. H. Mousazadeh and M. G. Marageh, “A perturbed Len-
nard-Jones chain equation of state for liquid metals,” Journal
of Physics: Condensed Matter, vol. 18, no. 20, pp. 4793–4800,
2006.

[13] M. H. Ghatee and M. Bahadori, “New thermodynamic reg-
ularity for cesium over the whole liquid range,”=e Journal of
Physical Chemistry B, vol. 105, no. 45, pp. 11256–11263, 2001.

[14] M. H. Ghatee and H. Shams-Abadi, “Linear exp-6 isotherm
for compressed molten cesium over the whole liquid range
including metal− nonmetal transition and Tc,” =e Journal of
Physical Chemistry B, vol. 105, no. 3, pp. 702–710, 2001.

[15] H. Eslami, “A general equation of state for dense liquid alkali
metals,” Journal of Nuclear Materials, vol. 325, no. 2-3,
pp. 188–194, 2004.

[16] S. Sabzevari and M. Moosavi, “Density prediction of liquid
alkali metals and their mixtures using an artificial neural
network method over the whole liquid range,” Fluid Phase
Equilibria, vol. 361, pp. 135–142, 2014.

[17] M. Moosavi and S. Sabzevari, “A new equation of state for
molten alkali metal alloys,” Journal of Molecular Liquids,
vol. 174, pp. 117–123, 2012.

[18] S. Omrani, M. Ghasemi, S. Mahmoodpour, A. Shafiei, and
B. Rostami, “Insights from molecular dynamics on CO2
diffusion coefficient in saline water over a wide range of
temperatures, pressures, and salinity: CO2 geological storage
implications,” Journal of Molecular Liquids, vol. 345,
p. 117868, 2022.

[19] M. Ghasemi and M. Sharifi, “A new correlation for prediction
of CO2 viscosity: application to carbon capture and storage
(CCS) processes,” in Proceedings of the EAGE 2020 Annual
Conference & Exhibition Online, December 2020, https://
www.earthdoc.org/content/proceedings/annual-conference-
online.

[20] A. Bemani, A. Kazemi, M. Ahmadi, R. Yousefzadeh, and
M. K. Moraveji, “Rigorous modeling of frictional pressure loss
in inclined annuli using artificial intelligence methods,”
Journal of Petroleum Science and Engineering, vol. 211, Article
ID 110203, 2022.

[21] E. Khamehchi and A. Bemani, “Prediction of pressure in
different two-phase flow conditions: machine learning ap-
plications,” Measurement, vol. 173, Article ID 108665, 2021.

[22] A. Tatar, I. Askarova, A. Shafiei, and M. Rayhani, “Data-
driven connectionist models for performance prediction of
low salinity waterflooding in sandstone reservoirs,” ACS
Omega, vol. 6, no. 47, pp. 32304–32326, 2021.

[23] M. Mirzaie and A. Tatar, “Modeling of interfacial tension in
binary mixtures of CH4, CO2, and N2-alkanes using gene
expression programming and equation of state,” Journal of
Molecular Liquids, vol. 320, Article ID 114454, 2020.

[24] F. Shakeri, H. Darvish, H. Garmsiri, and A. Bemani, “Ap-
plying Fuzzy c-means approach as a novel method for pre-
diction of interfacial tension between carbon dioxide and
hydrocarbons,” Petroleum Science and Technology, vol. 36,
no. 9-10, pp. 648–653, 2018.

[25] N. Vargaftik, V. Kozhevnikov, and P. Ermilov, “Experimental
pVTdata and equation of state of liquid cesium up to 2000 K
and 600 bar,” in Proceedings of the European Conference on
=ermophysical Properties, Manchester, UK, September 1984.

[26] N. B. Vargaftik, V. A. Alekseev, V. F. Kozhevnikov,
Y. F. Ryzhkov, and V. G. Stepanov, “Equation of state of the
liquid alkali metals I,” Journal of Engineering Physics, vol. 35,
no. 5, pp. 1361–1366, 1978.

[27] N. B. Vargaftik, V. P. Kozhevnikov, and V. A. Alekseev, “An
experimental study of the equations of state of liquid alkali
metals II,” Journal of Engineering Physics and =ermophysics,
vol. 35, no. 6, pp. 1415–1419, 1978.

[28] A. Gholami, H. R. Ansari, and S. Ahmadi, “Combining of
intelligent models through committee machine for estimation
of wax deposition,” Journal of the Chinese Chemical Society,
vol. 65, no. 8, pp. 925–931, 2018.

[29] H. R. Ansari and A. Gholami, “Robust method based on
optimized support vector regression for modeling of
asphaltene precipitation,” Journal of Petroleum Science and
Engineering, vol. 135, pp. 201–205, 2015.

10 International Journal of Chemical Engineering

https://www.earthdoc.org/content/proceedings/annual-conference-online
https://www.earthdoc.org/content/proceedings/annual-conference-online
https://www.earthdoc.org/content/proceedings/annual-conference-online


[30] E. Keybondorian, H. Zanbouri, A. Bemani, and T. Hamule,
“Estimation of the higher heating value of biomass using
proximate analysis,” Energy Sources, Part A: Recovery, Utili-
zation, and Environmental Effects, vol. 39, no. 20, pp. 2025–
2030, 2017.

[31] M. Suleymani and A. Bemani, “Application of ANFIS-PSO
algorithm as a novel method for estimation of higher heating
value of biomass,” Energy Sources, Part A: Recovery, Utili-
zation, and Environmental Effects, vol. 40, no. 3, pp. 288–293,
2018.

[32] E. Keybondorian, B. Soltani Soulgani, and A. Bemani, “Ap-
plication of ANFIS-GA algorithm for forecasting oil floccu-
lated asphaltene weight percentage in different operation
conditions,” Petroleum Science and Technology, vol. 36, no. 12,
pp. 862–868, 2018.

[33] J. R. Koza and J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natural Selection,
MIT press, Cambridge, MA, USA, 1992.

[34] N. L. Cramer, “A representation for the adaptive generation of
simple sequential programs,” in Proceedings of the First In-
ternational Conference on genetic Algorithms, Hillsdale, NJ,
USA, July 1985.

[35] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” 2001, https://arxiv.org/abs/
0102027.

[36] A. Kamari, M. Arabloo, A. Shokrollahi, F. Gharagheizi, and
A. H. Mohammadi, “Rapid method to estimate the minimum
miscibility pressure (MMP) in live reservoir oil systems
during CO2 flooding,” Fuel, vol. 153, pp. 310–319, 2015.

[37] C. Ferreira, Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence, Springer, Berlin, Ger-
many, 2006.

[38] L. Teodorescu and D. Sherwood, “High energy physics event
selection with gene expression programming,” Computer
Physics Communications, vol. 178, no. 6, pp. 409–419, 2008.

International Journal of Chemical Engineering 11

https://arxiv.org/abs/0102027
https://arxiv.org/abs/0102027

