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Materials discovery is usually done using high-throughput computational screening. -e use of costly and complex direct density
functional theory (DFT) simulation methods has been commonly used to determine subtle trends in spin-state ordering and
inorganic bonding of inorganic materials and, in general, to predict the electronic structure properties of transition metal
complexes. A Gaussian process regression (GPR) framework consisting of four kernel functions is introduced for spin-state
splitting estimation through inorganic chemistry-appropriate empirical inputs. To this end, the present study reviewed an
extensive range of data values from earlier works. According to statistical analysis, the GPRmodel showed very good performance.
-e coefficients of determination were calculated to be 0.986 for the exponential and Matern kernel functions, suggesting the
highest predictive power of these methods. Moreover, the sensitivity of output to inputs was measured. Artificial intelligence (AI)
helped accurately predict the target values through various input ranges.

1. Introduction

Novel compounds, catalysts [1], and materials [2] are
routinely discovered via high-throughput computer
screening [3, 4]. Numerous screening and recognition ex-
periments still rely on first-principles modeling, but the
increased computational expense simulation means that
only a narrow subset of the chemical domain can be explored
[5, 6]. Lower thresholds of hypothesis, such as machine-
learning designs, have emerged as alternatives to traditional
methods for efficiently evaluating the latest candidate sub-
stances to speed up the exploration [7]. Computational
chemists have recently discovered a broad range of uses for
artificial neural networks (ANNs) [8–10]. -e versatility of
machine-learning methods to potential energy surfaces and,
therefore, force field simulations were first recognized

[9, 11–13]. Molecular or heterogeneous catalyst and sub-
stance exploration have lately been studied in exchange-
correlation functional advancement [8, 14], common
Schrödinger equation strategies [15], functional hypothesis
for orbital-free density [16, 17], numerous body expansions
[18], dynamics velocity [19, 20], and band-gap estimation
[21, 22] among others.

-e proper identification of widely relevant qualifiers
that allow the ANN to be used dynamically beyond particles
in the learning collection, e.g., for bigger molecules or those
with varied chemical reactions, are essential difficulties for
ANNs to substitute direct computation first-principles
techniques. ANNs have had the greatest effectiveness thus
far beyond proof-of-concept demonstrations developing
force fields for well-defined substances, such as water
[23, 24]. Tomake energetic predictions in organic chemistry,
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compositional qualifiers like the Coulomb matrix [25] or
regional chemical surroundings and adhesive descriptions
[26, 27] have been helpful when considering only a small
number of mixtures (e.g., C, H, N, and O). Molecular re-
semblance, force field advancement, numerical structure-
activity [28] correlation, and commutative group hypotheses
have all been successfully evaluated using cheminformatics
in the past. -ere are just a handful of force fields [29] for
transition metal combinations covering the whole spectrum
of inorganic chemical bonding interactions [30]. More
rigorous construction of qualifiers is needed to accurately
anticipate the characteristics of open-shell transition metal
combinations since spin state and coordination setting in-
fluence binding [31].

In the same way, qualifiers that were effective for organic
molecules are ineffective for inorganic crystalline particles
[32]. In transition metal combinations, it is well-recognized
[33, 34] that the responsiveness of electronic characteristics
(such as spin-state separation) correlates strongly with the
ligand-atom linkage and ligand-field power [35, 36]. When
substituting distantly (e.g., tetraphenyl porphyrin for base
porphin), the impact will be restricted because ligands with
the identical metal-bonding atom can have vastly distinctive
ligand-field powers (for example, C for both weakened field
CH3CN and robust field CO).-erefore, the transitionmetal
complex qualifier collection must cautiously balance metal-
proximal and metal-distant qualifiers. A second issue per-
tains to establishing ANN estimations of first-principles
characteristics in transition metal chemistry and associated
inorganic substances. Transition metal complexes cannot
benefit from efficient correlated wave function theory
techniques (e.g., MP2) because optimal procedures for
transition metal complexes remain mysterious [37]. In
transition metal chemistry, while potential paths for ANNs
involve projecting lower-level theory findings to a higher-
level hypothesis (e.g., from semiempirical assumption) [38],
as has been shown for atomization energies [39] and more
recently reaction obstacles [40], appropriate degrees of
theory for inference are less apparent. -e level of precise
(Hartree–Fock, HF) transfer to incorporate in the analysis of
transition metal combinations is also unclear. Suggestions
range from no interchange to alternatively low or large
quantities of accurate interchange in a system-dependent
way, notwithstanding inordinate delocalization faults in
approximation DFT on transition metal combinations
[35, 41, 42], with these amounts being determined by the
system. It is true that measuring uncertainty about func-
tional choice in energetic forecasts, particularly the re-
sponsiveness of projections to include precise interchange,
has garnered a lot of attention lately. To get a direct number
and understand how the exchange fraction [33, 34] affects
spin-state splitting, one must first determine how responsive
it is to interchange. To translate empirical forecasts or
provide measurements of accuracy on calculated informa-
tion, a machine-learning system that anticipates spin-state
ordering among interchange rates would be helpful.

As a general rule, any presentation of artificial intelligence
in inorganic chemistry, such as for the fast identification of
novel spin-crossover combination [43, 44], the use of dye-

sensitizers throughout solar panels [45], or the quick assess-
ment of spin-state sequencing to determine the responsiveness
of open-shell catalysts, should meet two requirements: (i)
qualifiers must integrate metal-proximal and metal-distant
properties and (ii) they must also anticipate spin-state se-
quencing when exchange-correlation blending is taking place.
Cheminformatics-inspired transition metal complex structure
creation instruments help us make progress toward both of
these goals in this study. To educate GPR, as a new method, to
anticipate the transition metal complex characteristic, we also
developed structure-functional responsiveness correlations in
transition metal combinations. In this study, various analyzes
have been used to evaluate the proposed models. Our goal is to
provide a model with high accuracy in predicting this goal
parameter.

2. GPR Model

-e present work adopted machine-learning and GPR to
handle probabilistic (Bayesian) uncertainties [46, 47]. -is
approach can simply solve complicated problems. Nonlinear
GPR techniques may be employed using small training
datasets and integrate new evidence as the data points rise in
number [48]. Overfitting is avoided to a great extent as
optimization includes fewer hyperparameters in the training
phase. -e model parameters are determined by the GPR
training dataset [49, 50]. Previous data are incorporated into
the process along with empirical data to construct the GPR
model. GPR operates based on posterior distribution cal-
culations rather than identifying the highest consistency
with empirical data, unlike traditional machine-learning
algorithms [51].

Let x be the input and y be the output. Also,
T � xT·i · yT·i 

n

i�1 denotes a random testing dataset, and L �

xL·i · yL·i 
n
i�1 is a random training dataset. GPR begins with

[52]

yL·i � f xL·i(  + εL·i, i � 1, 2, 3, . . . , n, (1)

where XL and YL are the independent variable and target,
respectively. Furthermore, ∼N(0 · σ2noiseIn) denotes the ob-
servation noise, σ2noise is the noise variance, and In is the unit
array. As a result, the Gaussian noise model connects y
values to f(x). f is assumed to be a random function com-
pletely definable by the mean functions and covariance [53].
Similarly,

yT·i � f xT·i(  + εT·i, i � 1, 2, 3, . . . , n, (2)

where XTand YTare the testing dataset independent variable
and target, respectively, f(x) is the Gaussian process dis-
tribution whose kernel function is k(x · x′), and mean
function is m(x) [54]. -us,

f xL·i(  ∼ GP m(x) · k x · x′( ( . (3)

Explicit basis functions (BFs) could be employed to
determine m(x). It should be noted that m(x) is typically
assumed to be zero for simplification purposes, since a
constant m(x) is difficult to find [55]. -erefore,
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f xL·i(  ∼ GP 0 · k x · x′( ( . (4)

-e integration of (1) and (4) gives the y distribution as
[56]

y ∼ N 0 · k x · x′(  + σ2noiseIn . (5)

Based on the aforementioned parameters [57],

⟶
fL

⟶
fT

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ N 0 ·

k xL · xL(  k xL · xLT( 

k xT · xL(  k xT · xT( 
  , (6)

⟶
εL

⟶
εT

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ∼ N 0 ·
σ2noiseIn 0

0 σ2noiseIn

⎡⎣ ⎤⎦⎛⎝ ⎞⎠. (7)

AGaussian expression is derived by summing up (6) and
(7) [58]:

⟶
fL

⟶
fT

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ N

· 0 ·
k xL · xL(  + σ2noiseIn k xL · xLT( 

k xT · xL(  k xT · xT(  + σ2noiseIn

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠.

(8)

-e Gaussian conditioning rule is used to obtain the yT
distribution (where ΣT is the covariance, and μT is the mean)
[59]:

yT|yL(  ∼ N μT · ΣT( ,

μT � m yT

�→
  � k xT · xL(  k xL · xL(  + σ2noiseIn 

− 1
yT

�→
,

ΣT � k xT · xT(  � k xT · xT(  + σ2noiseIn − k xT · xL( 

· k xL · xL(  + σ2noiseIn 
− 1

k xL · xLT( .

(9)

-e output estimate of the testing dataset can be ob-
tained by the independent variable and training dataset. -e
kernel function in the training phase (with asymmetric,
invertible matrix) strongly influences GPR predictive per-
formance. -e present study implemented the learning
technique to identify the most efficient kernel function,
manipulating the Matern, exponential, squared exponential,
and rational quadratic functions [60, 61].

-e Matern kernel is given by

kM x · x′(  � σ2
21− ]

Γ(])

��
2]

√ x − x′
ℓ

 

]

K]
��
2]

√ x − x′
ℓ

 ,

kE x · x′(  � σ2 exp −
x − x′

ℓ
 ,

kRQ x · x′(  � σ2 1 +
x − x′

2

2αℓ
⎛⎝ ⎞⎠

− α

,

kSE x · x′(  � σ2 exp −
x − x′

2

ℓ2
⎛⎝ ⎞⎠,

(10)

where α> 0 is the length scale, ℓ > 0 is the scale mixture, σ
denotes amplitude, and σ2 is the variance. Moreover, K] is
the modified Bessel function, v is a positive variable, and Γ
stands for the gamma function. For v � 0.5, the Matern
kernel converts into the exponential kernel function,
whereas v � 1.0 transforms the Matern kernel into the
squared kernel function (two particular cases of the Matern
kernel) [62, 63].

To maximize mode accuracy, 1/5 of the data was
employed as the testing dataset to measure model validity,
while the remaining data that were exploited was the
training dataset for spin-state splitting evaluation. Details of
the data are given elsewhere [64]. Performance evaluation
was carried out usingMSE, R2, STD,MRE, and RMSE.-ese
statistical indices are calculated as [65–68]

R
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(11)

3. Accuracy Estimation

A portion of data may show inconsistency with the dataset,
with some data being suspected. Such data points majorly
imply empirical errors [69, 70]. It is necessary to identify
suspected data points since they would diminish predictive
performance [71]. To detect suspected (outlier) data, the
present study adopted the leverage approach, in which
outliers are identified using the hat matrix H and critical
leverage limit H∗ [72]:

H � U U
T
U 

− 1
U

T
,

H
∗

�
3j

i + 1
,

(12)

where U is an i× j matrix, i denotes the number of pa-
rameters, and j stands for the number of training data points
[73, 74]. Figure 1 shows William’s plot of the standardized
residuals versus the hat value in order to evaluate spin-state
splitting data accuracy. -e reliable region is represented by
a critical leverage limit along with standardized results
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ranging between −3 and +3. As shown, the dataset is con-
cluded to be satisfactory for the model training and testing
phases.

4. Results and Discussion

To measure the performance of the model, the present work
utilized statistical parameters to evaluate the consistency
between the empirical data and the model estimates. Table 1
provides the comparison between the estimates and em-
pirical data.-e coefficient of determination was obtained to
be 0.985, 0.984, 0.986, and 0.986 for the rational quadratic,
squared exponential, Matern, and exponential kernels, re-
spectively. According to the STD, RMSE, MSE, and MRE
values, the GPR models showed satisfactory training per-
formance. Moreover, the models should predict spin-state
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Figure 1: Analysis to determine suspicious points using different kernel functions of the GPR model. (a) Exponential. (b) Matern. (c)
Squared exponential. (d) Rational quadratic.

Table 1: Different statistical analyzes on modeled data with dif-
ferent kernels.

Model Phase R2 MRE
(%) MSE RMSE STD

Exponential
Train 0.987 2.494 10.8342 1.5791 21.5100
Test 0.983 2.679 11.8994 1.6367 19.8056
Total 0.986 2.540 11.100 1.593 21.084

Matern
Train 0.987 2.797 13.7525 1.6725 27.5004
Test 0.983 2.974 14.6242 1.7246 24.4109
Total 0.986 2.841 13.970 1.685 26.729

Squared
exponential

Train 0.985 3.287 18.7397 1.8130 34.2635
Test 0.982 3.407 19.3987 1.8458 34.6710
Total 0.984 3.317 18.904 1.821 34.365

Rational
quadratic

Train 0.986 2.896 14.6700 1.7019 29.4079
Test 0.983 3.074 15.2871 1.7533 26.2746
Total 0.985 2.941 14.824 1.715 28.625
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splitting accurately. Hence, testing data were used to eval-
uate the models. -e GPR models with the exponential and
Matern kernels should have the highest spin-state splitting
prediction performance.

Figure 2 shows the comparison between the empirical
data and model estimates. As can be seen, the model esti-
mates well agreed with the empirical spin-state splitting data,
suggesting high accuracy for the proposed models. As a

result, the GPR models can be claimed to have excellent
performance in spin-state splitting estimation.

Figure 3 shows the comparison between the empirical
data and the predictions of the models. -e fitting of the
predictions to the corresponding empirical data points was
calculated to have correlation coefficients above 0.9816. -e
fit lines significantly cross the bisector line (45°) as the model
accuracy measure. However, the model with the exponential
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Figure 2: Simultaneous comparison of real data and its corresponding modeled data using different kernels of the GPR model. (a)
Exponential. (b) Matern. (c) Squared exponential. (d) Rational quadratic.

International Journal of Chemical Engineering 5



and Matern kernel functions showed the largest correlation
and thus the highest performance.

-e relative deviations of the empirical data and the
estimates are shown in Figure 4. According to it, the absolute
deviations of the Matern, rational quadratic, and squared
exponential kernels were calculated to be below 2000%,

whereas the exponential kernel showed an absolute devia-
tion below 1500%.

-e GPR models were found to be efficient and effective
in the estimation of spin-state splitting. To ensure the spin-
state splitting estimation performance of the proposed
models with different MOFs, the models were compared to
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Figure 3: Regression analysis on modeled data designed with different kernels of the GPR model. (a) Exponential. (b) Matern. (c) Squared
exponential. (d) Rational quadratic.
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earlier studies. Janet and his colleagues used the RMSE
statistical parameter to compare LASSO, KRR, SVR, ANN,
and KRR models in predicting this parameter [64]. By
comparing their results with the results given in Table 1 of
our study, it is proved that our proposed models have a
higher ability to predict the target data.

5. Conclusion

-e present study developed GPR models using four kernel
functions, i.e., rational quadratic, Matern, exponential, and
squared exponential kernels to evaluate spin-state splitting.
As they showed good agreement with the empirical spin-
state splitting data, the proposed models were concluded to
have high performance. However, the GPR model with the
exponential and Matern kernels showed the highest per-
formance. Moreover, a comparison of the models to earlier

works in the literature revealed that the proposed GPR
models outperformed earlier models.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.
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