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A robust machine learning algorithm known as the least-squares support vector machine (LSSVM) model was used to predict the
liquid densities of 48 di�erent refrigerant systems. Hence, a massive dataset was gathered using the reports published previously.
 e proposed model was evaluated via various analyses. Based on the statistical analysis results, the actual values predicted by this
model have high accuracy, and the calculated values of RMSE, MRE, STD, and R2 were 0.0116, 0.158, 0.1070, and 0.999, re-
spectively. Moreover, sensitivity analysis was done on the e�cient input parameters, and it was found that CF2H2 has the most
positive e�ect on the output parameter (with a relevancy factor of +50.19). Furthermore, for checking the real data accuracy, the
technique of leverage was considered, the results of which revealed that most of the considered data are reliable.  e power and
accuracy of this simple model in predicting liquid densities of di�erent refrigerant systems are high; therefore, it is an appropriate
alternative for laboratory data.

1. Introduction

An isolated subsystem is being cooled lesser than the re-
mainder of the system because of the chilling mechanism
[1–3]. Chilling procedures are mainly used in the chemical
sectors. Coolant solutions are used in chilling procedures in
this regard [4–6].  e thermodynamic characteristics of
coolants, such as liquid density, vapor density, enthalpy of
evaporation, and vapor pressure, are critical to developing
commercially viable low-temperature chilling circuits [7–9].
Research on coolants throughout the publications is ex-
tensive, but there is still a lack of empirical evidence
available, and also, the data collections are often incongruent
[10–12].

Coolants and mixes encounter a plethora of equations
about their condition documented in scienti¡c journals and
textbooks [13, 14]. Analyze and evaluate four equations
about the status and fourteen relationships for calculating

the saturated liquid density of coolants.  ey suggested the
chain of rotator group contribution (CORGC) equation
about the status as the optimal equation [15].  e fourth of
eighteen approaches provided for calculating the saturated
¤uid density of coolants.  e Hankinson and  omson
relationship is the strongest among the several correlations
[16], followed by the Riedel [17] association and the im-
proved Rackett association recommended by Spencer and
Danner [18]. To estimate several of the thermophysical
parameters of water-based solutions employed as secondary
coolants, an appropriate technique was developed by Lugo
and his colleagues [19].  e freezing temperatures, densities,
heat capacities, thermal conductions, and dynamic viscos-
ities are determined using the surplus function methodol-
ogy. As a way to forecast the density of both puri¡ed liquids
and their combinations, it developed a three-parameter
density prototype based on the “corresponding states”
method [20]. Hydro¤uoroether (HFE) and halogenated
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alkane (HA) are two adaptive categories of the investigated
novel coolant liquids generation. By employing relationships
developed by Boushehri and Mason, Sharafi and Boushehri
generalized the ISM equation of condition based on the
numerical mechanical perturbation concept for liquefied
coolant mixes [21, 22]. On 33 liquid mixtures containing 12
coolants, the equation of status has been validated. Over an
extensive temperature range of 170–369K, the density of
liquids may be forecasted with an error percentage of at most
2.8.

It was reported in 2005 that Mafloon-Azad and col-
leagues could forecast the density of condensed fluid HCFC
and HFC coolants using an analytical equation of status. +e
density of the solution and the warmth of evaporation at the
boiling temperature were used as input variables for their
status calculation [23]. +ey predicted the volumetric per-
formance of the six coolants using a modified form of the
ISM equation [24]. GMA EOS was used by Goharshadi and
Moosavi to anticipate the density of a restricted aqueous
coolant combination [25]. A straightforward method for
predicting the thermodynamic parameters of liquid coolant
mixes, particularly when the same refrigerants are com-
bined, is provided by GMA EOS, according to the re-
searchers [26].

Coolant mixes were studied by Eslami, Mehdipour, and
their colleagues, who expanded their prior study on the
coolant equation of status [27–30]. Relying on the standard
boiling point temperature and fluid density, the tempera-
ture-dependent variables of the equation of state were
computed using their prior relevant states relationship.+ey
extended their earlier suggested EOS to combinations of
coolants by using a quadratic relation established by Nasrifar
and Moshfeghian for the standard boiling point constants.
With the use of the Goharshadi–Morsali–Abbaspour
equation of status (GMA EOS), the density of eleven dif-
ferent hydrochlorofluorocarbon (HCFC) and hydro-
fluorocarbon (HFC) coolants was estimated. For estimating
fluid density, GMA EOS is adequate, according to their
findings [13, 31].

Nevertheless, it is necessary to determine the six vari-
ables by matching them to empirical evidence to utilize this
EOS as a refrigerant. Coolants were further constrained by
the usage of GMA EOS. Typically, the crucial constants are
required and several other controllable factors to construct
the abovementioned relationships or equations of status. In
addition to being time-consuming, there is no guarantee that
the optimal set of variables can be achieved. While there are
still empirical ambiguities, the establishment of statistical
methods, including neural networks that can describe and
reliably forecast the characteristics of coolants, offers a
potential path to completing this project. Several efforts have
been undertaken to calculate the thermodynamic charac-
teristics of coolants employing artificial neural networks, for
example, Chouai, Laugier, and their colleague employed
ANNs to generate PVT models of coolants with tempera-
tures ranging from 240 to 340K and pressures up to 20MPa.
+e experiment by Chouai, Laugier, and their colleague was
duplicated by Laugier and Richon, considering six different
types of coolants. An artificial neural network (ANN) was

created by Sözen, Özalp, and their colleague across the
saturated liquid vapor and also the overheated vapor zone to
determine the thermodynamic parameters of a substitute
coolant (R508b), including specific volume, enthalpy, and
entropy [32–34].

In the past few years, the application of attractive
methods of modeling and data analysis to facilitate the
solution of complex problems has attracted the attention of
many researchers and scholars [35–41]. Machine learning
algorithms have been extensively employed in a variety of
disciplines throughout the last decade [42–47]. Neuronal
networks’ capacity to simulate nearly every function steadily
and effectively is a significant factor in their fast develop-
ment and wide range of applications. Neuronal networks are
still constructed by a tedious, repetitive trial, and error
technique, despite their many possible applications. Con-
sequently, the amount of time and commitment necessary
for network development depends solely on the job at the
hand and the expertise of the engineer. As a result, a large
quantity of time and research is wasted to determine the
optimal or nearly optimal topology for a neural network
considering the intended mission.

+e LSSVM is applied during the building of machine
learning algorithms for the purpose of computing the soaked
fluid densities of purified and blended coolants throughout
this research. Our goal is to achieve an algorithm for more
accurate modeling and prediction of output data. Leveraging
the empirical evidence, a LSSVM template was developed. In
the following, using various statistical analyses, the accuracy
of this model in predicting the target data has been inves-
tigated. Also, using sensitivity analysis, we determine the
impact of each of the input parameters on the target pa-
rameter, so that the user can identify effective parameters
and use commercial industrial applications with a wider
view in a minimum of time.

2. Data Gathering

In this study, 172 data points exist in our database. Notably,
the test dataset involves 43 data points (approximately 25%)
and the training dataset includes 129 data points (approx-
imately 75%) used for testing and training the considered
models’ efficiency, respectively [48]. Also, the normalization
of the data points was performed between +1 and −1 to
enhance the considered models’ efficiency.

3. LSSVM

For pattern recognition and getting regression, the support
vector machine (SVM) is an authoritative method. +e
function of SVM is defined [49–51] as

f(x) � w
T
(x)ϕ(x) + b, (1)

where b is the bias function, φ(x) is the kernel function, and
wT is the output layers transposed vector. +e number of
input variables and data points specifies the dimension of
SVM input. Calculating w and b parameters is attainable
with cost function [52–54]:

2 International Journal of Chemical Engineering



Cost function �
1
2
wT + c∑

N

k�1
ξk − ξ∗k( ). (2)

If the cost function is minimized, the result will be the
most accurate. For the cost function presented in (2), the
restriction is as follows [55–57]:

yk − w
Tϕ xk( ) − b≤ ε + ξk , k � 1, 2, . . . , N,

wTϕ xk( ) + b − yk ≤ ε + ξ∗k , k � 1, 2, . . . , N,

ξk, ξ
∗
k ≥ 0.

(3)

yk is the output related to kth data and xk assigns to its
input.  e c parameter determines the deviation from ε,
ξk, ξ
∗
k (slack variables) are the su�cient margins of error, and

ε is the precision of the function estimations [58, 59]. A
quadratic programming problem is desirable to solve the
SVM solution. Suykenes and Vandewalle simpli¡ed the
solving process of the SVM solution by presenting the least-
squares modi¡cation of SVM [60, 61].  e suggested cost
function is speci¡ed as [62, 63]

Cost function �
1
2
wTw +

1
2
c∑
N

k�1
e2k, (4)

subjected to

yk � w
Tϕ xk( ) + b + ek, (5)

where ek is the error variable and c is the tuning parameter of
LSSVM. For the LSSVM method, Lagrangian is described as
follows (ak is the Lagrangian multipliers) [64]:

L(w, b.e.a) �
1
2
wTw +

1
2
c∑
N

k�1
e2k

−∑
N

k�1
ak w

Tϕ xk( ) + b + ek − yk( ).

(6)

 e saddle point of Lagrangian gives the ¡nal answer to
the optimization problem [65]:

zL

zw
� 0⇒w � ∑

N

k�1
akϕ xk( ),

zL

zb
� 0⇒∑

N

k�1
ak � 0,

zL

zek
� 0⇒ak � cek, k � 1, 2, . . . , N,

zL

zak
� 0⇒wTϕ xk( ) + b + ek − yk � 0 , k � 1, 2, . . . , N.

(7)

Solving the above equations gets us the LSSVM pa-
rameters. Furthermore, c kernel function parameters can be
used as the parameters of tuning. In this investigation, the
following RBF (radial basis function) is used [66]:

k x, xk( ) � exp −
xk − x

2

σ2
( ). (8)

 e σ2 (parameter of RBF) has to be set. By consid-
ering regarding minimization of di�erences between real
and estimated data, σ2 and c parameters have to be
optimized [67]:

MSE �
1
N
∑
N

i�1
Hpred.
i −Hact.

i( )
2
, (9)

where pred. and act. are the abbreviations of the forecasted
and real data, respectively. N is the number of data points
[68, 69]. It should be noted that all layers in this work are
activated using the sigmoid activation function. A schematic
of algorithm PSO-LSSVM is shown in Figure 1.

4. Results and Discussion

It is worth noting that evaluating the model’s capability was
carried out through e�ciency analysis. Hence, for examining
the considered model’s capability, di�erent statistical ana-
lyses were performed among the outputs of the model and
the actual values. ese statistical analyses involve R-squared
(R2), mean squared error (MSE), root mean square error
(RMSE), mean relative errors (MRE), and standard devia-
tions (STD) [71–74].

 e actual values are illustrated versus the model’s
outputs for the study output data at the phases of test and

Training
Data

Employ Feature
subset (σ2, γ)

Construct
LSSVM model

Training
Data

Input

Testing
Data

Training
Data

No
Evaluate the

model by training
and testing data

Return the
LSSVM using

optimum feature

Yes

Meet stopping
criterion?

PSO-
LSSVM
model

Random Division of Data
into Training and Testing

Figure 1:  e general process of the PSO-LSSVM approach [70].
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train, as shown in Figure 2.  e purpose is to estimate the
considered model with the decent agreement among the
model yields and real information and also their capability in
the prediction of output becoming prominent.

Besides, Figure 3 shows the results of regression analysis
at the phases of test and train. According to the related
literature, the statistic of R2 is prominent for indicating the
relationship between the actual value and model output.  e
main aim was to carry out a comparative analysis among real
values and model yields.  e precision of the considered
model is enhanced by approaching the ¡tted line to the
bisector line. If R2�1, the linear correlation among the
actual values and model outputs is remarkable, and it be-
comes weaker by approaching the value of R2 to zero.  e
accuracy of models used for prediction is represented
through the close-¡tting of the data points around the 45-
degree line. Based on this ¡gure, this model’s ability to
predict the target values in various phases is high [75–78].

Table 1 provides the statistical analysis results of the
considered model according to the R2, MRE, STD, and
RMSE parameters [73, 79].

Moreover, absolute relative deviation among the model
yields of output anticipated and actual values using the
examination model is shown in Figure 4 [80–82].

 e plot of William was utilized to determine the
model’s outliers.  e standardized residuals vs. hat values
are shown in Figure 5. Based on this ¡gure, down suspected
limit, upper limit, and leverage limit are three limited

Train: y = 0.9993x + 0.0104
R2 = 0.9995

Test: y = 1.0004x –0.0038
R2 = 0.9995
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Figure 3: Regression diagram to estimate density using the LSSVM
model.

Table 1: Evaluating the performance of the proposed model using
statistical analysis.

Phase R2 MRE (%) RMSE STD

LSSVM
Train 1.000 0.182 0.1045 0.1036
Test 0.999 0.158 0.1077 0.1070
Total 0.999 0.176 0.1077 0.1044
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Figure 4: Relative deviation (%) of testing and training data using
the LSSVM model.
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boundaries.  e standardized residual values of outliers are
more than three or less than −3, and their hat is more than
hat∗ (known as the value of warning leverage) and beyond
the considered model’s applicability domain [83]. Based on
this ¡gure, there are only three suspicious and uncertain
points among the entire data points [84, 85].

Eventually, for determining various input parameters’
impact on target parameters, the sensitivity analysis was
utilized [86]. More details regarding this analysis are rep-
resented elsewhere. Based on Figure 6, the direct e�ect of
CF2H2 on the considered target parameter is prominent,
which relates to the relevancy (r) factor and is equivalent to
+50.19. In contrast, the e�ect of other input parameters on
the considered target parameter is inverse, so temperature
with r equivalent to −52.35 has a prominent negative e�ect
[87,88].

5. Conclusions

 e main purpose of the present study was to examine the
prediction of the liquid density of the refrigerant systems
through a statistical model based on machine learning. For
this aim, the implementation of LSSVM was performed in
our model.  e precision of the estimation versus the actual
data points was high, and the calculated values of RMSE,
MRE, STD, and R2 were 0.0116, 0.158, 0.1070, and 0.999,
respectively. According to the statistical analysis results, the

e�ciency and performance of the considered techniques
obtained among the actual values and the outputs of the
model were veri¡ed through an excellent agreement in
model assessment during the phases of test and train.
 erefore, in contrast to the sophisticated and complex
mathematical techniques expanded for predicting output,
this model is recognized as a useful and e�cient tool for
scholars, especially in relevant ¡elds.
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article.
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