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Based on the Soave–Redlich–Kwong equation of state, empirical correlations for the K-values of N2, CO2, H2S, C1, and C2 are
proposed. Complementarily, the binary interaction coe�cients involving the plus fraction, C7+, were optimized by �tting into 131
experimental data from the literature. �e criterion to select the form of the empirical correlations was based on the identi�cation
of themajor dependencies of the equilibrium constants on the system variables (e.g., pressure, temperature, and composition). For
most of the experimental data, the saturation pressure calculated via the empirical correlations is in excellent agreement with those
reported from the laboratory. �e empirical correlations cover a variety of temperatures (128–314°F), pressures (313–6880 psi),
and compositions (N2: 0.0–1.67%; CO2: 0.0–9.11%; H2S: 0.0–3.68%; C1: 5.63–74.18%; C2: 0.84–12.45%; C7+: 10.72–83.2%). �e
proposed correlations are useful for rapid vapor-liquid equilibrium calculations during the compositional modeling of
petroleum reservoirs.

1. Introduction

In petroleum-related studies, variables such as bubble point
pressure, oil density, crude oil gravity, gas gravity, gas/oil
ratio, gas and oil formation volume factors, among others,
are of great interest. In particular, equilibrium ratios or
K-values are required in the design for the separation of
crude oil-natural gas mixtures and gas condensates.
Moreover, pipeline design strongly depends on theK-values,
which need to be determined under several operating
conditions [1]. �e K-values also take importance in the
numerical simulation of petroleum reservoirs when a
compositional approach is required, for instance, during the
simulation of enhanced oil recovery.

�e K-values can be obtained by means of analyzing a
representative sample of crude oils or by theoretical

determination using an empirically derived correlation or
equation of state. �e �rst requires several experiments,
resulting in expensive and time-consuming procedures,
whereas the last is more accessible through simulations.
Despite simulations being more accessible, when predicting
K-values, special attention is needed to avoid large calcu-
lation times or calculation failures due to the lack of con-
vergence [2].

�e conventional way to estimate theK-values is through
empirical correlations. In this regard, several correlations
have been proposed for predicting the equilibrium ratios of
hydrocarbon mixtures. �ese correlations range from a
simple mathematical expression to complicated formula-
tions containing several composition-dependent variables.
Some of these correlations are Wilson’s [3], and Standing’s
correlations [4], the convergence pressure [5] method, and
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the Whitson and Torp equation [6]. Detailed descriptions of
these correlations are available by Ahmed [7].

Nung and Tsai [8] calculated the vapor-liquid equilib-
rium for mixtures of carbon dioxide with hydrocarbons at
temperatures ranging from 193 to 511K and pressures up to
170 atm.(e researchers correlated successfully by using the
corresponding state principle in combination with classical
mixing rules using the optimum binary interaction pa-
rameters kij and the universal constant ɳ� 0.35. (e method
was verified using data from the literature.

In more recent times, Vatandoost et al. [9] developed a
model for the prediction of K-values for heavy fractions in
hydrocarbon systems (C11 to C20+). (e proposed correla-
tion considers the effects of mixture composition and binary
interaction parameters on K-values in terms of temperature
within the Peng–Robinson equation of state (PR EOS) [10].
(e proposed correlation shows a better agreement with the
PR EOS results than the methods of Whitson and Torp [6],
Rashidi and Valeh-e-Sheyda [2], and Ghafoori et al. [11].

Ahmadi et al. [12] developed a predictive model to
determine the thermodynamic equilibrium constant for
hydrocarbons and nonhydrocarbons of 10 different crude
oils (20–40°API) within a temperature range of 600–1212°R
and a pressure range of 14.7–7000 psi. (eir proposed model
was a hybrid model of LSSVM (least squares support vector
machine) and GA (genetic algorithm) and led to predictions
with good agreement of the experimental data.

On one hand, the literature is vast in terms of non-
conventional computational theories to predict crude oil
properties. For instance, Ansari and Gholami [13] focused
on the design of a smart model fusing a support vector
regressionmodel and an optimization technique for learning
the relationship between the saturation pressure and com-
positional data like temperature, hydrocarbon, and non-
hydrocarbon compositions of crudes, and C7+ specifications.
In another case, Ahmadi et al. [14] worked on a method
involving swarm intelligence and artificial neuronal net-
works as a robust and effective method to determine the
bubble point pressure of crude oil samples. A more elab-
orated theory was formulated by Fang and Lei [15] by ap-
plying a continuous thermodynamic correlation with the
Gaussian distribution function to correlate the experimental
vapor pressure data of four different crude oils. (e vapor
and liquid phase distribution functions of the fuel fractions
and their vapor-liquid equilibrium constants were calculated
with satisfactory results. Continuous thermodynamics has
proved to be an efficient way to quantitatively calculate the
thermodynamic properties and the vapor-liquid equilibrium
behavior of multicomponent systems, such as fuel fractions.

On the other hand, the equations of state are widely used
by engineers and scientists due to their versatility and ac-
curacy for different hydrocarbon mixtures. Among these
equations, the Soave–Redlich–Kwong equation of state (SRK
EOS) [16] has been extensively applied by petroleum
companies [17], and it is stated to be one of the most popular
equations of state currently used in simulations needing
thermodynamics and vapor-liquid equilibrium properties
[18]. Other specific applications of SRK include, for instance,
the description of the Brazil nut oil/carbon dioxide

considered as a pseudobinary system [19], and it has also
been employed to predict changes in viscosities with tem-
perature and pressure for light hydrocarbons, CO2, and N2
[20].

In this contribution, simple correlations for K-values in
crude oils are proposed.(e accuracy of these correlations is
evaluated by comparing the prediction of pressure satura-
tion with over 131 crude oils from the literature, ranging
over a variety of pressures, temperatures, and compositions.
We found excellent agreement when the SRK EOS is
employed with optimized binary interaction coefficients
related to the fraction C7+. (e main purpose of this work is
to avoid tedious empirical correlations with a lot of coef-
ficients without sacrificing precision.

2. Mathematical Statements

2.1. ;e Soave–Redlich–Kwong Equation of State (SRK EOS).
In this work, we employ the SRK EOS [16], which in terms of
compressibility Z is as follows:
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(e coefficients Ωa and Ωb are 0.427480 and 0.08664,
respectively. In the above equations, Tci and Pci are the
critical temperature and pressure for each chemical
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component, respectively; ωi is the acentric factor; kij rep-
resents the binary interaction coefficients. P is the pressure
system, T is the temperature, R is the ideal gas constant, nc is
the number of chemical components,xi represents the molar
fraction of component i in the liquid phase, and analogously
yi is the molar fraction in the gas phase. Once the cubic
equation (1) is solved and the correct roots are chosen (real,
positive, and minimum root for the liquid; real, positive, and
largest root for the gas), then the fugacity (fi) and fugacity
coefficient (Φi) are calculated as

f
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In all of the above equations, some mathematical ex-
pressions are written for the liquid, and the analogous ex-
pressions are easily obtained for the gas phase doing ZV

instead of ZL and yi instead of xi, wherever appropriate.

2.2. Ancillary Information. Although critical properties and
the acentric factor of pure components are reported in the
literature, these must be estimated for the C7+ fraction since
it is a pseudo-component in the compositional modeling.
(e critical properties of C7+ are estimated by Jamialahmadi
et al. [21], as shown in the following equation:

PcC7+
[atm] � 36.02 exp −0.01323MC7+

 

+ 26.12 exp −0.002561MC7+
 ,

TcC7+
[K] � 239.4 ln MC7+

  − 555.3.

(4)

In the same way, the boiling point temperature is
computed with

TbC7+
[K] � 0.0004989T

2
cC7+

+ 0.3639TcC7+
+ 20.92. (5)

With this, the acentric factor for C7+ is calculated via
Edmister’s rule, which is as follows:

ωC7+
�

3 log PC7+
[atm] 

7 TcC7+
/TbC7+

  − 1 
− 1. (6)

(e binary interaction coefficients are employed as re-
ported in the Peng–Robinson equation of state [7]; never-
theless, as shown in Table 1, the corresponding coefficients
interacting with C7+ remain unknown at this point, and they
need to be optimized to fit with the experimental data.

2.3. ;e Rachford-Rice Equation and Equilibrium. (e
Rachford-Rice equation represents the combination of
molar balances for the hydrocarbon mixture and individual
components in terms of just 1 mole of the mixture (n � 1), it
is given by
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With nV being the moles of the gas phase nV � 1 − nL,
nLare the moles in the liquid, Ki is the equilibrium coeffi-
cient, Ki � yi/xi, and zi is the global fraction mole of the
component i in the hydrocarbon mixture. As in this work,
we use the experimental values of the pressure saturation as a
means to validate the SRK results, then the Equation (7) is
forced to satisfy nV � 0 leading to
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Wenote, additionally, that in the bubble point, the global
composition equals that of the liquid, i.e., zi � xi.

At equilibrium, the fugacity for each component is equal
between liquid and gas

f
L
i � f

V
i . (9)

(is expression needs to be verified in the solution of the
SRK model. It can be straightforwardly demonstrated that
the pressure saturation can be computed once the fugacity
and fugacity coefficient are available, which is as follows:

P
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3. Results and Discussion

3.1. Estimated Binary Interaction Coefficients for the Plus
Fraction. (e saturation pressure calculated via Equation
(10) was compared against the experimental data collected in
the work of Elsharkawy [22], where 56 crude oils from the
Middle East and other 75 oils from the literature are
summarized. (ese laboratory experiments ranged over a
variety of pressures (313–6880 psi), temperatures
(128–314°F), and compositions (N2: 0.0–1.67%; CO2:
0.0–9.11%; H2S: 0.0–3.68%; C1: 5.63–74.18%; C2:
0.84–12.45%; C7+: 10.72–83.2%). Inspecting the SRK model
and the ancillary expressions in the previous section, it is
noted that the binary interaction coefficients involving the
plus fraction are the unique degrees of freedom. (us, those
parameters were tuned through one evolutive computational
algorithm where various combinations of parameters are
evaluated with the error, as shown in the following equation:

error � P
sat
exp − P

sat
SRK 

2
. (11)

(e computational objective is to find the optimum
coefficients kiC7+

minimizing such an error. In Equation (11),
Psat
exp is the experimental measurement of saturation pressure

for a given experiment and Psat
SRK is the saturation pressure

calculated with the SRK equation of state. (e iterative
procedure needs to know a priori of the equilibrium con-
stants, and then, they are recalculated through the ratio of
the fugacity coefficients
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As initial K-values, we use Wilson’s correlation [3].
We note that there is not a unique combination of binary

coefficients, and they vary for each petroleum sample. In
Figure 1, we plotted in the left column the computed binary
coefficients kN2 ,C7+

, kCO2 ,C7+
, kH2S,C7+

, kC1 ,C7+
, and kC6 ,C7+

, while
in the right column, we calculated the frequency histograms,
intending to identify one representative value for all oil
samples. (e binary coefficients do not follow a Gaussian
distribution; instead, they appear to be a Hyper-Pascal-type
distribution for most of the coefficients. Based on the dis-
tributions plotted in Figure 1, in Table 2, we summarize the
mean, mode, and standard deviations for each binary co-
efficient. According to the shape of the frequency histo-
grams, themode is a more representative value for the binary
interaction coefficients associated with the fraction plus. In
general, the binary coefficients related to N2 and CO2 are one
order of magnitude larger than the other components.

3.2. Determining the Significant Interdependency Variables.
(e equilibrium constants depend on the variables such as
the pressure and temperature, as well as the composition of
the hydrocarbon mixture and the individual critical prop-
erties of the chemical components. (is can be elucidated
from the equation of state described above. Aiming to de-
velop empirical correlations, we now focus to find the
significant dependencies of K-values with the system vari-
ables. Once the equilibrium constants are determined, they
are correlated with the hydrocarbon composition, pressure,
temperature, molecular mass, and relative gravity of the plus
fraction. (e degree of correlation was quantitatively
measured with the R2 coefficient corresponding to the best
possible fitting function (i.e., logarithmic, exponential, po-
tential, linear, etc.). To decide if one correlation is significant
or not, we adopted the following degree of correlation:

(i) Weak correlation, R2 ≤ 0.2
(ii) Intermediate correlation, 0.2<R2 ≤ 0.6
(iii) Strong correlation, 0.6<R2

Based on this classification, we present graphically in
Figure 2 the main correlations of equilibrium constants
regarding the system variables. (e equilibrium constants

presenting the major dependencies are those related to
lighter molecules, for instance, nitrogen and methane. (e
dominant variables are C1, C2, and C7+ compositions and
pressure. Among these dominant variables, the methane
content and pressure stand out as they are the unique two
variables manifesting strong correlations with the K-values
of nitrogen and methane.

3.3. Empirical Correlations of EquilibriumConstants. On the
basis of the correlation matrix depicted in Figure 2, a
multivariable fitting process was performed aiming to find
the best form of the empirical equations. (e method of
Nelder–Mead was programmed into Octave language to find
the coefficients of equations. (ese empirical equations are
the following, where the minimum error is also reported.

Equilibrium constant for N2 is as follows:

KN2
� −2.7038 ln zC1

[%] 

+ 17.8008 zC2
[%] 

−0.8381

+ 11.4078e
− 0.0227zC7+

[%]
− 5.4213ln(P[psi])

+ 46.9978,

error � 552.68.

(13)

Equilibrium constant for CO2 is as follows:

KCO2
� 16.5406 zC1

[%] 
−0.9460

+ 2.2757 zC2
[%] 

−0.6357

+ 48.0488 zC7+
[%] 

−0.0057

− 0.4710ln(P[psi]) − 43.2289,

error � 52.269.

(14)

Equilibrium constant for H2S is as follows:

KH2S � 18.4386 zC1
[%] 

−0.8601

− 1.8661 × 10− 5
zC2

[%] 
−67.2352

− 1038.6926(P[psi])−233.2401
,

error � 50.180.

(15)

Equilibrium constant for C1 is as follows:

Table 1: Binary interaction coefficients kij. Here, kij � kji.

CO2 N2 H2S C1 C2 C3 nC4 nC5 nC6 C7+

CO2 0.0 0.0 0.135 0.105 0.130 0.125 0.115 0.115 0.115 ??
N2 0.0 0.130 0.025 0.010 0.090 0.095 0.100 0.110 ??
H2S 0.0 0.070 0.085 0.080 0.075 0.070 0.070 ??
C1 0.0 0.005 0.010 0.025 0.030 0.030 ??
C2 0.0 0.005 0.010 0.020 0.020 ??
C3 0.0 0.000 0.015 0.010 ??
nC4 0.0 0.005 0.005 ??
nC5 0.0 0.000 ??
nC6 0.0 ??
C7+ 0.0
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KC1
� −0.3095ln zC1

[%]( )

+ 1.8861 + 0.2125 zC2
[%]( )

−14.9070

+ 836.5233exp −5.3164zC7+
[%]( )

+ 4298.0248(P[psi])−1.05204,
error � 28.065.

(16)

Equilibrium constant for C2 is as follows:

KC2
� −0.3798ln zC1

[%]( )

± 45.7672 + 2.3878 zC2
[%]( )

−0.2846

+ 46.8008exp −0.0002zC7+
[%]( )

+ 17.2059(P[psi])−0.4566,
error � 15.652.

(17)

Equilibrium constant for C7+ is as follows:
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Figure 1: Examples of estimated binary interaction coe�cients related to the plus fraction. Graphics in the right column are the cor-
responding frequency histograms.
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KC7+
� 2.2715exp −0.0798zC7+

[%]( )

− 0.0323 exp(−0.9389P[psi]),
error � 9.441.

(18)

In this case, the error is de�ned as

error �∑
i

Kexp
i −Kcorr

i( )2, (19)

where Kexp
i is the experimental value, while Kcorr

i is the
equilibrium constant computed from the empirical
equation.

�e equilibrium constants for medium-weight compo-
nents from C3 to C6 present weak correlations with the
variable systems. For this reason, we do not report any
empirical correlation forK-values of those components, and
instead, we collect the mean value and the standard devi-
ation in Table 3. �e user can take the mean value as a rapid
estimation of the equilibrium constant, but assuming that as
long as the standard deviation increases, then the correct
value can be more deviated. It is worth to stress that, at least
for the range of temperatures occurring in the experimental
set-up, the equilibrium constants performed a weak de-
pendency on the temperature, while other variables sig-
ni�cantly dominated the degree of correlation (see Figure 2).

It does not mean that the temperature was not considered in
our theoretical development.

3.4. Comparison of Results. To �nalize, we compared our
results against pertinent experimental data. First, in Figure 3,
we plot the saturation pressure computed with the SRK EOS
employing the optimum binary interaction coe�cients
(some of them are plotted in the left column of Figure 1).
Besides, the experimental measurements published by
Jamialahmadi et al. [21] are included to validate the nu-
merical estimations of the SRK EOS. It is clear that the SRK
EOS predicts remarkably well the experimental saturation
pressure, and only for 4 crude oils, there are appreciable
deviations. �is validated SRK EOS allows the computation
of all equilibrium constants for each crude oil sample
through all the theories described in the Mathematical
Statements section of this paper. �us, we can think about
suchK-values as true values for each crude oil. What follows
is the comparison of the equilibrium constants calculated
with the SRK EOS against the simple correlations derived
here. Figure 4 presents theK-values for N2 and C1 by way of
examples. �ere are some crude oil samples where the
equilibrium constant prediction is excellent, but there are

Table 2: Summary of binary interaction coe�cients involving the
C7+ fraction.

Binary interaction coe�cient Mean Mode Standard deviation
kN2 ,C7+

0.140 0.115 0.099
kCO2 ,C7+

0.143 0.127 0.094
kH2S,C7+

0.108 0.066 0.095
kC1 ,C7+

0.063 0.078 0.038
kC2 ,C7+

0.078 0.014 0.060
kC3 ,C7+

0.072 0.014 0.061
kC4 ,C7+

0.078 0.019 0.078
kC5 ,C7+

0.079 0.016 0.073
kC6 ,C7+

0.088 0.016 0.069
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Figure 2: Degree of correlation of equilibrium constants with the
system variables.

Table 3: Mean value and standard deviation for uncorrelated
equilibrium constants.

Ki Mean value Standard deviation
C3 0.9037 0.3875
C4 0.7258 0.8379
C5 0.5422 0.5557
C6 0.5633 0.9208

Experimental data
Optimized SRK EOS
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Figure 3: Comparison of saturation pressure using the SRK EOS
with optimized binary interaction coe�cients and laboratory data.
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also cases with large deviations. In general, the major trend is
captured by the simple empirical correlations, and they can
be easily used by reservoir engineers as needed. As men-
tioned before, the reliable empirical correlations for
K-values are useful for compositional modeling, avoiding
the need for solving iterative state equations.

4. Conclusions

Simple correlations forK-values in crude oils were proposed
using equilibrium constants computed from the Soa-
ve–Redlich–Kwong equation of state. �e new correlations
constitute a direct calculation tool with excellent predictions.
According to the methodology followed for the development
of simple correlations, it is important to highlight the main
�ndings:

(i) �e corresponding binary coe�cients interacting
with C7+ are unknown, and they were optimized to
�t the experimental data.

(ii) �ere is not a unique combination of binary co-
e�cients, and they vary for each petroleum sample.
In general, the binary coe�cients related to N2 and
CO2 are one order of magnitude larger than those
for the other components (Figure 1 and Table 2).

(iii) �e equilibrium constants presenting the major
dependencies on the system variables are those
related to the lighter molecules (N2, CO2, H2S, C1,
and C2) (see Figure 2). �e equilibrium constant for
the plus fraction presents a moderate dependency
on the pressure and its own composition.

(iv) �e degree of correlation of equilibrium constants
with the system variables is crucial to �nding the
best form of empirical equations. Following this
idea, we propose a new empirical correlation for
K-values, Equations (13)–(18).

(v) �e saturation pressure calculated with the em-
pirical correlations was compared against 131 ex-
perimental data of crude oil (Figure 3), and only for
4 cases, there were appreciable deviations.

In principle, the empirical correlations for K-values of
crude oils developed here can be reliably and straightfor-
wardly used to compute thermodynamic properties for
vapor-liquid equilibrium.
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Tri: Reduced temperature for each chemical component
xi: Molar fraction of component i in the liquid phase
yi: Molar fraction of component i in the gas phase
Z: Gas deviation factor or compressibility factor

Greek Symbols

Φi: Fugacity coe�cient
ωi: Acentric factor.

Data Availability

�e data used to support this study are included within the
article.

Conflicts of Interest

�e authors declare that they have no con¬icts of interest.

References

[1] R. A. Almehaideb, M. A. Abdulkarim, and A. S. Al-Khan-
bashi, “Improved K-values correlation for UAE crude oil
components at low pressures using PVT laboratory data,”
Fuel, vol. 80, no. 1, pp. 117–124, 2001.

[2] H. Rashidi and P. Valeh-e-sheyda, “Estimation of vapor-
liquid equilibrium ratios of crude oil components: a com-
parative study,” Fuel, vol. 140, pp. 388–397, 2015.

Optimized SRK EOS
Empirical correlation

K N
2

0

10

20

30

40

25 50 75 100 1250

Optimized SRK EOS
Empirical correlation

K C
1

25 50 75 100 1250
Crude oil sample

0
2.5

5
7.5
10

12.5
15

Figure 4: Comparison of equilibrium constants calculated with the
Soave–Redlich–Kwong EOS and the proposed empirical
correlations.

International Journal of Chemical Engineering 7



[3] G. Wilson, “A modified Redlich-Kwong EOS, Application to
general physical data calculations,” Annual AIChE National
Meeting, Cleveland, OH, USA, 1968.

[4] M. B. Standing, “A set of equations for computing equilibrium
ratios of a crude oil/natural gas system at pressures below 1,
000 psia,” Journal of Petroleum Technology, vol. 31, no. 9,
pp. 1193–1195, 1979.

[5] G. Gas, Processors Suppliers Association: Engineering Data
Book. Volume II, Section 25: Equilibrium Ratio K Data, Gas
Processors Association, Tulsa, AK, USA, 1974.

[6] C. H. Whitson and S. B. Torp, “Evaluating constant-volume
depletion data,” Journal of Petroleum Technology, vol. 35,
no. 03, pp. 610–620, 1983.

[7] T. Ahmed, Working Guide to Vapor-Liquid Phase Equilibria
Calculations, Elsevier, Oxford, UK, 2010.

[8] W. C. Nung and F. N. Tsai, “Correlation of vapor-liquid
equilibrium for systems of carbon dioxide + hydrocarbon by
the corresponding-states principle,” Chemical Engineering
Journal, vol. 66, no. 3, pp. 217–221, 1997.

[9] A. Vatandoost, M. R. Khorsand Movaghar, and S. A. Mousavi
Dehghani, “A new approach for predicting equilibrium ratios
of hydrocarbon heavy fractions: focus on the effect of mixture
composition,” Fluid Phase Equilibria, vol. 410, pp. 42–55,
2016.

[10] D. Y. Peng and D. B. Robinson, “A new two constant equation
of state,” Industrial & Engineering Chemistry Fundamentals,
vol. 15, no. 1, pp. 59–64, 1976.

[11] M. J. Ghafoori, S. F. Aghamiri, and M. R. Talaie, “A new
empirical K-value equation for reservoir fluids,” Fuel, vol. 98,
pp. 236–242, 2012.

[12] M. A. Ahmadi, S. Zendehboudi, and L. A. James, “Equilibrium
ratio of hydrocarbons and non-hydrocarbons at reservoir
conditions: experimental and modeling study,” Fuel, vol. 210,
pp. 315–328, 2017.

[13] H. R. Ansari and A. Gholami, “An improved support vector
regression model for estimation of saturation pressure of
crude oils,” Fluid Phase Equilibria, vol. 402, pp. 124–132, 2015.

[14] M. A. Ahmadi, M. Pournik, and S. R. Shadizadeh, “Toward
connectionist model for predicting bubble point pressure of
crude oils: application of artificial intelligence,” Petroleum,
vol. 1, no. 4, pp. 307–317, 2015.

[15] W. Fang and Q. Lei, “Continuous thermodynamic correlation
and calculation of vapor pressure and vapor–liquid equilib-
rium constant of hydrocarbon fuel fractions,” Fluid Phase
Equilibria, vol. 213, no. 1-2, pp. 125–138, 2003.

[16] G. Soave, “Equilibrium constants from a modified Redlich-
Kwong equation of state,” Chemical Engineering Science,
vol. 27, no. 6, pp. 1197–1203, 1972.

[17] J. N. Jaubert and R. Privat, “Relationship between the binary
interaction parameters (kij) of the Peng-Robinson and those
of the Soave-Redlich-Kwong equations of state: application to
the definition of the PR2SRK model,” Fluid Phase Equilibria,
vol. 295, no. 1, pp. 26–37, 2010.

[18] A. Pina-Martinez, R. Privat, J. N. Jaubert, and D. Y. Peng,
“Updated versions of the generalized Soave α-function suit-
able for the Redlich-Kwong and Peng-Robinson equations of
state,” Fluid Phase Equilibria, vol. 485, pp. 264–269, 2019.

[19] J. E. Rodrigues, M. E. Araújo, F. F. M. Azevedo, and
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