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Due to the desirable and interesting applications of refrigerants in organic Rankine cycles, heat pumps, and refrigeration,
engineers and researchers are becoming more interested in refrigerant properties. One of the most dominant thermophysical
properties of these fuids is their normal boiling point (Tb). In the current study, a novel extreme learning method (ELM) and
ensemble decision tree boosted algorithm (EDT Boosted) are proposed to forecast the normal boiling point from 16 diferent
molecular groups and one topological index. To this end, a total of 334 data points of Tb are gathered to prepare and test ELM and
EDT boosted algorithms. Te visual and mathematical comparisons of model outputs and real Tb express that proposed models
have great potential to predict Tb of refrigerant. Moreover, sensitivity analysis is applied to explain the efectiveness of input
parameters on the determination of Tb for refrigerants.

1. Introduction

Te fundamental of Organic Rankine Cycle (ORC), heat
pump, and refrigeration system investigations is the study of
refrigerants [1]. Te studies on refrigerants have been
highlighted recently [2–4]. Te accuracy of thermophysical
properties of materials is known as a main parameter in
process design [2, 5, 6]. However, a large number of re-
frigerants’ physical properties have been reported in the
previous research studies [7–9]. Developing alternative
desirable refrigerants is necessary because of increasing
attention to the greenhouse efect and depletion of the ozone
layer [10]. In the computer-aided molecular design (CAMD)
process for refrigerants, predicting approaches for estima-
tion of their properties are important, so highly accurate
prediction models are needed for engineers and scientists
working on this issue [11–15]. One of the important thermal
properties of refrigerants is their normal boiling point (Tb),
which has applications in the prediction of other thermal

properties. Te temperature at which the vapor pressure of
a liquid is equal to atmospheric pressure is called the normal
boiling point. Tere are several approaches to estimate Tb
[16]. Joback and Reid suggested a group contribution ap-
proach that estimates an approximation of Tb for aromatic
and aliphatic hydrocarbons [17]. Tis property can be
predicted by the summation of the contributions of all
molecular groups that exist in material structures. Tis
approach does not perform accurately, but it is an acceptable
manner for the preliminary determination of Tb. Ten,
Devotta and Pendyala upgraded the Joback approach to
estimate halogenated mixtures’ normal boiling point more
accurately [18]. Later, Constantinou and Gani proposed
a new group contribution approach involving UNIQUAC
functional-group activity coefcients (UNIFACs) group
[19]. Marrero−Morejón and Pardillo−Fontdevila presented
a group interaction contribution method [20]. After that,
Wang and workers estimated the Tb for organic materials by
position group contribution [21]. Abooali and Saboti
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improved some group contribution prediction methods by
applyingmolecular descriptors to them [22]. Deng et al. used
the artifcial neural network to estimate the Tb of refrigerants
based on a topological index and 16 molecular groups [23].

Te prediction of normal boiling points has vital im-
portance on modeling of diferent processes in refrigerants.
Te needed time and cost of experimental studies make
computational and modeling studies valuable. On the other
hand, artifcial intelligence methods have shown interesting
performance in diferent topics. In the present study, two
novel extreme learning methods (ELM) and ensemble
boosted trees (EDT Boosted) are suggested to forecast the
normal boiling point of 16 diferent molecular groups and
one topological index. Furthermore, sensitivity analysis is
applied to explain the efectiveness of input parameters on
the determination of Tb for refrigerants.

2. Methodology

2.1. Experimental Dataset Collection. In this work, a com-
prehensive dataset of normal boiling points for 334 com-
pounds, which consist of refrigerant components, is
gathered from previous works. Te data points are collected
from three reliable sources, namely, SciFinder, Molbase, and
Chemical Abstracts Service, which are provided in Deng
et al.’s paper [23]. In some research studies, in order to
achieve suitable properties for refrigerants, a classifcation
for them was suggested, that is, alcohols, amines, haloge-
nated hydrocarbons, ethers, organic compounds-alkanes,
and alkenes [11, 24]. In order to better classify molecules, the
functional groups are selected on the basis of classifcation
(see Figure 1).

2.2. Ensemble Boosted Trees (EDT Boosted). Quinlan pro-
posed decision trees (DTs) [25] is one of the popular ma-
chine learning methods which has the potential to solve
many actual problems, such as a short-term photovoltaic
power prediction, landslide spatial estimation, fash food
forecasting, and risk factor determination for using drugs
[26–29]. Te fundamental of the DT is constructed based on
the utilization of a series of rules for the identifcation of
regions which have the most homogenous outputs to inputs
on which a value is ftted to each one. Tere are some
advantages to the DT as given as follows:

(i) Tis method expresses information in an easy and
intuitive manner for visualization

(ii) It is a reliable tool for mining interactions and
nonlinear efects of various variables

(iii) No mathematical assumption is required between
input and output variables

(iv) It has the ability to handle outliers and suspected
values

On the other hand, there are some drawbacks to the DT
as given as follows:

(i) Tere are some difculties in modeling smooth
functions

(ii) Tis method is highly sensitive to training data, so
that a small alteration in training data can obtain
diferent outputs

(iii) It has low bias and high variance [30, 31]

Hence, many strategies have been suggested to improve
the predictive ability of the DT, such as ensemble boosted
trees (EDT Boosted).

EDT Boosted represents an additive regression algo-
rithm which has a simple tree individual term. Te com-
bination of boosting and regression trees is known as an
ensemble method, which uses recursive binary splits to
connect outputs to input variables. EDT Boosted uses the
advantages of DT-based approaches and also overcomes
their disadvantages [31, 32]. EDT Boosted has been used in
diferent issues, such as medical [33], ecology [34], and
banking [32]. In the current work, EDT Boosted is used for
the estimation of the normal boiling point of refrigerants for
the frst time.

By supposing x� (x1, x2, . . ., xn) as predictor vector, y
represents response. Te EDT boosted model can be trained
by the following formulation [35]:

f(x) � 
k

fk(x) � 
k

akt x, yk( , (1)

in which ak, yk, and t(x, yk) are weights of nodes, split
variables, and single decision trees, respectively.

2.3. Extreme Learning Machine. All neurons of the single
hidden layer feedforward neural networks (SLFNs) are lo-
cated in an input layer, an output layer, and a hidden layer by
considering the applied function. Tese algorithms work by
frst connecting the input layer to the input mode and then
switching it to the hidden layer. Tus, it is worthy to point
out that in ANN, hidden layers can be considered as
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Figure 1: Refrigerant groups [23].
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processors and then the output layer constructs the output
mode [36–39].

Te requirement of SLFN algorithms to diferentiable
activation functions and layered base of these algorithms
converts them to complex and inefcient algorithms. Fig-
ure 2 gives information about the scheme of ELM, which
includes the three aforesaid layers.

By considering {(xi, yi),i� 1, . . ., N} in Rn ×Rm which the
target and training values are shown by yi and xi, re-
spectively, and also dimensions of output and input data are
illustrated by m and n, respectively. For the ELM algorithm,
if the number of nodes is assumed to be L, this algorithm can
be written as follows:

fL(x) � 
L

i�1
βihi(x) � h(x)β � y, (2)

in which β� [β1, . . ., βL] and h(x)� [h1(x),. . .hL(x)] are
known as weight vector and nonlinear feature mapping. y

denotes the estimated value. Tere are diferent kinds of
functions which have the potential to be utilized in neurons
of the hidden layer, such as multiquadric, cosine, hyperbolic
tangent, and hard limit. hi(x) for real conditions is written as
follows:

hi(x) � G ai, bi, x( , (3)

in which bi ϵ R, ai ϵ Rd, and G are nonlinear diferential
functions in terms of a and b, which are hidden node pa-
rameters for the ELM estimation process. Tis approach is
constructed based on a two-step learning system of prep-
aration of SLFN, including random feature mapping and
linear parameter solution. As a frst step, ELM uses input
weights and hidden biases to estimate the mapping matrix of
the hidden layer of transferring feature space. As a second
step, the weights of the hidden layer should be connected to
outputs, which is done by β. Tese parameters will be de-
termined by the minimum squared error as follows:

min

βϵRL×m
‖y − u‖2, (4)

in which u and ||.|| point to the matrix of hidden layer
outputs and Frobenius norm. “u” is defned as follows:

u �

u1 x1(  · · · uL x1( 

⋮ ⋱ ⋮

u1 xN(  · · · uL xN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Also, y points to the target matrix, which is expressed as
follows:

y �

y11 · · · y1m

⋮ ⋱ ⋮

y1 · · · yNm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Equation (4) can be solved by the following formulation:

β∗ � u
c
y, (7)

in which uc denotes the Moore−Penrose inverse of u which
can be rewritten with substitution by (uTu)− 1uT as follows
[40, 41]:

β∗ � u
T
u 

− 1
u

T
y, (8)

in which uT is the transpose of u.

3. Results and Discussion

In this study, ELM and EDT boosted algorithms were de-
veloped to estimate Tb for diferent refrigerants based on the
molecular groups and one topological index. To this end, the
activation function of the ELM algorithm is chosen as the
sigmoid function and also the initial weights of inputs are
made randomly in the range of −1 to 1. Moreover, the cross-
validation method is used to determine the number of
hidden layer neurons [42]. Tis parameter is equal to 10 for
normal boiling point calculation. Te general performance
of ELM and EDT boosted algorithms in the prediction of
normal boiling point is evaluated by the following error
measurements [43, 44]:

Mean  squared  error(MSE) �
1
N
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Figure 2: Scheme of ELM.
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Mean  relative  error(MRE) �
100
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(9)

Te results of the abovementioned error measurements
are inserted in Table 1. In the prediction of Tb, R2 � 0.995,
MRE� 1.08, MSE� 25.96, RMSE� 5.16, and STD� 3.76 are
determined for the overall process of the ELM. Furthermore,
the details of the training and testing phases are reported in
this table. Tis error analysis shows the high ability of ELM
in estimation of the refrigerant’s normal boiling point.
Another powerful approach for assessing the suitability of
the ELM in the estimation of Tb is visual comparison of
model outputs and real Tb values, as shown in Figure 3.

Moreover, the cross plot of actual normal boiling point
versus experimental value is depicted in Figure 4 which
illustrates that Tb points lie on the bisector line.

On the other hand, predicted Tb values have great
agreement with their real ones. On the one hand, relative
deviations between model outputs and experimental normal
boiling points are calculated (see Figure 5). It is shown that
determined values are near the x axis, so the proposed
models have interesting potential in the prediction of normal
boiling point. Te accuracy of models shows their potential

Table 1: Statistical analysis of EDT boosted and ELM algorithms.

Model Phase R 2 MRE (%) MSE RMSE STD

EDT
Train 0.995 1.22 25.59 5.06 3.18
Test 0.995 1.32 27.89 5.28 3.46
Total 0.995 1.25 26.16 5.11 3.25

ELM
Train 0.995 1.07 25.74 5.07 3.74
Test 0.995 1.11 26.63 5.16 3.83
Total 0.995 1.08 25.96 5.16 3.76
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Figure 3: Simultaneous comparison of estimated and actual normal boiling point. (a) EDT boosted and (b) ELM.
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to be used in the estimation of the normal boiling point of
refrigerants.Tese models can be employed easily; therefore,
the construction of accurate software based on these models
is possible and reasonable.

In the current work, a new analysis called sensitivity is
used to show efects of diferent molecular descriptors on the
normal boiling point of refrigerants. In this method, the
relevancy factor (r) is defned for each molecular group as
follows [45]:

r �


n
i�1 Xk,i − Xk  Zi − Z( 

��������������������������


n
i�1 Xk,i − Xk 

2


n
i�1 Zi − Z( 

2
 , (10)

where Zi, Z , Xk,i,and Xk are experimental Tb, the average of
Tb, kth of input, and the average of inputs. Figure 6 illustrates
the value of r for each molecular descriptor. In this method,
the negative value of r expresses that as the number of

associated molecular group increases in refrigerant mole-
cules, the normal boiling point will decrease.

Furthermore, the range of this parameter lies between −1
and 1. Te absolute value of r represents the intensity of the
efect of the molecular group on the normal boiling point.

Te correctness of the predictingmodel is function of the
accuracy of the utilized real data [46, 47]. Te present study
employs some experimental data related to the normal
boiling points of refrigerants, so they may have some
measurement errors. For the abovementioned reasons,
identifcation of suspected experimental data becomes
necessary [48]. Te leverage method is one of the applicable
approaches to this problem.Tismethod uses a matrix called
Hat to obtain the following criteria [49, 50]:

H � X X
T
X 

− 1
X

T
. (11)
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Figure 4: Cross plot of experimental and estimated normal boiling point. (a) EDT boosted and (b) ELM.
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Figure 5: Relative deviation between predicted and experimental normal boiling point (a) EDT boosted (b) ELM.
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Tis matrix is obtained as a function of X matrix s× t
which denotes the number of samples and model variables,
respectively. Another major parameter of this method is the
critical leverage value (H∗) which is shown as follows [51]:

H
∗

�
3(t + 1)

s
. (12)

As shown in Figure 7, the reliable area for experimental
data is defned as the zone inbounded between red and green
lines. Te main number of normal boiling points is placed in
a reliable zone, so the overall databank is dependable for
preparing models.

4. Conclusions

In the present study, novel ELM and EDT boosted algo-
rithms are used to predict the normal boiling point of re-
frigerants in terms of 16 molecular groups and the topology
index EATII. Te suggested outputs and actual Tb have been
compared by diferent methods, including simultaneous
visual comparison, cross plot, relative error depiction, and
statistical analysis. Tese comparisons confrm the high
ability of algorithms in the estimation of Tb. In addition,
sensitivity analysis is applied to distinguish the efect of
molecular descriptors on the determination of Tb for re-
frigerants. Finally, it is recommended to employ other
available machine learning models trained on a wider
databank for the utilization as software.Tesemodels should
be compared with each other to choose the most
accurate model.

Nomenclature

Tb: Boiling point
ELM: Extreme learning method
EDT: Ensemble decision tree
CAMD: Computer-aided molecular design
UNIFAC: UNIQUAC functional-group activity coefcients
ORC: Organic rankine cycle
SLFN: Single hidden layer feedforward neural network
MSE: Mean squared error
MRE: Mean relative error
RMSE: Root mean square error
STD: Standard deviation
R2: R-squared
r: Relevancy factor.
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