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This paper addresses the problem of parameter estimation for the microbial continuous fermentation of glycerol to 1,3-
propanediol. A nonlinear dynamical system is first presented to describe the microbial continuous fermentation. Some
mathematical properties of the dynamical system in the microbial continuous fermentation are also presented. A parameter
estimation model is proposed to estimate the parameters of the dynamical system. The proposed estimation model is a large-
scale, nonlinear, and nonconvex optimization problem if the number of experimental groups is large. A sequential geometric
programming (SGP) method is proposed to efficiently solve the parameter estimation problem. The results indicated that our
proposed SGP method can yield smaller errors between the experimental and calculated steady-state concentrations than the
existing seven methods. For the five error indices considered, that is, the concentration errors of biomass, glycerol, 1,3-
propanediol, acetic acid, and ethanol, the results obtained using the proposed SGP method are better than those obtained using
the methods in the literature (Xiu et al., Gao et al,, Sun et al.,, Sun et al., Li and Qu, Wang et al., and Zhang and Xu), with
improvements of approximately 71.86-95.03%, 52.08-94.87%, 99.70-99.98%, 5.39-90.29%, and 12.67-80.83%, respectively.
This concludes that the established dynamical system can better describe the microbial continuous fermentation. We also
present that our established dynamical system has multiple positive steady states in some fermentation conditions. We observe
that there are two regions of multiple positive steady states at relatively high values of substrate glycerol concentration in feed

medium.

1. Introduction

1,3-Propanediol (1,3-PDO) plays a key role in many industry
fields, as it has extensive applications on a large commercial
scale [1, 2]. In the production of 1,3-PDO, the microbial
fermentation of glycerol to 1,3-PDO is attracting extensive
attention because of its green production process [1]. In
recent years, much research has been directed toward the
development of the microbial fermentation process of
glycerol, including the metabolic engineering and synthetic
biology strategies in the biomanufacturing of 1,3-PDO and
the mathematical modeling, optimization, and control of
such processes [1, 3-35]. For example, Zhu et al. [1] reviewed
the advances in metabolic engineering and synthetic biology

techniques in the microbial production of 1,3-PDO. Fokum
et al. [3] reviewed the recent developments in the bio-
manufacturing strategies of 1,3-PDO from glycerol. Wang
et al. [4] reprogrammed the metabolism of Klebsiella
pneumoniae to efficiently produce 1,3-PDO. The conducted
metabolic engineering manipulations can dramatically re-
duce the accumulation of acetate. Lee et al. [5] reviewed the
advances in biological and chemical techniques for the 1,3-
PDO production from glycerol. Asopa et al. [6] used Sac-
charomyces cerevisiae to produce 1,3-PDO and butyric acid
through microbial fermentation of glycerol. Gupta et al. [7]
used the new producer, Clostridium butyricum 14, to de-
velop a fed-batch fermentation process of crude glycerol into
1,3-PDO. The developed fermentation process can obtain
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a high yield of 1,3-PDO. Liu et al. [8], Wang et al. [9], Gao
et al. [10], and Xu et al. [11] addressed the optimization
models and methods to optimize the fermentation processes
of glycerol. Pan et al. [12] addressed the theoretical study of
feedback control for a two-stage fermentation process of 1,3-
PDO. To deal with the challenges of the online measurement
of the microbial fermentation process, Zhang et al. [13]
presented a robust soft sensor to efficiently predict the
concentrations of 1,3-PDO and glycerol. Xu and Li [14]
presented the mathematical optimization approach to op-
timize the metabolic objective for glycerol metabolism into
1,3-PDO production. Xu et al. [15] proposed a two-stage
approach to efficiently solve the parameter identification
problem of the microbial batch process of glycerol. Proschle
et al. [16] designed the advanced controller to control the
fed-batch fermenter of glycerol to 1,3-PDO. Emel’yanenko
and Verevkin [17] addressed the thermodynamic properties
of 1,3-PDO. Rodriguez et al. [18] proposed the kinetic model
to describe the fermentation process of the raw glycerol into
1,3-PDO. Silva et al. [19] addressed the multiplicity study of
steady states in a microbial fermentation process of 1,3-
PDO. Liu and Zhao [20] presented an optimal switching
technique to control the 1,3-PDO fed-batch production.
Yuan et al. [21] proposed a robust feedback method to
control the nonlinear switched system of 1,3-PDO fed-batch
production. Liberato et al. [22] used both crude glycerol and
corn steep liquor in 1,3-PDO production using a Clostridium
butyricum strain.

Xiu et al. [23], Gao et al. [24], Sun et al. [25], Sun et al.
[26], Li and Qu [27], Wang et al. [28], and Zhang and Xu
[29] used the excess kinetic models, S-system, and fractional-
order model to mathematically describe the microbial
continuous fermentation of glycerol to 1,3-PDO. However,
a comparison study suggested that the steady-state con-
centrations calculated by these works significantly violate the
experimental data (refer to Section 5). For example, the
errors of glycerol concentrations reached more than 43% in
[24-27]. This concludes that the mathematical models
established by these researchers cannot satisfactorily de-
scribe the real bioprocess. To better describe the microbial
continuous fermentation of glycerol, it is necessary to
present new mathematical modeling or parameter estima-
tion methods.

For this purpose, in the present study, we address the
problem of parameter estimation for the microbial con-
tinuous fermentation of glycerol to 1,3-PDO. First, a non-
linear dynamical system is presented to describe the
microbial continuous fermentation. Then, some mathe-
matical properties of the dynamical system in the microbial
continuous fermentation are also presented in terms of the
estimated parameters, reactant concentrations, and fer-
mentation conditions. Section 3 proposes a parameter es-
timation model to estimate the value of the parameter vector
in the dynamical system of the microbial continuous fer-
mentation. Section 4 proposes a sequential geometric pro-
gramming (SGP) method to efficiently solve the nonlinear,
nonconvex parameter estimation problem. Section 5 pres-
ents the computation results obtained using the proposed
SGP algorithm and also presents a comparative study to
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demonstrate that the proposed SGP algorithm can yield
smaller errors between the experimental and calculated
steady-state concentrations than the other seven methods.
Additionally, we investigate the multiple positive steady
states of our proposed dynamical system in Section 5. Fi-
nally, we provide the conclusions of the present work in
Section 6.

2. Nonlinear Dynamical System of Microbial
Continuous Fermentation

2.1. Nonlinear Dynamical System. In the microbial contin-
uous fermentation of glycerol to 1,3-PDO by Klebsiella
pneumonia, the substrate glycerol is continuously added to
the fermenter, and equal volumes of substrate glycerol,
reaction products, and cells are extracted from the fer-
menter. The concentration of various substances in the
fermenter is in a constant state. The main products of the
microbial continuous fermentation include 1,3-PDO, acetic
acid, and ethanol [23]. Figure 1 presents the schematic of the
microbial continuous fermentation in the fermenter. In this
figure, F is the volume flow of feed medium into the fer-
menter, L/h; y denotes the concentration of substrate
glycerol in feed medium, mmol/L; V' is the volume of fer-
mentation broth, L; y, represents the biomass, g/L; and y,,
¥3, V4 and ys represent the concentrations of glycerol, 1,3-
PDO, acetic acid, and ethanol, respectively, mmol/L.

A process can be modeled by some modeling methods,
such as the neural network modeling techniques [36, 37] and
the ODE (ordinary differential equation) methods [38].
Based on the basic conservation law and the previous lit-
erature [23], in this study, the material balance equations of
the microbial continuous fermentation are written as the
following five-dimensional nonlinear ODEs:

%:rlyl—dyl,te [0,T], (1)
dt
% =dys—dy, -1yt € [0,T], (2)
d
vy —dyst e 0,T), ©)
dt
%:le—dyd‘,te [0,T], (4)
dt
%:rSyl—dyS,te [0,T1], (5)
dt

yi(o):yi)OSizlazs"‘;S) (6)

where t is the fermentation time, h; T represents the terminal
time of the microbial continuous fermentation; d = F/V
represents the dilution rate, h™'; 7, is the nonlinear function
that denotes the specific growth rate of cells, h™"; r, is the
nonlinear function representing the specific consumption
rate of glycerol, mmol/(g-h); and r;, r,, and rs are the
nonlinear functions denoting the specific formation rates of
1,3-PDO, acetic acid, and ethanol, respectively, mmol/(g-h).
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F1GURE 1: Schematic of microbial continuous fermentation in the fermenter.

Considering the nature of the microbial continuous fer-
mentation, we set the rates r; (i=1,2,---,5) to be r; >0.

Theratesr; (i = 1,2,---,5) in (1)-(5) are expressed as the
following equations:

o222
Y2+ a, Y Y3 Y4 Ys

r
r2:91+6—1+03
2

Y
2+,

ry= 0+ Ogr, + 67—y2y+2 i

ry=0y+0,r, +0
4 = Uy + 0197 11y2+912:

0,5 014 )
re=r + .
° 2(915 +dy, 0Oi+dy,
(7)

Y, :{)’:()’1’J’2>"'

In addition, the dilution rate d and glycerol concen-
tration in the feed y  will stay within certain limits, i.e.,
(d, )" €Y,, where Y, is expressed as follows:

Y, ={(dyy) eRlde[d"d"]yse (0]} (10

ys) €R’ |y, € (0,97]. 9, €

In these equations, 8= (6,,6,,---,0,5)" €©® is the
model parameter vector to be estimated later with 6;>0
(j#5,9) and 9;‘ <0 (j =5,9), where O is defined as

16
®=[][6.6] crR", (8)
j=1

where 6?>0 and 9?>0 when j+#5,9 and GJL-<0 and 6}}<0
when j =5,9.

Under certain experimental conditions, the maximum
value of r, is @, h™', and the Monod saturation constant is a,
mmol/L. The critical values of y,, ¥,, ¥3, ¥4, and y5 are y]
g/L, y5 mmol/L, y; mmol/L, y; mmol/L, and y: mmol/L,
respectively. Therefore, microbial fermentation system
(1)-(6) will work in the subset of R>, expressed as follows:

(0,551, 3 € (0,y3], y4 € (0, y;],y5 € (0, 5]} (9)

where d' >0 and dY > 0.

By introducing the expressions of functions
r; (i=1,2,---,5) into (1)-(6), we obtain the follow-
ing reformulations of the microbial continuous
fermentation:
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dy, amyz( y_§><1_y_i)<l y4><1__> dyot € [0,T),

dt  y,+ay J 2 V3 V4 Vs

dy, [ 1)2 ( )’2)( )’3)( }’4)( )’5) 05y, ]

D2 _dy,—dy, |0, + Y2 (1= 1-2)(1- 1-25)+-—222 1y telo,T],
dt Yo 2T 6, (J’z*“z) Y2 Y3 Y4 Vs ¥+, N

s _ 65+—96a1y2(1—y—i)<1—y—i)<1—y—i><1—y—i)+—97y2 ]yl—dy3,t€ [0,T1],

d [ 7 »n+ta b2 Y3 Vs ys) y2tbs

s _ 99+91°“1y2(1—y§)<1—yi>(1 y4>(1—yi)+01‘y2 ]yl—dy4,te [0, T],

dt L Y2t a, Y2 Y3 Y4 Ys 2+ 05,

dys [ 4} ( )’2)( )’3)( ;V4>< J’s) 05y, ] < 0,5 0,4 )
= =0, +——(1-Z)1-Z2 ) 1-=Z ) 1-22 )+ X + —dy.,t €[0,T],
dt | L6, (y, +ay) b2 V3 V4 ys) y2t0, 05 +dy, 0O+dy, N

¥i(0) = y;9,i=1,2,---,5.

(11)
Now, we perform some transformations, as follows: Then, we obtain the following dynamical system with
a power function structure:
Xy =Yyt ay
Y2
x,=1- R
? V2
Y3
X3 =1-=%,
} V3
x,=1- %,
4
xo=1- J’i ) (12)
Vs
Xe = Y2+ 0,
X7 =y, + g
xg =y, + 0
X9 =05 +dy,
x10 = b6 +dy,.
d
% = a1y1y2x11x2x3x4x5 —dy,t€[0,T],
dy, -1 -1 -1
da dyg—dy, =0,y — a0, y1y,X x,%3%,X5 = 039, y,%¢ ,t € [0, T,
d _ _
% = 05y, +a,05y, 2%, %,53%,%5 + 0,7, 7,5, —dys,t € [0,T],
dy, _ (13)

T Oy, + a1610y1y2x11x2x3x4x5 + ‘911J’1)’2xs_1 —dy,t€[0,T],

-1 -1 -1 -1 -1,-1 e
dar 0,01371%9 +a,0, 0131 7,%] X3x3%4x5%9" + 0501391 y,%4 xg +0,01,y1%)

-1 -1 -1 1 -1
+a,0, 014y, y,%) X,x3%,%5x1 + 03014y, 7,%6 x79 —dys,t € [0,T],

y:i(0) = yi00i = 1,2,--+,5.
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The above dynamical system can be further represented In this representation, x = (x,%,,---,%5)" C R,
as Vo= (V10s Yoo+ ys)O)T C R, and the functions
dy, g; (¥, x,d, v, 0) and hy (y,d, 0) are defined as
dtlzgl(y)x)daysfae)) te [0$T]’1:17 2)""5) (14)
X =h(y,d,0), k=1,2,---,10, (15)
y(0) = y,. (16)
91 (y,x,d, y, 0) = a1y1y2x11x2x3x4x5 —-dy,
92 (% xd, Y 6) =dys—dy, -0y, - a1651y1y2x11x2x3x4x5 - 63)’1)’2’5:’
93 (. %,d, y,0) = 05y, + a196J’1)’2x11x2x3x4x5 + 97y1y2x;1 —-dys,
9s(y,%,d, y4,0) = Oy, + a1910y1y2x;1x2x3x4x5 + 911)’1}’2@1 —dys
9s ()’> x%d, Y 6) = ‘91913;"1";1 + al0;1013y1y2x11x2x3x4x5x;1 + 63613)’0’2’5:";1
+ 91914}’1’6;(; + alegl914y1y2xI1x2x3x4x5x$ + 93914)’1)’ngle5 —-dys,
h (,d,0) = y, +a,,
Y2
h (y:d)e) = 1 — T %
2 Y2
(17)

V3
h (y,d)e)zl__*:
’ V3

V4
h (y:d) 6) = 1 — T
! V4

Js
h (y,d)e)zl__*:
’ Vs

he(y,d,0) =y, +6,,
h,(y,d,0) = y, + 6,
hg(y,d,0) = y, + 0,5,
hy(y,d,0) = 0,5 +dy,,

hyy (,d,0) = 0,4 +dy,.

Dynamical system (14)-(16) is a differential-algebraic
system.

Remark 1. Compared to the model (1)-(6), the advantages
of the transformed dynamical system (14)-(16) are as fol-
lows: (1) it is still a nonlinear model that can describe the
nonlinear fermentation process and (2) it involves a special
power function structure that can be used to propose a novel
SGP method for the parameter estimation problem of the
microbial continuous fermentation.

2.2. Mathematical Properties of the Dynamical System. In this
subsection, we consider the properties of dynamical system
(14)-(16).

Property 2. For 0¢ ©, the functions g;(y,x,d,y¢,0)
(i=1,2,---,5)and b (y,d,0) (k =1, 2,---,10) provided in
dynamical system (14)-(16) are continuously differentiable
on [0,T], i.e., g;(y,x,d, y4,0) € C' (0, T; R°), h (y,d,0) €
C'(0,T;R"), and the functions g;(y,x,d, y,6) and hy
(y,d, 0) are continuous in 0 on ©.



Proof. By the definitions of the functions g; (y, x,d, y,0)
(i=1,2,---,5) and h(y,d,0) (k=1,2,---,10), it can be
easily verified that the conclusion is valid. O

Property 3. For 0¢ ©, the functions g;(y,x,d,yg,0)
(i=1,2,---,5 and b (y,d,0) (k =1, 2,---,10) provided in
dynamical system (14)-(16) are locally Lipschitz continuous
on Y, with respect to y.
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Proof. Lety,y € Y,.Bythe mean value theorem, there exist
L e(0,1) (i=1,2,--,5 and 1, € (0,1) (k=1,2,---,10)
such that

19,5 %.ds 3 0) = 0, (5 %,y 3, O)| < [V, (7 + A G = 7).y, O)], - 17 = Ty 0= 1,2,-,5,
Il (3>, 0) ~ by (3,d, 0)| < [ Vi (5 + 7 (5 = 7). . 0)|, - 17 - Tl k=1,2,--,10.

AsY,,Y,, and O are bounded sets, the derivatives of

9i(nx,d, y4,0 (i=12,---,5 and h(y,d,0) (k=
1,2,---,10) are bounded on Y, from Property 2. Thus,
IVg; (7 + 4, (¥ = 9), %, d, y4, O, and VR (¥ + 7. (¥ - ¥),
d,0)|, are bounded. For any 0 € O, let

19: (7, %.d, ¥, 0) = g; (3, x.d, yi5, )| < Ly, - 17 = T,

(18)
L, =max "Vgi F+A4 G-y xd yg 9)"2> (19)
Lhk = max “th (j\/ + Tk (jv/ - 5/), d, 9)”2
Then, we have
i=1,2,---,5,
(20)

|hk (j\/a da 6) - hk (}‘71 d’ e)l SLhk ° "j} - )~/||2) k= ]-) 2:" ‘s 10.

These conclude that g; (y, x,d, y, 0) (i = 1,2,---,5) and
h(y,d,0) (k =1, 2,---,10) are locally Lipschitz continuous
on Y, with respect to y. O

Property 4. For 8 € ®, dynamical system (14)-(16) has
a unique solution, expressed by y(t;y,.d, ¥, 6), and
y(t; y9,d, ¥, 0) is continuous on ® with respect to 0.

Proof. For y, €Y, and (d,ysf)T €Y,, we know g;(y,x,
d, y4,0) € C1(0,T;R°) and hi(y,d,0) € C'(0,T;R*), and
the functions g; (y, x,d, y,0) and hy (y,d, 0) are continu-
ous in ¢ on ® from Property 2. Therefore, dynamical system
(14)-(16) has a unique solution, expressed by y(¢; y,,
d, ¥, 0). According to the continuous dependence of so-
lutions on parameters in nonlinear differential equations,
y(t; y9,d, y,0) is continuous on @ with respect to 6. O

Property 5. Let the solution set of dynamical system
(14)-(16) be Y;(yo.d, yy) = {y(t; y0.d, v, 0) € R | y(t;
Vo, d, V> 0) is the solution of dynamical system (14)-(16) for
0 € B

Then, Y; (o, d, y) is a compact set in C' (0, T; R°).

Proof. From the definition of set ®, © is a bounded closed
set in RS, Therefore, © is a compact set in R'®. By Properties
2 and 4, we obtain that the mapping from 8¢ ® to
y(t; 0, d ¥, 0) € Y5(¥0,d, y) is continuous. This con-
cludes that Y;(y,d,yy) is a compact set in
C'(0,T; RY). O

Property 6. For ¥ (d, ys) €Y, and VO € ©, the vector
function

93 % d 16> 0) = (9, (1%, 5 0), G2 (0 %y Y5, 0, g5 (1%, d, 36, 0)) (21)

satisfies the following linear growth condition with respect
to y:

lg(y.x.d, y,0)|, <byllyll, + b, VyeY,, (22)

where 0 <b; < +00 and 0 <b, < +00.

Proof. By the derivation of dynamical system (14)-(16) in
Section 2.1, we obtain

91 (3> %d, s, 0) =11y, = dyys
9, (yx.d, y,0) =dys —dy, =1,y
95 (1: %, d, y,0) =13y, = dys, (23)
91 (3> %.d, y5,0) =4y, — dy,,
95 (1, %.d, y,0) =15y, —dys.
Then, for (d, y4)" €Y,, €, and y € Y|, we have
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T
lg (3% d v O)l, = | (91 (7 % 344 6), 2 (3 % 3 ), 95 (3% v 6)
= “ (riyy—dyndyg —dy, —ryrsy = dysray = dysrsy, - d)’s)T||2
= ” (ryu=rynrsynrays 7’5)’1)T = (dyydy,,dys.dy,, d)’s)T +(0,dy,0,0, O)T"2 (24)

< " (ryu =Ty u T3y ey ”sJ’l)THZ + “ (dyydyydys, dy, d)’s)T”z "’“ (0,dy, 0,0, O)T"2

T
= )’1" (ry, =373, 745 75) "2 +dllyll, + dys.

Asr; 20, y€Y,, de [d"dY], and 0 € ®, we obtain

ro=a—22— <1 —y—§><1 —y—i><1 —y—i><1 —y—i><a1,
Y2t a, Y2 Y3 Y4 Js

r Y a;
r,=0,+-2+0 <0, +-1+0,
2 ' 0, 3}’2"’94 ' 6, ’
ry =0+ Ogr, + 022 < 0. + 0,a, + 6,
V2 + 0
ra= 00+ 017, + 0, —22— <0+ 0, + 0,
¥, +0;,

013 014 ) < a )(613 014)
rs =1 + <O ++6; ) =+ |
° 2<915+d)’2 016 +dy, ! 0, ’ 05 016

(25)
Then, by ;>0 (i =1,2,---,5), we have
Aed,
a 2
r§<(91 +1+63> ,
0,
rg <(0s + 65a; + ‘97)2) (26)

ri <(0y + 0y9a, + 911)2>

2 2
2 a, 0,5 914)
re<| 0, +—+0 —=+—.
’ < Lo, 3) (915 616

Let o =max{al, (6, +a,/0, +6,)°, (65 +6sa, +6,)°,
(0 + 019a, +0,))% (0, +a,/0, + 0,)*(0,,/0,5 + 0,,/60,5)*}.

Then, r2 + 73 + 1 + 13 + 12 <5a.

Thus, g3, % d y Ol = ¥, (ry, =125 73,74, 75)
+dlyll, +dyg

=y \/1’? + ri + ri + ri + ré +dlyl, +dyg
<V5ay, +dl|yl, +dyg (27)
<V5ay] +dlyl, + dyy.

Let b, =d and b, = V5ay} + dy, and then we obtain
lg(y, x,d, v, Ol < by lyll, + b, 0<b, < +00 and
0<b,< +00 because (d,ys)" €Y, and a>0. This com-
pletes the proof of Property 6. O

Remark 7. It can be proven that b, and b, in Property 6 are
dependent on the operating parameters d and yg . Thus,
there will be different b, and b, values for different operating
conditions of the microbial continuous fermentation.

Property 8. The functions g;(y,x,d, y4,0) (i=1,2,---,5)
and h(y,d,0) (k=1,2,---,10) in dynamical system
(14)-(16) are signomial functions.

Remark 9. By Property 8, we observe that g; (v, x,d, y,0)
(i=1,2,---,5) and h (y,d,0) (k=1, 2,---,10) in dynam-
ical system (14)-(16) involve a special structure in the form
of signomial functions. This type of mathematical function is
often found in geometric programming (GP) problems
[39, 40]. In Section 4, we will propose a novel GP method for
the parameter estimation problem of the microbial con-
tinuous fermentation.

3. Parameter Estimation Model of the
Dynamical System

To estimate the value of parameter vector 8 in dynamical system
(14)-(16) of microbial continuous fermentation, we will first
propose a parameter estimation model in this section.

Given certain fermentation condition (d, y)" € Y,, we
can measure the steady-state concentrations of all reactants
in the microbial continuous fermentation. Now, we have m
different sets of experimental steady-state data that corre-
spond to different fermentation conditions (d", y;‘f)T €y,
(n=1,2,---,m). Let ' (>0, i=12,---,5,
n=1,2,---,m) be the experimental steady-state concen-
trations of biomass (y,), glycerol (y,), 1,3-PDO (y3), acetic
acid (y,), and ethanol (y5) under fermentation conditions
(d",y;‘f)T €Y,andlety’(i=1,2,---,5,n=1,2,---,m) be
the corresponding steady-state concentrations of variables y;
(i=1,2,---,5) calculated by the steady-state conditions. To
keep the sum of the squared steady-state concentration
deviations from the experimental data 3! minimized, we
propose the following optimization model to estimate pa-
rameter 0 in dynamical system (14)-(16) of the microbial
continuous fermentation:

m
min f = Z
0 n=1

5
peR

-7 (28)

1

1

subject to satisfying the 15m steady-state constraints:
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@y K - Y = 0= 1, 20
"y —d'ys = 0y - a0yl () - 0y (x) = 0n=1, 20 m,
By + @06y, () sl + 0,31y, ()T ="y = 0n=1,2,0 0 m
0oy} + 10,055 (<) X3t + 0,105 () —d"yy =0 =1, 2,

66,3y (x5) " +a,6,' 0133175 () g () +

and the bound constraints to the 15m + 16 variables:

0e0,
y'eY,, n=12--,m (30)
x>0, k=1,2,---,10,n=1,2,---,m,

where y" = (¥, ¥4,y  €R® (n=1,2,---,m), x"=

(8-, x" )" € R, the equality constraints are the
steady-state conditions, and the last three constraints control
the corresponding variables to stay within certain limits.

Remark 10. In parameter estimation problem (28)-(30), the
number of optimization variables is 15m + 16, the number of
equality constraints is 15m, the number of lower bound
constraints is 15m + 16, and the number of upper bound
constraints is 5m + 16. Therefore, if the number m of ex-
perimental groups is large, then problem (28)-(30) will be
a large-scale, nonlinear, and nonconvex optimization
problem.

636,5y1y; (xg) " (x5)”"

-1

_ -1
+ 0,014} (x;lo) +a,6, 013y y5 () KX (x)
+ 60,0001y (x0) (%) —dys = 0n =120 m,
X{=y,+apn=12--,m,
yn
xp=1-2%k=2,345n=1,2,---,m
Yk
xp=y,+0, (k) €{(4,6),(8,7),(12,8)L,n=1,2,---,m,

X = 6, +d"y5, (j,k) € {(15,9), (16, 10)},n =1, 2,---,m
(29)

4. SGP Method for the Parameter
Estimation Model

As stated previously, proposed parameter estimation model
(28)-(30) of the dynamical system is a nonlinear, nonconvex
optimization problem. To efficiently solve it, we propose an
SGP method in this work.

As there is an implicit requirement that the optimization
variables are positive in the framework of GP, we first denote
Owithw; =0;(j#5 9 andw; = -0, (j =5,9). Addltlonally,

we replace the expression m1 L n, gf Y (-
with both min. ., ,p and e (=T <p. The
inequality Y7 37 | (y7 — 7)* < p can be further written as

S (0001 S Y e

=1 n=1i=1

(31)

Then, model (28)-(30) can be represented as the fol-
lowing equivalent formulations:

anzz 1[()’1) +(! ]_

Zn 121 1(2}/1)/1)

n n n n
Xy X3XyXs5

PACHN

CONE

ymx,}fsz b (32)

subject to satisfying
) (33)
= n=1,2---,m, (34)
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-1 -1 -1
R R i G R e O, 5)
Vst
a,06y1y5 (x1) XXXl + w0 1y ()
R =1, n=12,---,m, (36)
wsyy +d y;
a w01y (X)) lxgxgxnxn + Y1y, (x;)_l
! ! n 4n5n 1 =1, n=1,2,---,m, (37)
weyy +d y,
[“’1“’13)”1x (x;)il +“1“’?“’13}’T)’Z (x:l)ilx;x;xzx; (x;)il + w0139 ) (xg)il (x;)il +wwy)) (xyllu)il +“1“’;1“’14)’?J’;(x;‘)ilx;xg‘x:xg(x?o)il + w3014y Y5 (XZ)il (xyllo)il] ln=1.2.m
(d"ys) m=1,2,m,
(38)
ys+a
2 n 2:1’ n=1,2, ,m, (39)
X1
*xn + n
Y ¥k _ =234 5n=1,2--.m, (40)
Yk
n
Yy tw; .
—=1,(j,k) €{(4,6),(8,7),(12,8)}, n=1,2,---,m, (41)
Xk
w; + d'y, ‘
- =1, (j, k) € {(15,9), (16, 10)}, n=1,2,---,m, (42)
k
0/ <w;<6, je{l, 2,16}, j#5,9, (43)
U L.
—GjSa)jS—Gj, j=5,9 (44)
y” €Y,, n=12,---,m, (45)
x>0, k=1,2,---,10,n=1,2,---,m, (46)
p>0, (47)

where w = (0, w,,--+,w;s)" € RS, It can be observed
that each of equality constraints (35)-(42) of this
problem includes a ratio of certain two posynomials.
This type of constraint form is often found in comple-
mentary geometric programming. Problem (32)-(47) is
an intrinsically nonconvex NP-hard problem.

Replacing each of equality constraints (35)-(42) with two

inequality constraints, we can rewrite problem (32)-(47) as
14m

min + u,

YL, piu P P Z’ !

(48)

subject to satisfying



10

Yo S [09) + (52)]

m 5 —n " < 1’
T X 27y +p

ayy () A @) = L =1 2m,

non n L non o=l onn non nongom-1

d'ys + 0y +aywy Y1y (x7) " xpxxixs + ws YY) (xg) <1 n=12--.m
T <1, n=12,---,m,
A

non n Lon gl n nonn nongom-1

d'ys + @y + a0y yiys (%)) XxExGxG + w0y y) (xg) >1 -1.2
1 >l-u, n=12--,m,
'y

nongom-lonononon nong oyl
@061y (X)) x3X5xx5 + w91y (x5)
gy
Wsy, +ay;

<1, n=1,2---,m,

nongom-1 nononon nong m-1
@ we Y1y (x7) " X5x3xxs + ;Y5 (37) >

1-u, n=1,2,---,m
n n.n m+n> ) S 2 ?
wsyy+d'y;
nongomy-lonononon nongom-1
@010y ys () Xx5xxs + w YY) () <1, n=12--.m
0 <1, n=12---,m,

woyy +d"y)

nong -l onononon nongom-1
a,010)15 (1) Xyx5x5x5 + w0y 5 (%)
Ty
Woyy + 'y,

21—y, n=12---,m,

-1 n_n_n_n

[“’1“’13}"'11 (X;)il +a,0, @Yy () RNl (x;)il + w3135 (X:)il (X;)il + 0,0y (x':o)il +a,0, 0y ys (%)) Kt ("Tn)il + w3041 Y5 (XZ)il (1)
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-l n n n_n

1
]<1, n=1,2,---,m,

(dy5)

n_n

-1 - —1 —1 —1 —1 —1 - -1 -1 -1 —1
[‘”1‘”13)”1’(";) +a,0; 03y () X () + w0y ()T ()T + @y (%) T+ a0 0y ()T Nl () gy () () ]

(d"y5)

n
+a

DB n=12m,
Xy

Yy +a

2 2 -

=2l Uy, n=1,2,000m,
1

WA Tk 1 k22,345 n=1,2-,m,
Yk

YT Vs y oy (k1) € (2, Sm+n), (3, 6mo+m), (4, Tm+m), (5, 8m+m)}, n=1,2,-,m,
Yk

%gl,(j,k)E{(4,6),(8,7),(12,8)}, n=1,2m,
k

Yrtw )

21w, ok D) €{(4, 6, 9m +n), (8,7, 10m+n), (12,8, llm+n)}, n=1,2,---,m,
Xk

w;+d"y;

< 22<1, (k) €4(15,9), (16, 10)}, n=1,2,---,m,

w;+d"y;

PR 1-uw, (jik,I) € {(15, 9, 12m + n), (16, 10, 13m +n)}, n=1,2,---,m,
k

O5sw;<07, je{12,-,16},j#59,

—Gj)gsz —95, j=59
y'eY,, n=12,---,m,

X >0,k=1,2,---,10, n=1,2,--,m,

where u = (u},uy,...,uy,)" € R*" p>0 denotes the
weighting coefficient with a sufficiently large value. We can
easily observe thatifu; =0 (I = 1, 2,-- -, 14m), then problem
(48)-(49) is equivalent to problem (32)-(47). The reason why
u; >0 is used here instead of u; = 0 is that the optimization
variables of GP must be positive. The introduction of the
penalty term pY,*™u; can guarantee that u; = 0 at the op-
timal solution of problem (48)-(49).

21—z, n=1,2---,m,

(49)

By using some derivations to those inequalities involving
variables u; (I=1, 2,---,14m), we obtain the equivalent
problem, as follows:

14m

min p+p Z u, (50)
=1

YL, piu

subject to satisfying
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z:xn:lzxszl [ (}’:‘)Z + (71“)2]

m 5 _— = 1’
Yo X 27y +p

—1 -1
a L) @) <1, =12
non n “Lon g om=1n n_nn nong omy-1
d"yy + 0y +ayw, y1ys (x]) " xpxixgag + wa s (x5) <1, n=1l2--.m
o <1, n=12--,m,
'y
non
4"y < =1,2,---,m,
non " T gL n nonom L o = =L,
A"y + o)+ a0y ¥y () wRiaxg + sy (x) T +d g,
ay0gy Y () A 4 oy ()
1906)102 () XoX3XuXs Y 00 (7)o g,
Wsyy +ay;
no omon
ws Y +d
4 Y3 <1, n=1,2-m,

nongom-l i onn w1 m non =
a0 Y1y (X]) X5X5xNS + oy 1y (67) 7 + sy thyey + d Vit

nong m-1_n_n_n_n nong -1
@010y Y5 (%)) x5 xxixs + 0y 91 y) (x5) <1

n=1,2,--,m,
woyy +d"y,

n_n

n

WYy +a Yy <

non_n_n n_ng ny-1 n mon =
XXX+ 0 Yy () + Qg Y Uy + A Yl

a0,y Y3 (’CT)?I

nonon n

11

[0000207 ()" + e wiapys (1) w3 () + a0y Ty () () + @renay] () 4 e uapy () g () + eyl () )

(d"ys)

(d"y5)

n=12---,m,

nonon n

1 - 1 1 -1 1 1 - 1 1 1 1 =1
[“’1‘”13)’?(";) ‘*‘“1‘*’21“"3?7)"2‘(";1) x5 xs (xg) T+ w301391)5 (%)™ (%5) + wwiyy (x7p) +a1w21w,4y;’y;‘(x;') s (%) + wswigyy; (x) T (x70) +d“)’;”3m+n]

n
+a
}’27”251,
X1

n=12,--,m,

X
i ———=<1, n=12...m,
yZ +xlu4m+n+a2

o
WX T Ve oy, k=2,3,45 n=12--,m,
Yk

<1 (kD) € {2 Sm ), (3, 6m ), (4 TmAm), (5, 8m ), n=1,2e,m,
YiXit Y+ Vit

yz;w’gl, (j k) €{(4,6), (8, 7), (12, 8)}, n=1,2,---,m,
k

n
Xk

ik ——<1, (jok, 1) € {(4, 6, 9m +n), (8, 7, 10m +n), (12, 8, Llm+n)}, n=1,2,---,m,
Yyt wi+xu

w;+d"y,
’Tsl,(j,k)e{(ls,%(lé,10)}, n=1,2,---,m,
k

n

mgl, (ol D) € {(15, 9, 12m + 1), (16, 10, 13m+n)}, n=1,2--,m,
j 2 K

Slj‘gwjgﬂy,je (1,2,---,16}, j#5,9,

<-6, j=59,

U
- <
b <w; j

y'eY, n=1,2--m

x>0,k=1,2,---,10, n=1,2,---,m,

It is well known that the standard GP involves a pos-
ynomial objective and monomial equality and/or pos-
ynomial inequality constraints. This type of optimization
problem can be solved very efficiently because it is convex
with the logarithmic transformation. Problem (50)-(51) is
not a standard GP because many of its inequality constraints

n=12---,m,

(51)

are not legal posynomial ones. To deal with this issue, an
efficient condensation method is used to transform these
inequality constraints into valid posynomial ones. This
approach is to approximate every posynomial function in
the denominator of inequality constraints by using a mo-
nomial function.
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Let z(c) = Y4, (c) be a posynomial where g, (¢c) are the
monomials. Then, using the arithmetic-geometric mean
inequality, we obtain

ﬁe
c
20220 =[] =9[ (52)
LA
where f3, are calculated through
4. ()
= , Ve 53
po="r Ve (53)
a0 +00)]
G 0" p) o
a yi () @) =1, n=1,2,m,

non n a1 nonon nongom-1
d'yy +w yy + a0y Yy (6]) XXX + w3y yS (x¢) <1

n=1,2,---,m,
d'yg
o
C,,niy;fgl, n=1,2--,m,
2(7 A" 0 u)
1 —1
ey () e A
G (")
noomon
wsy| +
#sl, n=1,2--,m,
Cy(y" ", w,u)
~1 -1
a0 A () o R,
T <1, n=12---,m,
(¥ w)
no oo
+d
GNTEVs 21, n=1,2m,m,

Ce(y", ", w,u)

[“’1‘”13)’? (x;)il +a,0; 03y, (XT)ilxzxs’%xs (";)71 +w3013)1y) (Xz)il (x;)il + 0wy, (x;‘o)il +a,0; 0 Yy (x'l')"xzx3x4xg’ (x;lo)il +wy0)1Y) (J‘:)il (XTO)A}
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Here, ¢>0 is a given point. We have Z(¢) = z(c). In-
equality (52) implies that Z(c)/z (c) < 1 can be replaced with
Z(c)/z(c) <1, where Z(c) is a posynomial.

Applying the approach above to problem (50)-(51), we
have the following problem:

14m

min p+p Z Uy, (54)
I=1

yhLx"w,pu

subject to satisfying

non_n

nonon n
(d"ys)
"y
5
<1, n=12--,m,
C(y" %", w,u)
D +a
DEBoy n=1,2,m,
X
n
n=12---,m,

Cy (", x"u)

«onon
VX + Yk
=
Yk

«

e o1, (kw) € {(2,9), (3, 10), (4, 11), (5, 12)}, m=1,2,---,m,
Co, (%" u)

yz;,wjgl, Gok) € {4 6), (8, 7), (12, 8)}, n=12--.m,
k

<L,k=2,3,4,5 n=12,---,m,

n
Xk

<L (kw) €{(6,13),(7,14), (8, 15)}, n=12,---,m,
C, (", x", w,u)

w;+d"y) .
’Tsl, (j,k) € {(15, 9), (16, 10)}, n=1,2,---,m,
k

k<1, (kw) € (9, 16), (10, 17)},  n=12,-,m,
C, (" %", w,u)
O <w;<0,je{12,-,16), j#5,9,

-6V <0< -6, j=59,
y'eY,, n=12,-,m,
x¢>0,k=1,2,--,10, n=1,2,---,m,
p>0,

O<wy<l1, I1=1,2,---,14m,

(55)
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where C;, and C], (w=2,3,---,17,n=1, 2,---,m) are the
monomial functions approximated through (52). Problem
(54)-(55) is a standard GP.

We now summarize the proposed SGP method for the
parameter estimation model of the dynamical system in the
microbial continuous fermentation and provide the fol-
lowing SGP algorithm, denoted as Algorithm 1.

Remark 11. In the implementation of the proposed Algo-
rithm 1, numerical computation problems may occur when

T S [OF) + 7))

<1,
D, (y"p)
ays () i dD =1, n=1,2,m,
1 -1 —1
0y ) s ) )
ayr s, n=124--,m,
Vst
)
OIS <, n=1,2m,
T P
nongomy-lon non_n nongomy-1
a,06Y15 (X)) X3x5xs + w7y (x7) <1 n=12-.m
i <1, s 2,0e,m,
D (y"w)
wsyy +d'y;

<1, n=1,2,---,m,

VD (7", %", )

nongomy-Lon onon_n nongomy-1
ay010)1 Y5 (x7) " Xx5xixg + w0y 1y (%) <

1, =1,2,---,m,
DI(y" @) g "

@yt +d"yy

— D <l n=1,2m,
VamnDg (7" %", )

[“’1‘”13}"? (x;)il +a,0; w3y (%) 1x2x3x4x5 (X;)il +wy03)1y) (xE)" (X;)il + 0w,y (xy;o)il +a,0; w5 (x) l"z"s’%"? (";‘0)71 +wyw)1Y) ("2)71 (x';o)il]
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Max, . j<14m {ul(s)} is very small. To deal with this issue, we can
transformu; (I = 1, 2,-- -, 14m) into v; by v, = 1/ (1 — u;) and
obtain the following problem similar to standard GP (54)-
(55).

14m
min p+p Z v, (56)
YLt w,pv -

subject to satisfying

non_n

non n_n
(d"y5)
d"ys
S L on=1,2-m,
VamnD7 (7, %", @)
n
+
22 ,,uz_l, n=1,2,---,m,
*1
o
. <L, n=12-,m,

Vamen Dy (' %")

X+ V.
WXkt k g k=2,3,4,5 n=1,2-,m,
Yk

— yku <1, (kw1 € {2, 9, 5m+n), (3, 10, 6m +n), (4, 11, 7m + n), (5,12,8m + n)},
viDy, (" +")

Yy +w;

%sl,(j,k)e{(4,6),(8,7),(12,8)}, n=1,2---,m,
k

I S

vD, (", x", )

w;+d"y,
<1, (j,k) €{(15,9), (16, 10)}, n=12,---,m,
Xk

X,
WD w) (y,f) oy b (ewD € (9 16, 2m +), (10,17, Bm s}, =1, 2,0ee0m,

O <w;<6,jefl, 2,16}, j#5,9,
-0/ <wj< -6 j=59
y'ey, n=12--,m,

X >0,k=1,2,---,10, n=1,2---,m,

<1, (k,w,]) € {(6, 13, 9m +n), (7, 10m +n), (8, 15, 1lm+n)}, n=1,2,---

n=1,2,---,m,

(57)
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Step 0. Choose the initial values (y")(o), (x”)(m, w©, p(o), and u® (n=1,2,---,m) of optimization variables y", x", w, p, and u.
Given the solution accuracy & >0 and initial weighting coefficient p(® >0, set s = 0.

Step 1. For the given (y)© Y, (xM)© Y, oD, p& D and 4™V (n=1,2,---,m), construct the monomials C, and cr

(w=2,3,---,17,n=1, 2,---,m) using (52).
Step 2. S;)lve problen{l ((554})—(55) to attain (yn)(s)) (x”)(s), 0, p(s)’ and u® (n=1,2,---,m) with the weighting coefficient p(S—l)_
Step 3. If max 14,14 [ <6 then stop.

Step 4. Update p® with p® > p&=D_ Set s = s+ 1 and continue from Step 1.

ALGORITHM 1: SGP algorithm.

Step 0. Choose the initial values (y")(o), (x”)(m, w©, p(o), and u® (n=1,2,---,m) of optimization variables y", x", w, p, and u.
Given the solution accuracy & >0 and initial weighting coefficient p(® >0, select >0 (> ¢). Set s = 0.
Step 1. For the given (y”)(s'l), (x")(s'l), WD, p(s‘l), and u® Y (n=1,2,---,m), construct the monomials C, and C}

(w=2,3,---,17,n=1, 2,---,m) using (52).

Step 5. Set p = p©®, s =5+ 1 and go to Step 6.
n=1, 2’. ..

,m) using (52).

p(S)_

Step 2. Solve problem (54)-(55) to attain (y")', (x")), 0, p©, and u® (n = 1,2,---,m) with the weighting coefficient p©-~.
Step 3. If maxlS,SMm{uI“ > i, then go to Step 4. Else, go to Step 5.

Step 4. Choose p'® with p'®) > p(s=1_ Set s = s+ 1 and continue from Step 1.

Step 6. For the given (y”)(s), (x”)(s), W, p(s), and v (n=1,2,---,m), construct the monomials D,and D} (w=2,3,---,17,
Step 7. Solve problem (56)-(57) to attain (y”)(s“), (xm)HD | (stD) P&, and v (n = 1,2, -+, m) with the weighting coefficient

Step 8. If maxlslglw{vf”l)} <1 +¢, then stop. Else, go to Step 9.
Step 9. Choose p©*U with p©*D > p(®), Set s = s + 1 and continue from Step 6.

ALGORITHM 2: Modified SGP algorithm.

where  v= (v,vy ..., V) €R¥ D, and D"
(w=2,3,---,17, n=1, 2,---,m) are the monomial func-
tions approximated through (52). In problem (56)-(57), the
number of upper bound constraints is 5m + 16, which is
fewer than that of (54)-(55).

Based on Algorithm 1 and the above analysis, we present
Algorithm 2.

5. Computational Results and Discussion

In this section, we apply the proposed SGP method
(Algorithm 2) to solve nonconvex parameter estimation
model (28)-(30) of dynamical system (14)-(16). Experimental
steady-state data ¥ (3/'>0,i=1,2,---,5, n=1,2,--+,21)
under 21 different fermentation conditions (d", ygf)T €y,
(n=1,2,---,21) were drawn from the literature [23]. Here,
the number m of experimental groups is 21, which means that
both problems (54)-(55) and (56)-(57) are large-scale, non-
linear optimization problems. Table 1 presents the number N,
of optimization variables, the number N, of equality con-
straints, the number N of inequality constraints, the number
N, of lower bound constraints, and the number N of upper
bound constraints for problems (54)-(55) and (56)-(57). In the
implementation of Algorithm 2, the following parameters were
sett  a,=067h"", a,=028mmol/L, y!=10g/L,
y; = 2039 mmol/L, y; =939.5mmol/L, y; = 1026 mmol/L,
y% = 360.9mmol/L, d=0.05h"", d” =05h7", 6; =10""

. U _ . L o_ . U _ -8
(j#59), 07 =100 (j#509), 0; = ~100 (j = 5,9), 6; = ~10

(j=59), e=10"%, and u = 0.05. Additionally, we set p®
10000 (1 +s) (s>0) if maxlglswm{ul(s)} >u. We set p®

10000 (s —5) if s=5+1, where
5= min{s | max; ;. 14m{ul(s)} <@, s 1}.
After 53 iterations, Algorithm 2 stops with

ptP =56420.232087  and  max, oy, {v 0} = 14

8.895892x 1077 (maxX; <z 4 {1} = 8.895884 x 1077).
Table 2 presents the optimal values of the estimated pa-
rameters 6; (n=1, 2,---,16) obtained using Algorithm 2.
Figure 2 provides the comparison between the experimental
data and steady-state concentrations calculated using the
proposed SGP approach. Table 3 presents the comparison
between the proposed SGP method and the approaches used
in the literature [23-29]. In this table, E,, E,, E;, E,, and E;
denote the error functions of biomass, glycerol, 1,3-PDO,
acetic acid, and ethanol, respectively, and are defined as

21 ~n 21 —n
Ei — Zn=1yi21 Ei:l:lyi , i= 1’ 2’_“’5, (58)
Zn:lyi

where ¥ (37>0,i=12,---,5, n=12,---,21) are the ex-
perimental steady-state concentrations and 7 (9}>0,
i=12,---,5,n=1.2,---,21) are the corresponding positive
steady-state concentrations of variables y; (i =1,2,---,5)
calculated by the steady-state equations with optimal model
parameters. As can be observed in Table 3, our proposed



International Journal of Chemical Engineering

15

TaBLE 1: Number of optimization variables and constraints for problems (54)-(55) and (56)-(57).

Number Problem (54)-(55) Problem (56)-(57)
N, (optimization variables) 626 626
N, (equality constraints) 21 21
Nj; (inequality constraints) 588 588
N, (lower bound constraints) 626 626
Ns (upper bound constraints) 415 121

TaBLE 2: Optimal parameters obtained using Algorithm 2.

Estimated parameter

Optimal value

0, 1.588248
0, 0.007800
0, 32.070531
0, 5.800274
05 —2.573968
0s 79.863585
0, 23.711599
05 10.998005
0, ~0.729023
016 30.617914
011 5.505295
0., 70.965262
0,5 0.011729
0.4 8.731747
0,5 0.018555
016 46.993338
TaBLE 3: Comparison between the proposed SGP method and the approaches used in the literature [23-29].
Method

Error (%) .

This paper [23] [24] [25, 26] [27] (28] [29]
E, 1.39 20.36 — 4.94 — 27.99 18.86
E, 2.77 5.78 43.76 54.02 44.57 17.46 6.98
E; 4.68x107° 6.17 10.41 4.20 1.61 22.22 1.58
E, 2.28 16.68 14.04 2.41 23.50 13.74 6.42
Es 5.65 6.59 29.48 8.00 10.67 22.57 6.47
E>+ Es+ E4t+ Es 10.7 35.22 97.69 68.63 80.35 75.99 21.45
E\+ E+ E;+ Eg+ Es 12.09 55.58 — 73.57 — 103.98 40.31

SGP approach can produce smaller errors between the ex-
perimental and calculated steady-state concentrations than
the other seven methods. As observed for the seven error
indices considered, E,, E,, E;, E,, E5, E, + E; + E, + E;, and
E, + E, + E; + E, + E; in Table 3, the results obtained using
the proposed SGP method are better than those by the
methods used in [23-29], with improvements of approxi-
mately  71.86-95.03%, 52.08-94.87%, 99.70-99.98%,
5.39-90.29%, 12.67-80.83%, 50.12-89.05%, and
70.01-88.37%, respectively. We can also observe that the
methods used in the literature [24-27] yield very large errors
of glycerol concentrations reaching more than 43%. These
conclude that our established dynamical system can better
describe the microbial continuous fermentation.

The experimental studies indicated that in the microbial
continuous fermentation, the metabolic overflow of products
and their inhibition on cell growth can give rise to multiple
steady-state phenomena. To investigate whether our estab-
lished dynamical system of the microbial continuous

fermentation has multiple steady states, we can compute the
steady-state equations (i.e., dy;/dt =0, i = 1,2,---,5) to find
the positive steady states under different fermentation condi-
tions (d, y¢)". After some computations, we can observe that
our proposed dynamical system has multiple positive steady
states in some fermentation conditions (d, y¢)" € Y,. As an
illustration, Figure 3 presents the experimental and compu-
tational results of the microbial continuous fermentation under
1000 different fermentation conditions, where d =0.1h™",
Ve = 2,4,6,---,2000 mmol/L, and the red squares denote the
experimental data. From Figure 3, we can observe that the
dynamical system has three types of positive steady states: (1)
one positive steady state at y = 2,4,6,---, 1110 mmol/L and
Yo = 1132,1134,---,1734 mmol/L, (2) three positive steady
states at y = 1112,1114,---, 1130 mmol/L, and (3) two pos-
itive steady states at y = 1736,1738, - --,2000 mmol/L. This
concludes that the proposed dynamical system has multiple
positive steady states under some fermentation conditions

(d’ ysf)T'
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1,3-PDO (mmol/L)

FIGURE 2: Comparison between the experimental data and steady-state concentrations calculated using the proposed approach.
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Figure 3: Comparison of the positive steady states between experimental and simulated results under 1000 different fermentation

conditions (d=0.1h"" and Yst=2, 4, ..., 2000 mmol/L).

6. Conclusions

This work has studied the problem of parameter estimation
for the microbial continuous fermentation. A nonlinear
dynamical system has been first presented to describe the
microbial continuous fermentation. To estimate the value of
the parameter vector in the dynamical system, a parameter
estimation model as presented in (28)-(30) has been pro-
posed. Model (28)-(30) can minimize the sum of the

squared steady-state concentration deviations from the
experimental data and has many optimization variables and
constraints. Therefore, if the number of experimental groups
is large, then problem (28)-(30) will be a large-scale,
nonlinear, and nonconvex optimization problem. To effi-
ciently solve problem (28)-(30), an SGP method has been
proposed. The results indicated that our proposed algorithm
can yield smaller errors between the experimental and
calculated steady-state concentrations than the existing
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methods in the literature [23-29]. This concludes that the
established dynamical system can better describe the mi-
crobial continuous fermentation and that the proposed SGP
method is valid. The proposed framework in this work can
also be applied to the parameter estimation of other con-
tinuous (bio)chemical processes. We also observe that there
are two regions of multiple positive steady-states at relatively
high values of substrate glycerol concentration in feed
medium.
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