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Tis study mathematically examines chemical and biomaterial models by employing the fnite element method. Unshaped
biomaterials’ complex structures have been numerically analyzed using Gaussian quadrature rules. It has been analyzed for
commercial benefts of chemical engineering and biomaterials as well as biorefnery felds. For the computational work, the
ellipsoid has been taken as a model, and it has been transformed by subdividing it into six tetrahedral elements with one curved
face. Each curved tetrahedral element is considered a quadratic and cubic tetrahedral element and transformed into standard
tetrahedral elements with straight faces. Each standard tetrahedral element is further decomposed into four hexahedral elements.
Numerical tests are presented that verify the derived transformations and the quadrature rules. Convergence studies are per-
formed for the integration of rational, weakly singular, and trigonometric test functions over an ellipsoid by using Gaussian
quadrature rules and compared with the generalized Gaussian quadrature rules. Te new transformations are derived to compute
numerical integration over curved tetrahedral elements for all tests, and it has been observed that the integral outcomes converge
to accurate values with lower computation duration.

1. Introduction

Tree-dimensional volume integrals have an extensive va-
riety of implementations in science and engineering. Cal-
culation of certain functions over the ellipsoid surface
remains extremely signifcant in electromagnetic theory,
shell structures, cartography, geodesics, and numerous
manufacturing problems. In physical science, the calculation
of framework, the moment of inertia, and force upon a 3D
entity involve triple integrals’ evaluation. Surface integrals

are utilized as a part of diferent zones of material science
and designing for issues including computations of the
frame of a shell, mass’s focal point, snapshots of shell’s
inactivity, liquid stream as well as a mass stream over
a surface, electric charge dispersed across a surface, plate
twisting, plane strain, warm conduction across a plate, and
comparative issues within a building’s diferent territories
that remain extremely hard to break down utilizing logical
systems.Te fnite element method (FEM) has to turn out to
be a great implementation for the mathematical solution of
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a large number of manufacturing problems, especially if
analytics solutions remain unavailable or extremely arduous
to achieve the outcomes. An actual technique to execute
large-scale simulations is to use advanced fnite elements
that remain renowned for convergence’s quicker rate con-
cerning computative efcacy. Te fnite elements in 3D
curved domains should be perfectly curved for preserving
the convergence speed while implementing high-order FEM.
Arithmetic methodologies for integration asses the provided
function’s defnitive integral by function values’ weighted
total at specifc points. Tere remain several quadrature
methodologies present to approximate numerical integrals.
As of the literature survey, we can understand few workings
in numerical integration utilizing Gaussian quadrature over
the diferent areas [1–4]. Te surface area’s assessment of an
ellipsoid and related integrals has been presented in [5–7].
Generalized Gaussian quadrature nodes and weights for
a few polynomial and logarithmic functions are specifed in
[8]. In [9], the authors presented a generalized quadrature
method to solve double integrals of some integrands over an
elliptical region. Curved elements are generally utilized as
a part of the setting of fnite element techniques. Te
technique discovered by Zlámal [10, 11] is perceived as
a principal fnite element technique for a precise boundary
portrayal. Triangular elements (1-curved side) have been
presented with the isoparametric transformations altered to
transform a reference element into the triangular element
using a precise boundary elucidation. A related method has
been introduced by Scott [12] by employing triangular el-
ements having a 1-curved edge conforming to the precise
boundary. Contrasting options to the typical polynomial
estimate of arrangements are likewise proposed inside the
setting of curved fnite elements having a precise boundary
portrayal, for example, the logical basis by Wachspress [13].
In any case, all these FEMs having precise boundary por-
trayal do not remain reasonable devices, yet rather a scien-
tifc glorifcation, because of the difculty to stretch out the
plans to three-dimensional (3D) areas. Gordon and Hall
[14, 15] portrayed an infection point in conventional
methodology’s advancement to precisely consider curved
limits by using transfnite elements. Te fundamental
conception remained using blending functions for estab-
lishing a mapping betwixt a reference square and a sub-
domain having four parametric curves defning the
boundary. Nonetheless, Gordon–Hall-type mappings ex-
perience the ill efects of two disadvantages, which are ex-
perienced in 3D issues. To begin with, the transformations
are not generally bijective and, sometimes, prompt partic-
ular Jacobian matrices as in [16]. Furthermore, the for-
mulations of these transformations might involve
nonpolynomial functions and are exceedingly difcult in
three dimensions. To evaluate the volume and boundary
integrals, higher-order integration algorithms must be ap-
plied. However, higher-order quadrature rules for tetrahe-
dral remain difcult to implement as well as computably
costly turning assembling a time-consuming process. Linear
tetrahedral elements concede just homogeneous misshaping
and are surely understood for their solid conduct and
volumetric locking; subsequently, quadratic tetrahedral

elements have awesome signifcance in the feld. Addi-
tionally, straight-sided (straight edges and level faces) ele-
ments are portrayed by steady metric to be the specifc
Jacobian determinant of a worldwide neighborhood orga-
nization that is free of regular directions; subsequently,
explanatory reconciliation result is straightforward and
simple to actualize appearances. A Jacobian framework is
direct for a curved-edged component, and the metric for
coordinates is cubic. Analytical integration yields an accu-
rate mass framework, which is used as a reference esteem in
advanced numerical analysis to calculate inaccuracy in other
numerical schemes. Using parametric representations to
turn a conventional tetrahedron into conventional one-cube
elements, Rathod and Venkatesh [4] established
Gauss–Legendre quadrature procedures to evaluate arbi-
trary integrands upon the p3 tetrahedral elements. Te
volume of the standard tetrahedral element Vi discretized as
p3 tetrahedral element is 1/6p3 units. Mamatha and Ven-
katesh [17] have presented Gauss–Legendre quadrature
rules for the calculation of triple integrals of some arbitrary
integrands on a standard tetrahedron T(0, 1): discretizing
the standard tetrahedron to 4 hexahedral elements
H(−1, 1). Te authors showed that integral results can be
converged into accurate solutions with the fewest tetrahedral
divisions; the total computational cost and errors are sig-
nifcantly decreased. Tey evaluated values of triple integrals
of some integrands over a standard tetrahedron using
generalized Gaussian quadrature rules as in [18, 19]. In [20],
the higher-order cubature rules are derived over tetrahedron
and tested over some sample functions for verifying the
results. In [21], high-order numerical quadrature in a tet-
rahedron is derived with an implicitly curved interface. Te
efciency of hexahedral element over tetrahedral is given by
[22], and the authors examine the infuence of numerical
integration on fnite element methods using quadrilateral or
hexahedral meshes in the time domain. A special attention is
provided to the use of Gauss–Lobatto points to perform
mass lumping for any element order and also provided some
theoretical results through several error estimates that are
completed by various numerical experiments.

Te evaluation of a product’s moisture content and
temperature experiencing low-pressure superheated steam
drying has been carried out in [23]. It has been proposed
with simple liquid difusion’s employment, which is a 3D
model. In the modeling research, the heat and mass transfer
behavior has been analyzed for the biomaterial model.
Further, for illustrating deterioration bounded by surface
eroding scenarios, the theoretical minimal size matrix has
been modeled in [24], and it has been computed for diverse
kinds of polymers and, later, validated by the available data
out of the literature. An added category of expressions at-
tributes dissolution- and/or deterioration-related release
that remains reliant on the matrix’s hydration and polymer’s
erosion. In [25], the theoretical approach has been made to
biomaterials and biological structures to evaluate the
physical and mechanical properties. It has been analyzed in
two diferent ways, such as analytical and experimental. It
shows the efective results and validations between the
solving procedures. Te properties of Poisson’s ratio, yield
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stress, and elastic modulus for additive manufacturing po-
rous biomaterials have been scrutinized in [26]. It has been
analyzed numerically and analytically by reiterating a similar
octahedral unit cell in entire spatial trajectories. From [27],
biomaterial’s deformation processes are mathematically
modeled and analyzed. In addition, a rheological model of
2D viscoelastic biomaterial has been modeled and described
with fractional order; then, biomaterial’s heat and mass
transfer procedure has been also investigated. Te compu-
tational results of biomaterials’ heat and mass transfer
procedures have been regarded considering the fractal
framework. In [28], a computational paradigm of magne-
sium biodegradation’s chemistry has been evolved and
applied in a three-dimensional paradigm. It has been sub-
stantiated by correlating the anticipated and experientially
acquired pH modifcation in saline and bufered solutions.
Tis mathematical model remains valid to use for
practical cases.

In the presented research work, the structures of the
biomaterial have been analyzed mathematically. Te
novelty of the study is the numerical study that has been
carried out to analyze the structural properties of bio-
materials and biorefneries. It has transformed an ellipsoid
into a unit sphere and discretized the sphere (frst octant
region) into six tetrahedral elements (each element is 10-
noded with one curved face). Each curved tetrahedral
element can be transformed into a standard tetrahedral
element with straight sides; later, each standard tetra-
hedron is decomposed into four hexahedral elements. Te
values of triple integrals of certain integrands over the
ellipsoid are calculated with the defned discretization to
analyze the convergence rate and computational time of
the integrands by using numerical integration methods.
Gaussian quadrature rules have been used, which are
derived as in [17], to evaluate numerical integral values
over ellipsoid by discretizing conventional tetrahedron
into 4 hexahedral elements and to compare the results
with the generalized Gaussian quadrature rules as in [19].
Subject to these literature studies, the applications and the
future scope of the present study have been modeled and
discussed as follows.

2. Applications of the Study

Te computational pipeline that includes the acquisition of
experimental data or images, mathematical modeling,
geometric modeling, material modeling, arithmetic esti-
mation, visualization, and authentication is a well-
established pipeline and is often used in biomedical com-
puting applications. Terefore, for the numerical approxi-
mation and visualization methods, it becomes necessary for
making a separate paradigm geometry’s decay into a “mesh.”
Input for computational simulation and geometric foun-
dation for various visualization outputs are served by these
generated meshes in recent times compared to the past
where the eforts to efectively produce biomedical simu-
lations that were used to comprehend, plan, and diagnose
biomedical disorders were hampered by the production of
these meshes.

Te tetrahedral process’s initial stage remains the ex-
traction of edge surfaces betwixt various segmentations. Te
frst method that is frequently applied in numerous methods
for extracting boundaries from the segmented data is to
utilize a surfacing algorithm, like Marching Cubes. In this
method, a triangle meshes series that represent the borders
betwixt the features in the volumetric data is produced.

Te space partition property is frequently disregarded by
the Marching Cube algorithms though they produce
smoother models, and, subsequently by every other sub-
volume, the call for each subvolume is completely encap-
sulated. Consequently, in order to adhere to the Marching
Cubes algorithms’ needs, the segmentations should be in
constant and frequent change. Te other option is to emit
a quadrilateral face with a distinct segmentation value be-
tween any two voxels. A segmentation boundary stairstep
model with several interesting qualities is thus yielded, and
the newly yielded geometry has zero gaps with entire edges
shut, and each shut portion has a category. When the tri-
angular mesh defning these boundaries has been created
and the boundaries from the volumetric data have been
generated, the next phase comes into place. In this phase in
the workfow, mesh optimization upon the boundary for
maximizing mesh quality and imposition of limitations on
the nodes’ placement are carried out. Te pipeline with
several tools is provided to help boundary optimization that
occurs due to the various constraints that must be adhered to
by the generated mesh.

In addition to geometric and mesh oathing methods, the
tools also incorporate surface remeshing algorithms and
mesh topology modifers. In the following part, these al-
gorithms will be covered in more detail. Te last phases
within the pipeline involve creating a tetrahedralization or
another volumetric mesh making sure that it would remain
appropriate for the ensuing assessment when a proper
boundary mesh has been built. Currently, there are tech-
niques for volumetric smoothing, mesh refnement, and
tetrahedral mesh generation in the SCIRun pipeline. To
verify that the meshes created have sufcient quality com-
ponents for computative assessment, the last phase remains
in applying mesh authentication tools.

SCIRun has functionality for processing hexahedral el-
ements directly alongside the tetrahedralization pipeline.
Hexahedral meshes having stair-stepped boundaries and
hexahedral meshes having smooth boundaries are the two
main approaches used in SCIRun for hexahedral meshes.
Te resolution of these meshes is often more than needed or
desired because the hexahedral meshes can be generated
directly from the segmented model 6 Callahan, Cole,
Shepherd, Stinstra, and Johnson. As a result, data reduction
is frequently required. To resample the data at coarser
hexahedral portrayals, SCIRun has algorithms. Resampling
can also be used to create a coarse lattice, along with some
localized refnement approaches for recovering data in
crucial regions back to the original data’s level or levels
higher than that, which is occasionally required for specifc
simulations and is limited by criteria apart from the volu-
metric data. Te hexahedral workfow is completed using
volumetric smoothing and refnement approaches ensued by
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mesh authentication to make sure the consequential mesh
remains appropriate for further study.

For many physical applications, especially for second-
order hyperbolic models, i.e., of the form

z
2
u

zt
2 + Au � 0, (1)

where A denotes some positive symmetric second-order
diferential operator, used for the simulation of linear
wave propagation phenomena. Example of its application
includes the 2D acoustic wave equation, the 3D linear
elasticity system, the Maxwell’s equation, a poro-elasticity
model, and the Reissner–Mindlin plate model. Te com-
putation of the stifness matrix, induced by the operator A,
requires the use of the quadrature formula. When general
hexahedral matrices (isoparametric elements) are used, the
stifness matrix's entries cannot be computed analytically
and the fnite element space's basis functions are no longer
locally polynomial.. Tus, an afne map is employed for
analysis to transform the current element from the reference
element.. When dealing with isoparametric elements, ra-
tional functions in each element's approximation space are
employed .

3. Mathematical Modelling

3.1. Transformation of an Ellipsoid into Standard Arbitrary
Tetrahedrons with Straight Sides for Computation of 3D
Integrals. Tree-dimensional volume integrals have wide-
ranging applications in engineering sciences, and evaluation
of the triple integrals of certain functions over ellipsoid and
ellipsoid surfaces is a signifcant problem popular in elec-
tromagnetic theory, shell structures, cartography, geodesics,
and various manufacturing problems.

Te physical meaning of some parameters in the ex-
amples of the paper is E-ellipsoid, S-sphere, T-curved tet-
rahedral element, T-standard tetrahedral element,
H-hexahedral elements, (x∗I , y∗I , z∗I )-nodal coordinates for
curved tetrahedra, (r, s, t)-nodal coordinates for standard
tetrahedra, (ξ, η, μ)-nodal coordinates for hexahedra, J-Ja-
cobian for transformation, and w-weight coefcients.

Consider an ellipsoid (E)
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We transform the ellipsoid into a unit sphere as in
Figure 1 using the transformation-1
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and the Jacobian of the transformation-1 is
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Te triple integral evaluation on ellipsoid (E) changes to
an integral evaluation on a sphere (S) of radius one as
follows:

I � C
E
f(X, Y, Z)dZdYdX

� C
S
f(ax, by, cz) J1


dzdydx

� abcC
S
g(x, y, z)dzdydx.

(5)

3.2. A Sphere Discretized into Arbitrary 10-Noded Tetrahedral
Elements and Transforming Every Tetrahedral Element into 4
Hexahedral Elements. Te unit-sphere (S) region (frst oc-
tant) is considered and discretized into six smaller elements
by selecting point P on the sphere surface as in Figure 2. An
entire sphere is discretized into 48 tetrahedral elements with
one curved face. Every discretized region here represents
curved tetrahedral elements with one curved face.

Te disoriented curved tetrahedral elements are trans-
formed to the standard alignment by transformation-2, as in
Table 1. All the 6-curved tetrahedrons have a common Ja-
cobian, as in
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Te triple integral over a sphere (S), as in equation (5), is
transformed into a triple integral over the curved-sided
standard tetrahedral element (T), as in the following
equation:

I � abcC
S
g(x, y, z)dzdydz

� abc 
6

Vi�1
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G x
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(  J2
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(7)

Te curved tetrahedral elements are considered to be
quadratic tetrahedral (10-noded) and cubic tetrahedral (20-
noded) elements and transformed into straight-sided

tetrahedral elements, respectively, using two diferent
transformations as discussed below.

3.3. Arbitrary Quadratic Tetrahedral Curved Elements
Transformed to Standard Straight-Sided Tetrahedral
Elements. Each 10-noded curved tetrahedral element (one
curved face) is transformed into standard tetrahedral ele-
ments with straight sides, as in Figure 3, using
transformation-3, as in equation (8).

3.3.1. Transformation-3
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(8)

Figure 1: Transform an arbitrary ellipsoid into a sphere (radius one).

Figure 2: First octant sphere split into six tetrahedral components.
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For all six elements, we get a common Jacobian, as in the
following equation:

J3
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Te triple integral over a sphere (S), as in equation (7), is
transformed into a triple integral on straight-sided standard

quartic tetrahedron elements (T) as in the following
equation:
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Figure 3: Standard tetrahedron elements transformed to have straight edges.
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3.4. Arbitrary Cubic Tetrahedral Curved Elements Trans-
formed to Standard Straight-Sided Tetrahedral Elements.
Te transformation that transforms a curved tetrahedron T
into an orthogonal tetrahedron T is as follows:

T � 
20

i�1
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T � x
∗
, y
∗
, z
∗
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(12)

where Ni(r, s, t) are nodal coordinates of orthogonal
tetrahedron.

Nodal coordinates (x∗i , y∗i , z∗i ), i � 1(1)20 over curved
tetrahedron are given as follows.

For the above nodal data from Table 2, the trans-
formation is as in equation (13).

3.4.1. Transformation-4
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(13)

For all six standard tetrahedral elements, we get
a common Jacobian, as in equation (9).
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Te triple integral over a sphere, as in equation (7), is
transformed to a triple integral on straight-sided standard
cubic tetrahedral elements as in the following equation:

I � abcC
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g(x, y, z)dzdydx
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(15)

3.5. Standard Tetrahedron Decomposed to 4-Hexahedral
Elements

3.5.1. Shape Functions. A scalar real-valued function f (r, s, t)
is defned over the fnite volume of a standard tetrahedron. A
standard tetrahedron is considered and divided into 4
hexahedrons as in Figure 4. Later, every disoriented hexa-
hedron element is changed to a standard hexahedron ele-
ment H[−1, 1]3. Every ith node (ri, si, ti) of the hexahedron
volume, where the index i� 1, 2, . . ., 8, is as shown in
Figure 5. A positive volume is guaranteed by this purpose of
node numbering. By transforming the Cartesian coordinates
(r, s, t) to natural coordinates (ξ, η, μ) using equation (13),
the limits of integration are mapped to

(−1≤ ξ, η, μ≤ 1) in (ξ, η, μ) space (r, s, t) � 
8

j�1
Ni(ξ, η, μ) r

j
, s

j
, t

j
 . (16)

Te hexahedral elements are mapped to standard ori-
entation (2-cube elements) as shown in Figure 6.

Table 2: Coordinates at each node for 20-nodded tetrahedral components.

I x∗i y∗i z∗i

1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0
5 0.3333 0 0
6 0.6666 0 0
7 0 0.3333 0
8 0 0.6666 0
9 0 0 0.3333
10 0 0 0.6666
11 0.7034 0.3701 0
12 0.3701 0.7034 0
13 0 0.6886 0.3552
14 0 0.3552 0.6886
15 0.3897 0 0.7230
16 0.7230 0 0.3897
17 0.3517 0.3517 0
18 0 0.3443 0.3443
19 0.3761 0 0.3761
20 0.3726 0.3726 0.3726
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Figure 4: Four hexahedron elements from a tetrahedron.
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Hexahedral elements’ shape functions can be defned by

N
e
i (ξ, η, μ) �

1
8

1 + ξξi(  1 + ηηi(  1 + μμi( . (17)

Te coordinates of a ith node of the resultant standard 8-
node hexahedral element (H) denoted by the coordinates
(ξi, ηi, μi) and the triple integral over standard tetrahedron
(T), as in equations (10) and (15), can be written as

I � C
T
F(r, s, t) J3


drdsdt

� 
4

Hi�1


1

−1

1

−1

1

−1
f(ξ, η, μ) J5


dξdηdμ,

I � C
T
F(r, s, t) J4


drdsdt

� 
4

Hi�1


1

−1

1

−1

1

−1
g(ξ, η, μ) J5


dξdηdμ,

(18)

where |J5| is the common Jacobian that is defned as

z(r, s, t)

z(ξ, η, μ)
�

ri

zN
e
i

zξ
si

zN
e
i

zξ
ti

zN
e
i

zξ

ri

zN
e
i

zη
si

zN
e
i

zη
ti

zN
e
i

zη

ri

zN
e
i

zμ
si

zN
e
i

zμ
ti

zN
e
i

zμ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

3.5.2. Jacobian Computation for Hexahedron. Te iso-
parametric transformation of the hexahedral elements (H) is

r � riNi
(e)

,

s � siNi
(e)

,

t � tiNi
(e)

,

(20)

where i � 1, 2, 3, · · · , n, n is no. of elements.
In each hexahedral element, the (r, s, t) coordinates are

changed to natural coordinates (ξ, η, μ) by equation (17) as
in Table 3.

X(ξ, η, μ) �
17
96

−
μ
32

−
η
32

+
μη
96

+
17ξ
96

−
μξ
32

−
ηξ
32

+
ξημ
96

,

Y(ξ, η, μ) �
17
96

−
μ
32

+
17η
96

−
μη
32

−
ξ
32

+
μξ
96

−
ηξ
32

+
ξημ
96

,

Z(ξ, η, μ) �
17
96

+
17μ
96

−
η
32

−
μη
32

−
ξ
32

−
μξ
32

+
ηξ
96

+
ξημ
96

,

T(ξ, η, μ) �
15
32

−
11μ
96

−
11η
96

+
5μη
96

−
11ξ
96

+
5μξ
96

+
5ηξ
96

−
ξημ
32

.

(21)

All four hexahedral elements have a common Jacobian as
in the following equation:

J5 � 1 + 0.350655 μ + 0.0248512μ2 + 0.263375 η + 0.0410974μη + 0.0162462η2

+ 0.416849ξ + 0.0663876μξ + 0.0577826ηξ + 0.0163804ξημ + 0.0415364ξ2.
(22)
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21
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Figure 6: Cartesian coordinates of the typical hexahedral element with eight nodes.
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We use the substitution f(ξ, η, μ) � F(r, s, t)|J3| and
g(ξ, η, μ) � F(r, s, t)|J4| in equation (18) and use the Gauss-
quadrature rule for calculating the integral

I � 
4

Hi�1


1

−1

1

−1

1

−1
f(ξ, η, μ) J5


dξdηdμ

� 
4

Hi�1



n

p�1
cph ξp, ηp, μp ,

I � 
4

Hi�1


1

−1

1

−1

1

−1
g(ξ, η, μ) J5


dξdηdμ

� 
4

Hi�1



n

p�1
cpH ξp, ηp, μp ,

(23)

in which n is no. of sample points, cp � |J5|wiwjwk is weight
coefcients, J is Jacobian for four hexahedral elements, and
(ξp, ηp, μp) is sampling points.

Transformations’ efciency derived can be exhibited by
implementing the same to common cases with various sorts
of integrands with some integrands chosen in such a way
that exact integration is impossible because of singularity.

4. Results and Discussion

From this mathematical modeling, the structural properties
of the complex and irregularly shaped biomaterials have
been investigated numerically. Te numerical investigation
has been carried out by using the high latent method of the
fnite element technique. Te computational results have
been presented in tabular form with numerical integration
examples. Moreover, the computational results have been
plotted for the graphical representation of the structural
properties of the biomaterials. Te plotted graphical clear
modeling report has been presented for the biomass and
biorefnery applications.

Te above-derived transformations are applied, and
ensuing triple integrals on an arbitrary ellipsoid have been
assessed by converting to triple integrals over quadratic
tetrahedral elements and cubic tetrahedral elements. Fur-
thermore, integrals over these elements are transformed into
integrals over hexahedral elements as in equation (23). Te
results obtained by Gaussian quadrature rules (GQ) [17] and
the generalized Gaussian quadrature rules (GGQ) are cor-
related to compute the integrals as tabulated in Tables 4–6.
Te numerical solutions of the integrands with the singu-
larity are obtained, and the estimated outcomes remain
nearer to the accurate integral values having relative errors
lessened. Example functions in serial numbers 10 and 11 are
considered from a research article as in [9] and are evaluated
for triple integrals of the functions over an arbitrary ellipsoid

by using the derived transformations.Te calculated integral
values are very near to the exact integral values as shown in
Tables 4–6. Te numerical integral values of several func-
tions, using defned afne transformations, are tabulated as
follows.

From Figures 7–14, the integrands for triple integrals
with the respective functions are considered. Te integral
results obtained for 10-noded tetrahedron and 20-noded
tetrahedron are compared by using Gaussian quadrature
rules (GQ10N, GQ20N) and the generalized Gaussian
quadrature rules (GGQ10N,GGQ20N). It has been ob-
served that, when GGQ10N,GGQ20N rules are applied for
nonpolynomial functions, the exact integral values are ob-
tained after applying N � 10& 20 quadrature points.
Whereas GQ10N, GQ20N quadrature, the outcomes remain
closer to the accurate-integral values after N � 8, 10
quadrature points. With minimum quadrature points and
the least number of decompositions, results are approaching
the exact values in the proposed quadrature rules (GQ10N,
GQ20N) compared to the generalized Gauss quadrature
rules (GGQ10N, GGQ20N).

Te structure analysis of the irregular and complex shape
biomaterials has been analyzed with the Gauss quadrature
rules with the same nodal points, which have been used.
From Figures 7–14, for the functions that have been taken,
the results get more error in the structural properties for the
minimal nodal points as GGQ10N&GQ10N. However,
when the nodal points have been increased, the errors have
been reduced. Comparatively, for the nodal points
GGQ20N&GQ20N, the results get more accurate for the
complex structures of the biomaterials. For the consistent
integral functions, using the fnite element techniques, the
errors can be reduced more rather than minimal nodal
points.

Figures 15 and 16 represent the integrands for triple
integrals with the functions sin(x2 + y2 + z2), which has an
exact value for integration, and the other function
sin (x + y2 + z4), which has singularity within the domain
of integration. Te mentioned trigonometric integrands
have not been possible to integrate analytically owing to the
singularity, which lies inside the domain. Integral results
have been obtained for the same nodal points 10-noded
tetrahedron and 20-noded tetrahedron after discretization
by moving the singular point onto the boundary of hex-
ahedral elements. Te results have been compared by using
Gaussian quadrature rules (GQ10N, GQ20N) and the
generalized Gaussian quadrature rules (GGQ10N,

GGQ20N). It has been observed that when applied
GGQ10N,GGQ20N rules for nonpolynomial functions, the
exact values are obtained after using N � 10& 20 quadrature
points. Whereas GQ10N, GQ20N quadrature, the outcomes
remain closer to the accurate values after N � 8,10

Table 3: Cartesian coordinates (x, y, z) changed to natural co-ordinates using equation (18) for all 4 hexahedral elements.

Global coordinates Hexahedron 1 Hexahedron 2 Hexahedron 3 Hexahedron 4
r X(ξ, η, μ) T(ξ, η, μ) Y(ξ, η, μ) X(ξ, η, μ)

s Y(ξ, η, μ) X(ξ, η, μ) T(ξ, η, μ) Y(ξ, η, μ)

t Z(ξ, η, μ) Z(ξ, η, μ) Z(ξ, η, μ) T(ξ, η, μ)

International Journal of Chemical Engineering 11



quadrature points. With minimum quadrature points and
the least number of decompositions, results are approaching
the exact values in the proposed quadrature rules compared
to the generalized Gauss quadrature rules.

Te structure analysis of the irregular and complex shape
biomaterials has been analyzed with the Gauss quadrature
rules with the same nodal points that have been used. From
Figures 7–14, for the functions that have been taken, the

results get more error in the structural properties for the
minimal nodal points as GGQ10N&GQ10N. However,
when the nodal points increase, the errors reduce. Com-
paratively, for the nodal points GGQ20N&GQ20N, the
results get more accurate for the complex structures of the
biomaterials. For the consistent integral functions, using the
fnite element techniques, the errors can be reduced more
rather than minimal nodal points.

Table 4: Sample functions with exact integral values.

Sl. No Functions Exact value
1 1 3.1416
2 x2y 0.7500
3 x2yz 0.6914
4

����������
(x + y + z)


NInt � 4.6397

5 1/ ��������
x + y + z

√
NInt � 2.2147

6 xyz 0.7500
7 x2y2 3.2314
8 (1 + x + y + z)− 4 0.0581
9 sin(x + y2 + z4) Singularity and highly oscillatory function
10 sin(x2 + y2 + z2)

Table 5: Integral results for quadratic tetrahedral elements: comparison with GGQ and GQ.

Sl. No Functions Exact value 10N GGQ (N� 5) N� 10 N� 15 N� 20

1 x2y 2.3561 2.3632
2.3627 2.3632 2.3632 2.3632
N� 4 N� 6 N� 8 N� 10
2.3563 2.3563 2.3562 2.3561

2 1 3.1415 3.1215
3.1215
N� 4 N� 6 N� 8 N� 10
3.1315 3.1315 3.1415 3.1415

3 xyz 0.7500 0.7527481408
0.7527
N� 4 N� 6 N� 8 N� 10
0.7512 0.7512 0.7500 0.7500

4 x2yz 0.6857 0.6914
0.6914
N� 4 N� 6 N� 8 N� 10
0.6884 0.6860 0.6859 0.6857

5 ��������
x + y + z

√ NInt� 4.6396 4.6108
4.6108
N� 4 N� 6 N� 8 N� 10
4.6108 4.6108 4.6108 4.6108

6 1/ ��������
x + y + z

√ NInt� 2.2146 2.1105
2.2008
N� 4 N� 6 N� 8 N� 10
2.2005 2.2007 2.2008 2.2008

7 x2y2 3.2313 3.2773
3.2773
N� 4 N� 6 N� 8 N� 10
3.2631 3.2438 3.2354 3.2313

8 (1 + x + y + z)− 4 0.0580 0.0419
0.04871
N� 4 N� 6 N� 8 N� 10
0.0589 0.0585 0.0582 0.0580

9 sin(x + y2 + z4)
Singularity and highly oscillatory

function

1.9206
N� 4 N� 6 N� 8 N� 10
1.9211 1.9268 9.2614 9.2614

10 sin(x2 + y2 + z2) 2.2884 2.2894
2.3632
N� 4 N� 6 N� 8 N� 10
2.3426 2.3126 2.2884 2.2884

11 x2 + y2 + z2 2.5132
2.4826
N� 4 N� 6 N� 8 N� 10
2.4726 2.4966 2.5132 2.5132
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Table 6: Integral results of cubic tetrahedral elements: comparison with GGQ and GQ.

Sl. No Functions Exact value 20N GGQ (N� 5) N� 10 N� 15 N� 20

1 x2y 2.3561 2.3897
2.3627 2.3632 2.3632 2.3566
N� 4 N� 6 N� 8 N� 10
2.3563 2.3562 2.3561 2.3561

2 1 3.1415 3.1383
3.1315
N� 4 N� 6 N� 8 N� 10
3.1315 3.1415 3.1415 3.1415

3 xyz 0.7500 0.7614
0.7500
N� 4 N� 6 N� 8 N� 10
0.7500 0.7500 0.7500 0.7500

4 x2yz 0.6857 0.6914
0.6866
N� 4 N� 6 N� 8 N� 10
0.6861 0.6859 0.6857 0.6857

5 ��������
x + y + z

√ NInt� 4.6396 4.6108
4.6108
N� 4 N� 6 N� 8 N� 10
4.6108 4.6108 4.6108 4.6108

6 1/ ��������
x + y + z

√ NInt� 2.2146 2.2008
2.2008
N� 4 N� 6 N� 8 N� 10
2.2005 2.2007 2.2000 2.2008

7 x2y2 3.2313 3.2773
3.2315
N� 4 N� 6 N� 8 N� 10
3.2373 3.2313 3.2313 3.2313

8 (1 + x + y + z)− 4 0.0580 0.0578
0.0581
N� 4 N� 6 N� 8 N� 10
0.0583 0.0580 0.0580 0.0580

9 sin(x + y2 + z4)
Singularity and highly
oscillatory function

1.9206
N� 4 N� 6 N� 8 N� 10
1.9211 1.9261 1.9261 1.9261

10 sin(x2 + y2 + z2) 2.2884 2.2894
2.2884
N� 4 N� 6 N� 8 N� 10
2.2956 2.2885 2.2884 2.2884

11 x2 + y2 + z2 2.5132
2.5132
N� 4 N� 6 N� 8 N� 10
2.4987 2.5138 2.5132 2.5132
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Figure 7: A comparison between the computed value GQH and the integral value of function f� 1 over ellipsoid determined by GGQ.
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Figure 15: A comparison between the computed value GQH and the integral value of function f � sin(x + y2 + z4) over ellipsoid
determined by GGQ.
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4.1. MATLAB Programme for Computing Integrals over Six
Tetrahedral in First Octant of the Sphere. In this section, the
implementation of the MATLAB code has been explained
and provided in a supplementary document for Volume
S1–S6, and the numerical integration of the example
problems is considered to validate the quadrature method
applied. Te Gauss quadrature points and weights are given
by the variables u, v, w, and w1, respectively. Te trans-
formations derived are described by the variables x, y, z, and
Jacobian J1. Te sample functions are represented as
f1, f2, . . . , f10 for integration using the derived trans-
formations. Te code is run for each volume of tetrahedron,
and the integral values are summed up for the six tetrahedral
divisions in the frst octant of the sphere.

Table 7 provides a succinct report that lists the Gaussian
quadrature points of the ellipse to 10-noded tetrahedron (six
tetrahedron in the frst octant) and then turned into
hexahedron.

5. Conclusions

In this paper, we derived transformations to compute the
integrals numerically over the ellipsoid by dividing the el-
lipsoid into tetrahedral elements (quadratic and cubic) and,
then, further discretizing the tetrahedral elements into

hexahedral elements. An arbitrary ellipsoid is converted into
a unit sphere by selecting a point P upon the sphere’s surface
(frst octant) and discretized into 6 tetrahedral elements (one
curved face). Each curved tetrahedral element (quadratic
and cubic) is transformed into a standard tetrahedron (10-
noded) with straight sides. Te six standard tetrahedron
elements are further discretized into four hexahedral ele-
ments by using transformations as in [17]. Te trans-
formations derived in this paper, with the aspect of the
created meshes over ellipsoid, are evaluated over certain
sample integrands with rational functions and singular
functions. By applying the derived transformations, we
compute the triple-integral values of some integrands nu-
merically over the ellipsoid. It is observed that the integral
results obtained by using Gaussian quadrature rules, as in
[17], are better compared to generalized Gaussian quadra-
ture rules. Te integral values converging to the exact values
are also noticed, and thus, the processing time is reduced.
Te proposed method solves the integrals over the ellipsoid
of integrands with singular functions. Curved tetrahedral
elements can ft into any of the complicated boundaries of
partial diferential equations and integral over linear hex-
ahedral elements require minimum evaluation time com-
pared to quadratic and cubic tetrahedral elements. We
propose the curved tetrahedral elements transformed into

Table 7: Gaussian quadrature points for ellipse to 10-noded tetrahedron (transformed into hexahedron).

u v w w1

0.2279 0.2279 0.2279 0.0022
0.2738 0.2738 0.0611 0.0036
0.2738 0.0611 0.2738 0.0036
0.0611 0.2738 0.2738 0.0036
0.3417 0.07338 0.0734 0.0062
0.0734 0.3417 0.0734 0.0062
0.0734 0.0734 0.3417 0.0062
0.0916 0.0916 0.0916 0.0010
0.3163 0.2279 0.2279 0.0022
0.3912 0.2738 0.0611 0.0036
0.3912 0.2738 0.2738 0.0036
0.3912 0.0611 0.2738 0.0036
0.5115 0.3417 0.0734 0.0062
0.5115 0.0734 0.0734 0.0062
0.5115 0.0734 0.3417 0.0062
0.7253 0.0916 0.0916 0.0010
0.2279 0.3163 0.2279 0.0022
0.2738 0.3912 0.0610 0.0036
0.0610 0.3912 0.2738 0.0036
0.2738 0.3912 0.2738 0.0036
0.0734 0.5115 0.0734 0.0062
0.3417 0.5115 0.0734 0.0062
0.0734 0.5115 0.3417 0.0062
0.0916 0.7253 0.0916 0.0010
0.2279 0.2279 0.3163 0.0022
0.2738 0.2738 0.3912 0.0036
0.0611 0.2738 0.3912 0.0036
0.2738 0.0611 0.3912 0.0036
0.0734 0.3417 0.5115 0.0062
0.3417 0.0734 0.5115 0.0062
0.0734 0.0734 0.5115 0.0062
0.0916 0.0916 0.7253 0.0010
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linear hexahedral elements for numerical integral compu-
tation. Te application of the proposed method to solve
partial diferential equations is the future scope of the work.

6. Scope of the Work

Future potentials are in abundance in the ever-evolving feld
of biomass and biorefnery. Te potential of biomass and
biorefneries as renewable energy sources that could displace
fossil fuels, which in other words is biomass, has been
studied in this research. Various energy outputs, including
biofuels and biogas, can be analyzed properly through this
study. As the globe moves towards sustainable energy
sources, the demand for biomass-based energy products is
anticipated to rise and is also capable of producing a variety
of chemicals and materials, such as bioplastics, solvents
based on biomass, and adhesives based on biomass. As
biorefneries have a smaller carbon footprint compared to
their conventional counterparts, they can be used in various
applications such as packaging, building, and textiles.
Alongside the precise solution and using the fnite element
methodology, this type of biorefnery can be solved. As
a major application, biorefneries can assist with waste
management by turning organic waste into benefcial
products.
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[7] L. E. Sjöberg and M. Shirazian, “Solving the direct and inverse
geodetic problems on the ellipsoid by numerical integration,”
Journal of Surveying EngineeringJournal of Surveying Engi-
neering, vol. 138, no. 1, pp. 9–16, 2012.

[8] J. Ma, V. Rokhlin, and S. Wandzura, “Generalized Gaussian
quadrature rules for systems of arbitrary functions,” SIAM
Journal on Numerical Analysis, vol. 33, no. 3, pp. 971–996,
1996.

[9] K. T. Shivaram, “Generalised Gaussian quadrature over
a sphere,” American Journal of Engineering Research and
Reviews, vol. 2, no. 9, pp. 290–293, 2013.
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[11] M. Zlámal, “Te fnite element method in domains with
curved boundaries,” International Journal for Numerical
Methods in Engineering, vol. 5, no. 3, pp. 367–373, 1973.

[12] R. Scott, “Finite Element Techniques for Curved Boundaries,”
Tesis, MIT Library, Cambridge, MA, USA, 1973.

[13] E. L. Wachspress, “Rational basis functions,” State-of-the-art
Survey of Finite Element Method, pp. 235–239, 1981.

[14] W. Gordon and C. Hall, “Construction of curvilinear co-
ordinate systems and applications to mesh generation,” In-
ternational Journal for Numerical Methods in Engineering,
vol. 7, no. 4, pp. 461–477, 1973.

[15] W. Gordon and C. Hall, “Transfnite element methods:
blending-function interpolation over arbitrary curved ele-
ment domains,” Numerische Mathematik, vol. 21, no. 2,
pp. 109–129, 1973.

[16] T.M.Mamatha and B. Venkatesh, “Gauss quadrature rules for
numerical integration over a standard tetrahedral element by
decomposing into hexahedral elements,” Applied Mathe-
matics and Computation, vol. 271, pp. 1062–1070, 2015.

[17] T. M. Mamatha and B. Venkatesh, “Generalised Gaussian
Quadrature rules for numerical integration over tetrahedral
element,” in Proceedings of the 1st International conference on
research in Engineering, Computers and Technology (ICRECT
2016), pp. 172–177, Surabaya, Indonesia, September 2016.

[18] T. M. Mamatha, B. Venkatesh, and R. Pramod, “Numerical
integration over ellipsoid by transforming into 10-noded
tetrahedral elements,” IOP Conference Series: Materials Sci-
ence and Engineering, vol. 310, no. 1, Article ID 012144, 2018.

[19] F. Zhou, X. Xu, and X. Zhang, “Numerical integrationmethod
for triple integrals using the second kind Chebyshev wavelets
and Gauss–Legendre quadrature,” Computational and Ap-
plied Mathematics, vol. 37, no. 3, pp. 3027–3052, 2018.

[20] J. Jaskowiec and N. Sukumar, “High-order cubature rules for
tetrahedra,” International Journal for Numerical Methods in
Engineering, vol. 121, no. 11, pp. 2418–2436, 2020.

18 International Journal of Chemical Engineering

https://downloads.hindawi.com/journals/ijce/2024/5321249.f1.docx
https://arxiv.org/ftp/math/papers/0605/0605216.pdf


[21] T. Cui,W. Leng, H. Liu, L. Zhang, andW. Zheng, “High-order
numerical quadratures in a tetrahedron with an implicitly
defned curved interface,” ACM Transactions on Mathemat-
ical Software, vol. 46, no. 1, p. 18, 2020.

[22] S. Marc Duruf´e, P. Grob, and P. Joly, “Infuence of Gauss
and Gauss-Lobatto quadrature rules on the accuracy of
a quadrilateral fnite element method in the time domain,”
Numerical Methods for Partial Diferential Equations, vol. 25,
no. 3, 2009.

[23] P. Suvarnakuta, S. Devahastin, and A. S. Mujumdar, “A
mathematical model for low-pressure superheated steam
drying of a biomaterial,” Chemical Engineering and Process-
ing: Process Intensifcation, vol. 46, no. 7, pp. 675–683, 2007.

[24] S. N. Rothstein, W. J. Federspiel, and S. R. Little, “A unifed
mathematical model for the prediction of controlled release
from surface and bulk eroding polymer matrices,” Bio-
materials, vol. 30, no. 8, pp. 1657–1664, 2009.

[25] M. A. Zhuravkov and N. S. Romanova, “Determination of
physical and mechanical properties of biomaterials on base of
the nanoindentation technologies and fractional order
models,” Russian Journal of Biomechanics, vol. 20, pp. 5–22,
2016.

[26] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and
A. A. &Zadpoor, “Analytical relationships for the mechanical
properties of additively manufactured porous biomaterials
based on octahedral unit cells,” Applied Mathematical
Modelling, vol. 46, pp. 408–422, 2017.

[27] Y. Sokolovskyy, M. Levkovych, O. Mokrytska, S. Yatsyshyn,
Y. Kaspryshyn, and C. Strauss, “Mathematical models and
analysis of deformation processes in biomaterials with fractal
structure,” 2019, https://ceur-ws.org/Vol-2488/paper11.pdf.

[28] M. Barzegari, D. Mei, S. V. Lamaka, and L. Geris, “Com-
putational modeling of degradation process of biodegradable
magnesium biomaterials,” Corrosion Science, vol. 190, 2021.

International Journal of Chemical Engineering 19

https://ceur-ws.org/Vol-2488/paper11.pdf



