
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2008, Article ID 753584, 7 pages
doi:10.1155/2008/753584

Review Article
Real-Time Optimally Adapting Meshes:
Terrain Visualization in Games

Matthew White

Department of Computing and Mathematics, Manchester Metropolitan University, All Saints, Manchester M15 6BH, UK

Correspondence should be addressed to Matthew White, mattwhite06@googlemail.com

Received 27 September 2007; Accepted 21 December 2007

Recommended by Kok Wai Wong

One of the main challenges encountered by interactive graphics programmers involves presenting high-quality scenes while re-
taining real-time frame rates on the hardware. To achieve this, level-of-detail techniques can be employed to provide a form of
control over scene quality versus performance. Several algorithms exist that allow such control, including the real-time optimally
adapting mesh (ROAM) algorithm specifically aimed at terrain systems. Although ROAM provides an excellent approach to ter-
rain visualization, it contains elements that can be difficult to implement within a game system. This paper hopes to discuss these
factors and provide a more game-orientated implementation of the algorithm.

Copyright © 2008 Matthew White. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Efficiently rendering meshes within a virtual environment
requires the use of a level-of-detail (LOD) algorithm. This
helps ensure that the number of primitives (triangles) used
to represent the mesh is kept as close to an “optimal” level as
possible. As graphics developers, we measure this level as a
compromise between both scene detail (triangle count) and
frame rate. The optimal level is then defined as the highest
number of triangles we can render, while retaining an accept-
able frame rate for our application.

Traditional level-of-detail methods begin by defining
several versions of the scene’s meshes, each differing in trian-
gle count. As the application renders the scene, a version of
each mesh is chosen in relation to factors, such as the meshes’
onscreen size and overall scene importance. As meshes be-
come closer or further from the viewer, their onscreen size
changes and thus the number of triangles required to ren-
der them effectively. The result is a form of control over the
scene triangle count and thus a more optimal detail level of
the scene.

However, when applied to “massive” meshes, such as ter-
rains, this technique breaks down. By massive, we mean a
mesh whose size is so large that it is common for it to con-
tain both very close and very distant sections from the viewer
at one time. Simply put, we cannot just pick a distance from

this vast range, apply a single detail level across the entire
landscape, and expect reasonable results. Instead we need
to implement a more specialized LOD algorithm that takes
this range of distances into account. One of the first of these
methods was introduced by Lindstrom in his continuous
level-of-detail (CLOD) paper [1], which was then expanded
upon by Duchaineau to produce the original ROAM algo-
rithm [2].

ROAM works by defining a mesh as a hierarchal bintree
structure of renderable triangles, dubbed by Duchaineau as a
binary triangle tree. In this tree, each node represents a trian-
gle that is a lower detail version of its two children nodes. Leaf
nodes represent the highest LOD’s triangles, while the root
node represents the lowest. The rendering procedure then
becomes a recursive task where we transverse the tree and
decide which nodes to render for the current frame. When
testing each node, we can choose to either tag the relevant
triangle to be rendered this frame, or step a level deeper into
the tree, and perform the same test upon the child nodes.
Because each node represents 3 vertices (a triangle), a 3D lo-
cation in the virtual world can be defined for the node and
thus a distance from the viewer can be found. With this dis-
tance, we can perform the same distance test as the more
traditional LOD algorithms, except that this test is now per-
formed at a per-triangle level instead of the entire mesh.
The result is that we can spread the LOD across the entire

mailto:mattwhite06@googlemail.com

2 International Journal of Computer Games Technology

visible terrain and thus solve the problem of the “massive
mesh.”

Although ROAM produces a range of detail levels for a
terrain that can be tweaked to a specific triangle level, the
algorithm itself does not translate to graphics hardware that
well [3]. Because the graphics processor can only process data
in its local graphics memory, any change to the renderable
dataset requires an upload to this graphics memory. This up-
load can be considered expensive, and overuse of it can result
in a problem known as “thrashing,” causing the graphics pro-
cessing unit (GPU) to stall as it waits for graphics memory to
be written to. For high performance graphics, we prefer to
load the required data onto the graphics card at initialisa-
tion time, and then attempt to minimise any further uploads
during the runtime of the application. Duchaineau’s ROAM
relies heavily on changes to the mesh vertices, which are built
to describe the current tessellation of the mesh. Uploading
this buffer to the graphics memory can cause the mentioned
thrashing effect and thus a performance hit, something that
has caused criticism from games developers and led to sim-
plified variations of the algorithm appearing in several games
[4, 5].

Many of these variations have one thing in common. In-
stead of checking every triangle of the mesh for a correct
LOD, the mesh is split into a collection, usually a grid, of
terrain tiles. Each tile then contains several sets of geom-
etry, each representing a different LOD for the tile, much
like the more traditional LOD algorithms. Because each tile
has a finite number of detail levels, they can all be uploaded
to the graphics memory at initialisation time, minimising
the thrashing effect. Therefore, better performance can be
obtained by these ROAM variations, which can make them
more desirable for games applications.

This performance increase has its cost however. By re-
placing the per-triangle LOD test with per-tile tests, we lose
the tessellation accuracy of the algorithm. No longer can we
increase or decrease the triangle count by a single triangle,
and thus lose the near-perfect optimal detail level provided
by the original ROAM method. Also, the effect known as
“popping” can become much more apparent in these vari-
ations. Popping is the graphical artifact created when a vis-
ible part of the terrain changes its detail level. The geome-
try literally changes in front of the users eyes, and can be-
come very distracting if large areas of the landscape suddenly
switch. This effect is unavoidable, but can be reduced if the
changing sections of the terrain are relatively small on screen.
Since ROAM tessellates on a per-triangle basis, this area is
usually sufficiently small for combating popping, but when
entire terrain tiles change LOD, the effect can be much more
noticeable.

Not all game systems that use ROAM implement this
style of approach however. Treadmarks [6], an action game
by Longbow Digital Arts, is probably the most well known of
games that implement ROAM-based terrain. Instead of using
the simpler versions of the algorithm, like those mentioned
in Snook’s and Ulrich’s papers, Treadmarks uses a split-only
approach, along with a technique called Implicit Binary Trees
to increase performance [7]. Split-only means that the ter-
rain’s detail level is recalculated for each frame, without the

frame coherence feature mentioned in Duchaineau’s origi-
nal paper. Although this requires more per-frame processing
time, it greatly simplifies the algorithm making it much eas-
ier and quicker to implement into a game system.

The remainder of this paper will describe a new variation
of ROAM that combines the ideas discussed in these previous
variations into a new system, aimed mainly towards games
and real-time graphical applications.

2. OVERVIEW

Originally presented previously at the Manchester Cy-
berGames Conference [8], the “GEOmancy” terrain engine
uses a version of the ROAM algorithm that overcomes the
problems discussed. The system works by dividing the terrain
geometry into a collection of tiles, each represented by a pair
of ROAM triangle bintrees. The classic ROAM split-merge
algorithm is then applied to each tile individually to produce
an optimal detail level. To retain speed through hardware op-
timisations, the vertex buffer for each tile remains static and
is uploaded to graphics memory at the application’s start.
The detail level of each tile is then described, instead, via an
index buffer, which is created through transversing the tile’s
bintrees. Because the per-frame change in viewpoint position
is usually a small fraction of the terrain size, the amount of
LOD changes is also very small, resulting in very few updates
to the separate tiles’ index buffers. This allows the accuracy of
the original ROAM algorithm to be maintained, while min-
imising the amount of data that must be posted to the graph-
ics device per frame.

Although the algorithm tries to provide both high ac-
curacy and high performance, it is liable to two major lim-
itations. First, the algorithm only works on grid-based ter-
rain geometry. That is, vertices that are spaced along the x-z
plane at regular intervals with only their height values differ-
ing. This is not too much of an issue for games as this is by
far the most popular terrain representation method, allow-
ing the dataset to be compressed to a map of height values
(a heightmap) and a single float that defines the distance be-
tween vertices. Secondary, due to the use of static vertices,
only heightmaps of specific sizes can be used.This limitation
can be overcome by using the next largest viable size and
“voiding” off the unwanted extra vertices with water or walls,
and so forth. The geometry may still be there, but techniques
can be used to ensure that the player never sees it.

3. IMPLEMENTATION

3.1. Tiled geometry

The GEOmancy algorithm begins by converting a heightmap
into a grid of terrain tiles. For each tile, a vertex array is cre-
ated by sampling the relevant heightmap entries and scal-
ing these values to produce terrain heights and thus vertices.
These vertex arrays can then be placed in the graphics mem-
ory ready for future render calls.

For each tile, we need to create two bintrees, each rep-
resented by an index buffer. When we tessellate our bintree,
this index buffer will contain a description of which triangles
to render to provide the current LOD of the tile. As stated

Matthew White 3

previously, each node of a triangle bintree represents a ren-
derable triangle. Because we are using an index array to ref-
erence which vertices to render, a triangle can be represented
using three integers that can be used to index the appropri-
ate vertex array. As well as this, we also need to store an error
metric for the triangle, similar to Duchaineau’s ROAM, so
that we can perform LOD tests at runtime for each node in
the tree. Since we cannot know the distance to the viewpoint
at initialisation time, we need to store a value that can assist
us during the runtime LOD decisions. For this, a technique
from the Treadmarks engine is used called variance.

Since every non-highest detail level triangle is an approx-
imation of its children, a difference for it can be calculated
by finding the distances between it and the actual height of
the geometry that it covers. When we run our LOD tests, we
can say that triangles with a high variance are bad representa-
tions of the geometry they cover, and should receive a higher
“split” priority than those with lower variances. When our al-
gorithm is deciding where to add triangles to the frame, the
variance measure helps ensure that rougher sections of the
terrain will receive more detail than the flatter parts, which is
exactly what we require.

As stated previously, our terrain tiles must be of a specific
size. This is because an existing vertex at the correct point is
required to split a triangle in two. Because of this, only spe-
cific sizes will allow us to split triangles down to the lowest
level possible. As can be seen in Figure 1, there is a limited
number of tile dimensions that allow this situation.

For each increase in usable detail levels for a tile, we are
required to double the number of triangles along their edges.
The size of the tile, in vertices, required for this can, there-
fore, be defined as [(2n) + 1], where n is the depth of the tile
bintrees. For the demo, we used a dimension of 9×9 vertices
per tile, as it provided a good balance between bintree depth
and number of tiles.

3.2. Implicit bintrees

Now that we have divided our terrain into tiles, we need to
create our version of the ROAM triangle bintrees. As men-
tioned previously, we will be using an updatable index buffer
to describe which triangles to render from our vertex ar-
ray. To help boost performance, a technique, again from the
Treadmarks engine, called Implicit Bintrees, will be used. Be-
cause our trees will never add or remove nodes after the ini-
tialisation phase, we can represent our bintrees through a
fixed-sized array, providing an abstract interface that accesses
it like a bintree. The result is that all memory allocations are
done at initialisation, improving the performance of the run-
time part of the algorithm. An excellent explanation of this
process was presented by Bryan Turner on the Gamasutra
website [9].

The first index of our array stores the root node of the
tree. Transversing the tree can be quickly achieved via bit-
shift operations as follows.

Left-Child Index: curIndex � 1.
Right-Child Index: (curIndex � 1) + 1.
Parent Node: curIndex � 2.

These macros enable a parent or child index to be found
from any other array index, through the use of very fast op-
erations, as well as removing the need for each node to store
pointers to its neighbours.

Perhaps the biggest advantage of implicit bintrees (other
than removing the need for dynamic memory allocation),
is that any triangle in the tree can now be described us-
ing a single integer index. As will be covered later, this fact
is particularly useful for implementing the ROAM split and
merge queues, as well as solving the CLOD problem known
as cracks.

In our algorithm, each tile contains two of these im-
plicit bintrees, one for the “top-left triangle” and one for the
“bottom-right one.” For each bintree node, we store three in-
dices that describe the triangle vertices, along with a variance
value for the triangle. We define our root node as a triangle
with vertices at the relevant corners of the tile. Every child
can then be defined by dividing the parent triangle down its
centre, creating the two half-sized child triangles. This pro-
cess can be repeated recursively through the tree to create all
potential triangles for each tile.

3.3. Error metrics

To complete our bintrees, we need to find the variance value
for each node of the tree. This is a recursive process that starts
at the leaf nodes and works up to the root node. Because
each leaf node represents our highest LOD, their variance
value is 0. For each node above these leaves, we sample the
height value from the heightmap where their hypotenuse’s
midpoint aligns to. We also find the average of the two hy-
potenuse’s vertex heights to find the approximate rendered
height at this point of the triangle. Variance is then the max-
imum of either the difference of these values, or of the two
children’s variance values. This max operation helps prevent
a situation where a low detail triangle midpoint happens to
fall at the same point as, or near to, the original height data.
Whereas the variance for this would be near zero, the actual
triangle itself could still be a bad approximation for the other
points of the terrain that it covers.

At run-time, we can perform an error test per node based
upon the relative variance value. To make the algorithm
view-dependant, we take factors concerning the virtual cam-
era into account when making this test. As mentioned, these
factors are usually in relation to the triangles’ onscreen size,
and thus the viewpoint distance. A typical test divides the
variance value with this distance and checks the result against
a threshold. This ensures that closer, rougher terrain is split
with more scrutiny than distant, flatter parts. If this test fails,
then we can “split” the triangle by stepping down one level of
the tree and repeating the test on the two child nodes. Once
we find a node that passes the test, we can add the three in-
dices stored for the triangle to the terrain tile’s main index
array. When all the tests have been completed, the tile’s in-
dex array will describe an optimal tessellation of the mesh
for that frame, and can be used to reference the vertex array
when rendering.

Although this works and allows per-triangle tessellations
on a frame-by-frame basis, it is not entirely performance

4 International Journal of Computer Games Technology

(a) (b) (c) (d)

Figure 1: Static tile-size restrictions.

friendly. For each frame, we must recursively test every tile’s
bintrees from their root node to find the optimal detail level.
Since our variance values do not change after initialisation,
the only varying factor for our tests is the viewpoint itself. In
most applications, it is not usual for the camera to move far
between frames, so the results of the majority of tests will be
identical to the previous frame’s results. Therefore, instead of
transversing the bintrees from root node down, we can “pick
up” from where we left off last frame, testing each bintree
from its previous optimal state. This optimisation is known
as frame coherence and is a very effective part of the original
ROAM algorithm.

3.4. Split-merge queues

In ROAM, frame coherence is achieved by using two queues
called the split and merge queues. The split queue is used
to store the next nodes that can be “split,” thus increasing
the bintree’s effective LOD, whereas the merge queue stores
nodes that can be “merged” to decrease the LOD. Splitting a
triangle is the process of converting it into its two child tri-
angles, and therefore incrementing the mesh’s triangle count,
whereas merging is the reverse process of converging two tri-
angles into their parent.

Implementing these data structures is relatively straight-
forward. Because our system is using static vertex arrays, the
number of potential triangles is also constant, and thus the
maximum number of triangles that could be on either queue.
We can therefore implement each queue as a fixed length ar-
ray of this size, with each array containing the indices to rela-
tive nodes within the implicit bintree. We can then use mark-
ers to store the effective starts and ends of the active parts of
these queues, and never have to reallocate memory during
run-time.

These queues represent the detail level state for a single
bintree. We create two operations that allow the increase and
decrease of this detail level called Split and Merge, respec-
tively. The following is the pseudocode for a typical imple-
mentation for these operations.

Split operation

Pop top node index from the Split Queue.
Push this index to the Merge Queue.
Find node’s child indices using the implicit bintree bit-
shift macros.
Add child indices to the end of the Split Queue, in or-
der of Variance values.

Figure 2: Cracks between triangles.

Merge operation

Pop top node index from the Merge Queue.
Push this index to the Split Queue.
Find node’s child indices using macros.
Remove these child node indices from the Split Queue.

By restricting access to the queues to these 2 operations,
we can ensure that the queues are always ordered by the
node’s variance values. This helps ensure that higher variance
areas of a bintree are split and merged before the lower vari-
ance parts, which is exactly what we want.

Because the split queue of a bintree contains a list of all
visible triangles, an index buffer for the tile mesh can be
built up by iterating through it and referencing the appropri-
ate structures directly. Furthermore, we can tag which bin-
trees have had their split or merge methods accessed for each
frame, and only upload the new index buffer for them. Be-
cause the number of per-frame tessellations is usually a small
percentage of the visible terrain tiles, this results in a great re-
duction in the amount of data being transferred to the graph-
ics memory.

3.5. Avoiding cracks

3.5.1. Overview

One problem that all level-of-detail algorithms have to deal
with is that of cracks appearing between different LODs. In
ROAM, this occurs whenever a triangle is split. As can be seen
from Figure 2, the extra vertex at the children’s heads is at a
different height than the second triangle, thus resulting in
a gap. To solve this, the triangle at the base of the splitting
triangle must also be forced to split.

There are three possible arrangements of triangles when
splitting: base-to-nothing, base-to-base, and base-to-edge.

Base-to-nothing occurs when our split target triangle’s
hypotenuse (the base) is at the edge of the mesh, and thus no
geometry. In this situation, we simply do nothing and split
the triangle as normal.

Matthew White 5

Base-to-base is when the triangle shares its hypotenuse
with its neighbour. In this situation, we simply force the
neighbour triangle to split before the target triangle splits.
The result is that the crack is covered up as the neighbour
triangle’s children reference the same vertex at that point.

Base-to-edge is perhaps the most complex scenario. In
this case, our triangle’s base-to-base partner is one of the
neighbour’s triangle’s children. We essentially need to split
twice, once for the neighbour and once for its appropriate
child. The reason why this can become complex is that this
initial split can encounter the same base-to-edge scenario as
the original split. The result is that forced splitting can be
propagated across the mesh, as triangles force other triangles
to be split.

However, because a base-to-edge scenario can only occur
between a triangle and a triangle of a detail level that is one
less, this propagation seldom travels very far, so this rarely
becomes an issue in practice.

To implement this forced split, each triangle needs
knowledge of its diamond partner, which is the triangle in
the mesh that shares a base-to-base relationship. With this
knowledge, the triangle can inform its partner that it too
needs to split. In the original ROAM, a pointer to this part-
ner was stored on a per-triangle basis. However, in a terrain
mesh that can contain hundreds of thousands of potential
triangles, this extra memory requirement can soon mount
up. GEOmancy takes advantage of the implicit bintrees and
uses a neighbour map to significantly reduce these memory
requirements.

3.5.2. Neighbour map

As mentioned previously, we can describe any potential tri-
angle in our mesh with a pointer to a bintree and an index
that defines which slot of the implicit bintree array to look
at. We also know that, apart from the underlying height data,
the structure of every bintree in our system is the same. The
consequence of this is that every node in a bintree is also sur-
rounded by, relatively, the same neighbours as simular nodes
in other bintrees. With this similarity in mind, instead of
storing a diamond partner pointer for each triangle, we can
create a static map that when queried can return a descrip-
tion of the required partner.

Because a diamond partner shares its base with its part-
ner triangle, it can only be in either the same bintree or a
neighbouring bintree. During initialisation, we store three
pointers for each bintree, each of which point to the relative
neighbouring bintree. These pointers can even be null in the
case that the tree is at the edge of the mesh. Upon querying,
the neighbour map returns a partner’s array index and also a
flag that denotes which bintree neighbour the index refers to
(left-edge, right-edge, or hypotenuse-edge neighbour). With
this information, a bintree can call the split function through
the relevant pointer, passing in the index to produce a forced
split. In the case of a “same bintree” flag, the bintree class
simply calls its own split method. In the event that a neigh-
bour pointer is null, then the split can be assumed to be
a base-to-nothing scenario, and the forced split can be ig-
nored.

The end result is a fast look-up system for finding di-
amond partners that does not require per-triangle pointer
storage. The neighbour map’s size remains fixed regardless
of the size of the terrain, which can prove very beneficial for
systems that require vast landscapes.

Creation of the neighbour map is a recursive task much
like the creation of the bintrees. It was found that, with the
exception of the root triangle, every triangle’s neighbours
could be found by examining their parent. Root triangles
have no parent node, so their neighbours must be defined
upon the bintrees creation, through the use of the neighbour
pointer class members mentioned previously. The neighbour
map itself is an array of the same size as the system’s bintrees.
At each slot, we store a flag, indicating the root triangle’s bin-
tree neighbour, and another index, describing the specific tri-
angle from this bintree.

Figure 3 shows the graphical representation of the first 3
levels of a bintree. As we can see, the bintree (triangle 0) has
the neighbours L, R, and H denoting left-edge, right-edge,
and hypotenuse neighbours, respectively.

The left child of this triangle is triangle 1. As can be seen,
its neighbours are as follows:

(i) left neighbour: triangle 0’s right child;
(ii) right neighbour: triangle 0’s base neighbour;

(iii) base neighbour: triangle 0’s left neighbour.

The right child of the root (triangle 2) shares a similar
relationship:

(i) left neighbour: triangle 0’s base neighbour;
(ii) right neighbour: triangle 0’s right child;

(iii) base neighbour: triangle 0’s right neighbour.

The next level down (triangles 3, 4, 5, and 6) follows the
same pattern depending on if they are the left or right chil-
dren of their parent. Using this information, we can use a re-
cursive method to fill the neighbour array with a flag and in-
dex number, describing the relative location of the diamond
partner for any node in one of our bintrees.

3.6. Summary

At the end of the initialisation, we have converted our
heightmap into a grid of terrain tiles. Each tile represents
a square of geometry of our terrain, represented via ver-
tex buffers, and also two bintrees. These bintrees represent
the current tessellation of the terrain tile, using split-merge
ROAM to produce an index buffer that denotes which trian-
gles to render from our geometry. These bintrees offer split
and merge methods to increase or decrease the tree’s LOD by
a single triangle.

During run-time, we test each tile against an error thresh-
old using both its split-queue’s top node’s variance and the
distance to the tile from the camera. These factors insure that
the worst approximations and the closest triangles are split at
a higher priority.

To maintain an optimal level of performance, we also
use frame-by-frame coherence offered by the split and merge
queues. Because of this, and the segmentation of the geom-
etry due to the tiled terrain, only a small proportion of the

6 International Journal of Computer Games Technology

L R

0

H

(a)

L R

1 2

H

(b)

L R

3

4 5

6

H

(c)

Figure 3: Neighbourhood map structure.

terrain’s entire index buffer requires changing each frame,
minimising the effect of thrashing.

Finally, any bintree can query the neighbour map for a
description of a specific triangle’s diamond partner, from
which it can force another local bintree to split a triangle,
avoiding cracks from appearing within the mesh.

4. RESULTS

To test the final implementation of the system, a sam-
ple heightmap was used and frame rates were observed. A
heightmap of size 512 × 512 was chosen for these tests, and
thus provided just over 522 000 potentially renderable tri-
angles in the mesh. The system used for the tests was a
typical desktop system; 2.0 GHz CPU, 512 MB RAM with
an ATI Radeon 9600 graphics card. Different error metrics
were tested to see the difference between performance and
scene quality during the rendering. Table 1 shows the aver-
age frame rates achieved for several error metrics.

Metrics above 7 pixels provided slightly higher frame
rates, but also suffered from very noticeable popping. By us-
ing a small error metric, this popping effect was restricted
to the smaller onscreen triangles, and was not as noticeable.
Without some extra feature to deal with these artifacts, how-
ever, metrics over 7 are unlikely to be favourable for use
within a games application.

For comparison, the most recent version of ROAM
(ROAM 2.0) shows a performance between 40 million and 56
million triangles per second [10] depending upon the hard-
ware being used. Depending upon the error metric chosen,
our system can produce higher frame rates while maintain-
ing an acceptable level-of-detail. The full source and an exe-
cutable demo for the GEOmancy system can be found on-
line at http://members.gamedev.net/rootevilgames/mwhite/
GEOmancy.htm.

5. FURTHER WORK

At the time of writing, the GEOmancy algorithm provides a
new variation of ROAM, aimed for implementation within
a games-orientated system. However, there are further im-
provements being worked on that will be discussed in this
section.

Memory can be a tight resource, especially in the de-
velopment of console games. Storing an entire dataset for a
landscape can hog up much of this resource. To get round
this, we intend to make as much of the vertex data reusable
as possible. The idea revolves around the use of vertex buffer

Table 1: Frame rates for specific error metrics.

Error metric
Average frame rate Triangles

(per second) (per second)

1.0 90.5 47.26 million

3.0 106.7 55.72 million

5.0 112.2 58.59 million

7.0 113.9 59.48 million

streams. In one stream, we load the vertices’ x and z posi-
tions. Because these are repeated for each tile, due to the grid
nature of the mesh, we can create a single vertex buffer for
each tile to reference. A second stream can then be used to
reference other vertex data, such as the y position and tex-
ture coordinates.

For systems using pixel shader 3.0, an expansion of this
technique can be applied using vertex textures. This way,
each tile’s vertex height can be referenced directly from the
heightmap texture, moving part of the processing onto the
GPU. Normal maps can also be used in the same fashion to
provide fast per-vertex normals for dynamic lighting.

Perhaps one of the most exciting ideas for future devel-
opment is the incorporation of DirectX 10’s new geometry
shader. This is a shader stage that allows the generation of
new primitives within the rendering pipeline itself. As men-
tioned in my previous paper, the main reason that there has
been no GPU-only implementation of ROAM is the inability
to add and remove vertices in this pipe-line. With this new
shader, this limitation should no longer apply and the cre-
ation of a full GPU ROAM algorithm could soon become a
reality.

6. CONCLUSION

ROAM is a popular and very effective algorithm for the visu-
alisation of terrains. However, several problems and perfor-
mance issues can be encountered when trying to implement
it into a performance-heavy application, such as a computer
game. This paper has presented an overview of the origi-
nal algorithm and discussed a possible implementation of a
more games-orientated variation. By imposing size restric-
tions upon the input geometry, memory requirements can be
precalculated during the initialisation stages, eliminating the
need for dynamic memory allocations at run-time. Finally, a
tile-based system has been incorporated, allowing us to treat
each terrain tile as a separate mesh. This allows us to sep-
arate the terrain mesh’s index buffer into more manageable

http://members.gamedev.net/rootevilgames/mwhite/GEOmancy.htm
http://members.gamedev.net/rootevilgames/mwhite/GEOmancy.htm

Matthew White 7

sections, rebuilding only the parts that require it between
frames.

ACKNOWLEDGMENTS

The author would like to thank Geoff Brindle for his assis-
tance throughout his dissertation, which led to the devel-
opment of this paper. He would also like to thank Edmund
Prakash for general assistance during his dissertation, as well
as allowing him to present his original paper at the Manch-
ester CyberGames Conference 2007.

REFERENCES

[1] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust,
and G. Turner, “Real-time, continuous level of detail rendering
of height fields,” in Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’96), pp. 109–118, New Orleans, La, USA, August 1996.

[2] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Al-
rich, and M. Mineev-Weinstein, “ROAMing terrain: real-time
optimally adapting meshes,” Tech. Rep. UCRL-JC-127870,
Lawrence Livermore National Laboratory, Livermore, Calif,
USA, July 1997.

[3] G. Snook, Real-Time 3D Terrain Engines Using C++ and Di-
rectX 9, Charles River Media, Hingham, Mass, USA, 2003.

[4] G. Snook, “Simplified terrain using interlocking tiles,” in
Games Programming Gems 2, pp. 377–383, Charles River Me-
dia, Hingham, Mass, USA, 2001.

[5] T. Ulrich, “Chunked LOD,” http://www.tulrich.com/geekstuff/
chunklod.html.

[6] Longbow digital arts, Treadmarks, http://www.ldagames.com/
treadmarks.

[7] S. McNally, “Treadmarks Engine (Binary Trees and Terrain
Tessellation),” http://www.ldagames.com/.

[8] M. White, “Adapting ROAM for use within a games appli-
cation,” in Proceedings of the 3rd International Conference on
Games Research and Development (CyberGames ’07), pp. 59–
66, Manchester, UK, September 2007.

[9] B. Turner, “Real-Time Dynamic Level of Detail Terrain
Rendering with ROAM,” http://www.gamasutra.com/features/
20000403/turner 01.htm.

[10] M. Duchaineau, ROAM Algorithm Version 2.0, http://www.
cognigraph.com/ROAM homepage/ROAM2.

http://www.tulrich.com/geekstuff/chunklod.html
http://www.tulrich.com/geekstuff/chunklod.html
http://www.ldagames.com/treadmarks/
http://www.ldagames.com/treadmarks/
http://www.ldagames.com/
http://www.gamasutra.com/features/20000403/turner_01.htm
http://www.gamasutra.com/features/20000403/turner_01.htm
http://www.cognigraph.com/ROAM_homepage/ROAM2
http://www.cognigraph.com/ROAM_homepage/ROAM2

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

