
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 231863, 15 pages
doi:10.1155/2009/231863

Research Article

Platform for Distributed 3D Gaming

A. Jurgelionis,1 P. Fechteler,2 P. Eisert,2 F. Bellotti,1 H. David,3 J. P. Laulajainen,4

R. Carmichael,5 V. Poulopoulos,6, 7 A. Laikari,8 P. Perälä,4 A. De Gloria,1 and C. Bouras6, 7

1 Department of Biophysical and Electronic Engineering, University of Genoa, Via Opera Pia 11a, 16145 Genoa, Italy
2 Computer Vision & Graphics, Image Processing Department, Heinrich-Hertz-Institute Berlin,
Fraunhofer-Institute for Telecommunications, 10587 Berlin, Germany

3 R&D Department, Exent Technologies Ltd., 25 Bazel Street, P.O. Box 2645, Petach Tikva 49125, Israel
4 Converging Networks Laboratory, VTT Technical Research Centre of Finland, 90571 Oulu, Finland
5 Department of Psychology, Goldsmiths, University of London, New Cross, London SE14 6N, UK
6 Research Unit 6, Research Academic Computer Technology Institute, N. Kazantzaki, Panepistimioupoli, 26504 Rion, Greece
7 Computer Engineering and Informatics Department, University of Patras, 26500 Patras, Greece
8 Software Architectures and Platforms Department, VTT Technical Research Centre of Finland, 02044 VTT, Espoo, Finland

Correspondence should be addressed to A. Jurgelionis, jurge@elios.unige.it

Received 1 February 2009; Accepted 18 March 2009

Recommended by Suiping Zhou

Video games are typically executed on Windows platforms with DirectX API and require high performance CPUs and graphics
hardware. For pervasive gaming in various environments like at home, hotels, or internet cafes, it is beneficial to run games also
on mobile devices and modest performance CE devices avoiding the necessity of placing a noisy workstation in the living room or
costly computers/consoles in each room of a hotel. This paper presents a new cross-platform approach for distributed 3D gaming
in wired/wireless local networks. We introduce the novel system architecture and protocols used to transfer the game graphics data
across the network to end devices. Simultaneous execution of video games on a central server and a novel streaming approach of
the 3D graphics output to multiple end devices enable the access of games on low cost set top boxes and handheld devices that
natively lack the power of executing a game with high-quality graphical output.

Copyright © 2009 A. Jurgelionis et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Computer games constitute nowadays one of the most
dynamic and fastest changing technological areas, both in
terms of market evolution and technology development.
Market interest is now revolving around capitalizing on the
rapid increase of always-on broadband connectivity which
is becoming ubiquitous. Broadband connection drives a
new, digital “Future Home” as part of a communications
revolution that will affect every aspect of consumers’ lives,
not least of which is the change it brings in terms of options
for enjoying entertainment. Taking into account that movies
and music provided by outside sources were at home long
before the internet and broadband, the challenge is to invent
new content consumption patterns of existing and new types
of content and services [1].

At the same time, mobility and digital home entertain-
ment appliances have generated the desire to play games not
only in front of a home PC but also everywhere inside the
house and also on the go. As a result of TV digitalization,
set top boxes (STBs) have entered homes and, as a new
trend, mini-laptops are gaining popularity. Several low-cost
consumer electronics end devices (CE) are already available
at home. Although these devices are capable of executing
software, modern 3D computer games are too heavy for
them.

Running an interactive content-rich multimedia applica-
tions (such as video games) requires the high performance
hardware of a PC or a dedicated gaming device. Other devices
such as set top boxes (STBs) or handheld devices lack the
necessary hardware and adding such capabilities to these
devices will cause their prices to become prohibitive [1].

2 International Journal of Computer Games Technology

A system which enables rendering of PC games on
next-generation STB and personal digital assistant (PDA)
devices without causing a significant increase in their price
is a solution for future networked interactive media. This
approach enables a pervasive accessibility of interactive
media from devices that are running on different platforms
(architecture and operating system), thus facilitating users
to enjoy video games in various environments (home, hotel,
internet café, elderly home) without the need to attach to a
single device or operating system, for example, a Windows
PC.

This paper describes the Games@Large (G@L) pervasive
entertainment architecture which is built on the concept of
distributed remote gaming [2] or Virtual Networked Gaming
(VNG). It enables pervasive game access on devices (set top
boxes and handheld devices) that typically do not possess a
full set of technical requirements to run video games [1]. In
general, the system executes games on a server PC, located
at a central site or at home, captures the graphic commands,
streams them to the end device, and renders the commands
on the end device allowing the full game experience. For
end devices that do not offer hardware accelerated graphics
rendering, the game output is locally rendered at the server
and streamed as video to the client. Since computer games
are highly interactive, extremely low delay has to be achieved
for both techniques. This interactivity also requires the
game controllers’ commands to be captured on the end
device, streamed to the server, and injected into the game
process [3]. The described functions are implemented by an
application which is running on the client and a “return
cannel” which is constructed between the clients and the
server. The application on the client is responsible for
recording any input command arriving from every existing
input device while the return channel is utilized in order
to send the commands from the clients to the server for
execution. On the server side the commands are injected into
the proper game window.

In order to ground our research and system develop-
ments, we have performed a thorough analysis of state of
the art in gaming platforms available in today’s market,
presented in Section 2. The rest of the paper is organized
as follows: Section 3 describes the Games@Large frame-
work; Section 4 its components and operation fundamentals;
Section 5 presents some experimental results on tests of the
initial system and its components demonstrating multiple
game execution on a PC and Quality of Service (QoS) opti-
mized transmission of the games’ graphics to the end devices
via a wireless network; Section 6 presents the conclusions.

2. Gaming Platforms Analysis: State of
the Art in Consoles, PC and Set Top Boxes

We have conducted an overview of state of the art in common
gaming platforms such as consoles, PCs and set top boxes.
One recent development in gaming market activities which
has implications for new consumption patterns is technology
based on distributed-cross-platform computing (or cloud
computing); we introduce and overview this relatively new

concept of Virtual Networked Gaming Platforms (VNGP) in
Section 2.4.

2.1. Consoles. The home console system enables cheap
hardware and guarantees product quality. Unlike the past,
console functionality is being continuously upgraded post-
release (e.g., web-browser and Wii channels on the Wii; high-
definition video-on-demand downloading for Xbox 360; and
PlayStation Home for PS3).

Xbox 360 (Microsoft). Microsoft were the first to release their
next generation console, the Xbox 360, followed by the Xbox
360 Elite designed to store and display high definition video
with a 120 GB hard drive. The Xbox 360 has perhaps the
strongest list of titles of the three next gen consoles, including
Halo 3 in 2007, though the style and content of each console’s
titles differ from the others and personal preferences play
a role in which catalogue, and therefore which platform,
appeals most to a certain gamer/user. In online functionality
Microsoft is the most well established with its Xbox Live/Live
Anywhere/Games for Windows-LIVE gaming services, Live
Marketplace (used to distribute television and movies), and
online Xbox Live Pipeline.

PlayStation 3/PS3 (Sony). As the most powerful games
console ever made, it is the most future-proof in terms of
where games development can go and its built-in Blu-Ray
player. Expert reviews on the console have improved since
its initial reception and commentators have remarked that
the first PS3 games only use about 30–40% of the platform’s
capacity, so the gaming experience it offers should improve
as developers use more of its capacity. PS3 functionality
includes streaming movies or PS3 games to PSP over LAN.
In Europe the PS3 is backwards compatible with most of
the massive PS2 games catalogue (with all in US and Japan).
Online Functionality/Support: The PS3 has a web browser
based on NetFront; Home is a free community-based gaming
service.

Wii (Nintendo). Nintendo’s Wii features gesture recognition
controllers allowing intuitive control and more physical
play which must take much credit for the Wii’s successful
appeal to many consumers who had not been gamers before.
The Wii also has a large back-catalogue of GameCube
titles and developing games is cheaper and easier than
for other platforms, suggesting a rapid proliferation of
titles. Online functionality: Opera web browser software;
a growing number of Wii Channels; the Message Board
supports messaging with Wii users around the world via
WiiConnect24, handles the Wii email messaging, and logs all
play history, facilitating parental supervision; some titles now
support multiplayer online play.

2.2. PCs. The PC is an open system which can be exploited
by virtually any game manufacturer. It is also the broad-
est of gaming platforms—catering to casual games and
casual gamers but also through to the top end of digital
gaming in specialised gaming PCs. The PC has by far the

International Journal of Computer Games Technology 3

highest install base of all gaming platforms (discounting
simple mobiles) with rising broadband connections and
very well-developed online games services, such as Games
for Windows-LIVE, PlayLinc, and many casual games sites
(e.g., Verizon, DishGames, RealArcade, Buzztime). Though
relatively expensive, it is bought and used for many things
besides gaming but is often not equally accessible to all
members of the household. This multifunctional nature
of the PC is being eroded by nongaming functionality
being added to consoles. Game Explorer is a new one-stop
application within Vista designed to make game installation
far simpler and also allows parents to enforce parental
controls.

Input Devices. The PC and the games based on it use
keyboard and mouse as the input device, which allows more
complex games to be played but does not travel well into
the living room where the large-screen TV, 10-foot viewing
experience, comfy chairs, and social gaming are enjoyed
by console gamers. There are some existing living room-
friendly PC-game controllers though they have not been
widely taken up. Microsoft’s wireless game-pad is compatible
with both the PC as well as the Xbox 360. A gamepad is,
however, not suited for playing some game genres associated
with the PC (notably MMOGs and real-time strategy/RTS)
but viable alternative control devices do exist which could
allow PC games of all genres to successfully migrate to
the TV (e.g., Microsoft’s qwerty keyboard add-on for the
Xbox 360/PC wireless gamepad, trackball controllers such as
the BodieLobus Paradox gamepad, or the EZ Commander
Trackball PC Remote). They could also help the development
of new games and peripherals and support web features on
TV (such as Intel/Yahoo’s planned Widget Channel).

2.3. Set Top Boxes. The Set Top Box is emerging as a platform
for casual games and some service providers are offering
games-on-demand services (e.g., the long-established Sky
Gamestar). The fast growth of digital terrestrial television
(DTT) in Europe also suggests the STB install base will
rise steadily, potentially greatly increasing its role. With
a potentially large mainstream audience, support from
advertising revenues could be significant for STB gaming.
Wi-Fi-enabled set top boxes (e.g., Archos TV+) are starting
to emerge which combine a Wi-Fi Media Player with a high-
capacity personal video recorder (PVR) for enjoying movies,
music, photos, podcasts, web video, the full internet and
more on widescreen TV.

Several companies are committed to enabling gaming
services for the STB platform, including Zodiac Interactive,
PixelPlay, Buzztime, TV Head, and PlayJam in the US, and
Visiware, G-Cluster, and Visionik (part of NDS) in Europe.
These companies provide their content and technology
solutions to a few TV service providers currently deploying
gaming services, including BSkyB, Orange, EchoStar, and
Cablevision. Several Telco TV and DBS TV service providers
in the US are actively exploring 3D STB gaming and
their demos make many of today’s cable STB games look

antiquated (see Section 2.4 for details of NDS Xtreamplay
technology).

User uptake of gaming platforms and choice of console
depend on games catalogues and online services as well
as hardware specifications and functionality. PC games are
effectively tied to the desktop/laptop and console gaming is
seen by many as expensive or for dedicated gamers only. The
Wii has broadened the console user base but there remains
a massive potential for mainstream gaming on TV given
the right technology solution, content/services offerings and
pricing. The open PC platform is supported by much
programming expertise and is powerful and ubiquitous
but PC games need to make the transition to the more
comfortable and social TV-spaces with a wide range of low-
cost, accessible, digitally distributed games-on-demand.

2.4. State of the Art in Virtual Networked Media Platforms.
Of great relevance to Games@Large are developments in
technology aimed at putting PC gaming onto TV screens.
Service providers and web-based services are moving into
the PC-gaming value chain and several commercial solutions
for streaming games over the network exist already. These
allow game play on smaller end-devices like low-cost PCs
or set top boxes without requiring the games to be installed
locally. Most of these systems are based on video streaming.
A server executes the game, the graphical output is captured,
and then transmitted as video to the client. For an interactive
experience, such a system requires low end-to-end delay, high
compression efficiency, and low encoding complexity. There-
fore, many solutions have adapted standard video streaming
and optimized for the particular graphical content. For
example, t5 labs announced a solution for instant gaming
on set top boxes via centralized PC based servers, which are
hosted by cable TV or IPTV operators. In order to reduce the
encoding complexity at the server which has to execute the
game and the video encoder, particular motion prediction
is conducted exploiting information about the graphical
content. Reductions of 50–80 % in encoding complexity
are reported. In contrast, StreamMyGame from Tenomichi
Limited also offers a server solution which enables the user
to stream his/her own PC games to another PC in the
home, record the game play or broadcast the games for
spectators. The streaming is based on MPEG-4 and typical
bit-rates of 4 Mbit/s at XGA resolution are reported. Besides
PCs, multiple different end devices are supported such as
PlayStation 3, set top boxes and networked media devices.
Similar to the other two approaches, G-Cluster’s server
client system also offers MPEG-based compression of game
content and its streaming to end devices for remote gaming
applications. Currently, this system has been employed by
operators mainly for casual games. A system that offers high-
definition (HD) resolution is the Xtremeplay technology
of NDS. They enable the high resolution streaming of
computer games to set top boxes, but adaptations of the
game code to the Xtreamplay framework are required. High
resolution streaming of game content is also provided by the
Californian company Dyyno. However, their application is
not interactive gaming over networks but the distribution of

4 International Journal of Computer Games Technology

game output to remote displays. Another somewhat different
approach is AWOMO from Virgin Games. In contrast to
the other approaches, they do not stream the game output
but the game code. The game is downloaded and installed
locally on a PC for execution. However, the technology offers
a progressive game download, such that the user can start
playing the game after only a small part of the data has
been received. The remaining data is continuously fetched
during game play. A similar approach is also used by the
InstantAction system from GarageGames. Users can play 3D
games in their web browser. InstantAction uses a small plug-
in and an initial download of the game which are required to
allow play.

Another streaming solution is offered by Orb (http://
www.orbnetworks.com). Downloading Orb’s free remote-
access software, MyCasting 2.0, onto a PC (Windows only)
transforms it into a ‘broadcast device’, the content of which
can now be accessed from any web-enabled device (PC,
mobile phone, etc.) with a streaming media player. MyCast-
ing 2.0 now works with gaming consoles, enabling Xbox
360/Wii/PS3-owners to stream PC content onto the TV.
Orb’s software has enabled 17 million households (according
to ABI Research) to bridge the PC-to-TV divide, at no
cost, using what is essentially existing technology. However,
streaming of video games is not supported.

Advances in wireless home entertainment networks and
connectivity—which stream content between devices within
the home—also present potentially important solutions for
playing PC games on TV screens. For example, Airgo Net-
works’ faster-than-wired True MIMO Media technology will
allow streaming of rich high-definition television (HDTV)
content to SimpleWare Home (STMicroelectronics) enabled
devices within the home (at speeds faster than 10/100
Ethernet). Intel has collaborated with Verizon to launch a
games-on-demand service that allows consumers to play PC
games on their TV sets using Intel Viiv PCs. Also planned is
a version of the online multiplayer service, PlayLinc, which
will tie in with the service.

Although there is very little detailed technical infor-
mation publicly available about the commercial systems,
there have been many publications on streaming graphical
content in the academic field. In [4], for example, a thin
client has been presented, that uses high-performance H.264
video encoding for streaming the graphical content of an
application to a weaker end device. In this work, the buffering
scheme at the client has been optimized in order to achieve
minimal delay necessary for interactive applications, but
encoding is based on standard video encoding. In contrast,
[5] exploits information from the graphics scene in order to
directly compute the motion vectors and thus significantly
reduces the computational complexity of the MPEG-4
encoding process. The work in [6] also uses MPEG-4 as codec
but goes one step further by using more information from
the graphics state. For example, different quantizer settings
are used dependent on the z-buffer content. Thus, objects
that are further away in the scene are encoded with lower
quality than foreground objects closer to the camera. Both
approaches, however, require an application that passes the
necessary graphics information to the codec and does not

Internet

Wireless gamepad

Notebook
WLAN

Other media
server

Internet
access

Ethernet
switch

EHD Wireless
AP

TV + EME

LMS

LSS

LPS

Figure 1: Games@Large framework.

work with existing game programs. If encoding complexity
should be reduced even more, simple encoding techniques
can be used. In [7], a nonstandard compliant codec is
presented that allows the streaming of graphics content with
very little encoding effort. Coding efficiency is, however, also
much lower than when using highly sophisticated codecs like
H.264.

The reviewed systems offer a variety of possibilities
though all of them have limitations for interactive media
such as video games, and especially existing game titles. For
some of these formats games would need to be specially made
or expensive hardware purchased, other formats provide
moderate visual quality, unlike Games@Large’s aim of being
able to run all or most standard PC games including
newly developed ones with high visual quality (in Sections
4 and 5 we will present some criteria for titles to be
supported by Games@Large). Games@Large aims to offer
benefits for wider stakeholders too (service providers, games
developers/publishers, CE manufacturers, and advertisers)
enabling business models which ensure that end users benefit
not only from the technology solution but a wide choice of
products and services at low cost.

3. Games@Large Framework

The Games@Large framework depicted in Figure 1 enables
interactive media streaming from a PC-based machine to
other CE, computer and mobile devices in homes and
enterprise environments such as hotels, internet cafés and
elderly homes.

The framework includes the following main components
that are briefly introduced below and described in detail in
Section 4.

Server Side. The Local Storage Server (LSS) is responsible
for storage of games. The Local Processing Server (LPS) a
Windows PC runs games from LSS and streams to clients. It
is responsible for launching the game process after client-side

International Journal of Computer Games Technology 5

invocation, managing its performance, allocating computing
resources, filing system and I/O activities, and capturing
the game graphic commands or already rendered frame
buffer for video encoding, as well as managing execution
of multiple games. The LPS is further responsible for
receiving the game controller commands from the end
device and injecting them into the game process. The
LPS is also responsible for streaming game audio to the
client.

Graphic Streaming Protocol Stack. The Graphics Streaming
Protocol is intended to become a standard protocol used
for streaming 3D commands to an end device allowing
lower performance devices such as STBs to present high
performance 3D applications such as games without the need
to actually execute the games on this device.

The video streaming scenario is intended for devices
lacking hardware accelerated rendering capabilities. H.264
[8] is exploited for low-delay video encoding. Synchronisa-
tion and transmission is realised via UDP-based RTP/RTCP
in a standard compliant way.

HE-AACv2 [9] is used for audio streaming. Again,
synchronisation and transmission is realised via UDP-based
RTP/RTCP in a standard compliant way.

Client Side devices. Notebook (NB); Enhanced Multimedia
Extender (EME), which is a WinCE or Linux set top
box; Enhanced Handheld Device (EHD)—a Linux-based
handheld. The client module is responsible for receiving the
3D commands and rendering them on the end device using
local rendering capabilities (OpenGL or DirectX). For the
video streaming approach, H.264 decoding must be sup-
ported instead. The client is also responsible for capturing
the controller (e.g., keyboard or gamepad) commands and
transmitting them to the processing server [3].

4. Games@Large Framework Components

4.1. 3D Graphics Streaming. Today, interfaces between oper-
ating system level libraries, such as DirectX and OpenGL,
and the underlying 3D graphics cards, occur in the operating
system driver and kernel level and are transmitted over the
computer bus. Simultaneous rendering of multiple games
and encoding their output can overload a high-performance
server. For that purpose DirectX, and/or OpenGL graphics
commands, has to be captured at the server (LPS/PC) and
streamed to the client (e.g., STB or a laptop) for remote
rendering. This is similar to the 2D streaming of an X
server in UNIX-based systems. Extensions for streaming 3D
graphics also exist, for example, the OpenGL Stream Codec
(GLS) that allows the local rendering of OpenGL com-
mands. These systems usually work in an error-free TCP/IP
scenario, with best effort transmission without any delay
constraints.

The 3D streaming and remote rendering developed
for Games@Large are achieved by multiple encoding and
transmission layers shown in Figure 2. First of which is
the interception and the very last one is the rendering

on the client machine. All layers in between these two
are independent of any specific graphics API. The latter
implies that the postinterception 3D data streamed till the
client rendering process is not specific to either DirectX or
OpenGL, but rather utilises higher-level concepts common
to all 3D graphics.

Since efficient direct translation from DirectX API
commands to OpenGL commands is difficult, due to the
significant differences between these APIs, a set of common
generic concepts may be of assistance. In general, a 3D scene
consists of multiple objects that are rendered separately.
Before rendering an object, several parameters (states) must
be set and these include lighting, textures, materials, the set of
3D vertices that make a scene, and further various standard
3D transforms (e.g., translate, scale, rotate).

Figure 2 depicts the detailed block diagram of the
components involved in the 3D streaming. First, the 3D
commands issued by the game executable to the graphic layer
API used by the selected game (e.g., DirectX v9) need to be
captured. The same technique used for capturing the DirectX
v9 can also be used for capturing other versions of DirectX
(and also the 2D version of DirectX-DirectDraw). This is
implemented by providing to the game running on the LPS
a pseudo-rendering environment that intercepts the DirectX
calls. The proxy Dynamic Link Library (DLL) is loaded by
the game on its start-up and runs in the game context. This
library forms the server part of the pipeline which passes
the 3D commands from the game executable to the client’s
rendering module.

In our implementation, we have implemented delegates
objects for each of the 3D objects created by the game.
Each such delegates object uses the 3D streaming pipeline
for processing the command and its arguments. For many
commands, a delegate’s object can answer the game exe-
cutable immediately without interaction with the client—
this is done in many cases in order to avoid synchronized
commands. For example, when the game needs to change a
texture (or vertex buffer) on the graphic card, it first locks
it, and then it changes the buffer and then unlocks the
texture. Originally, those commands must be synchronized.
But in our implementation, the delegate object for texture
does not interact with the client when the game tries to
lock the texture on the graphic card but postpone the call
for the unlock call. When the game issues an unlock call,
the delegate object checks what parts of the texture were
changed and sends a single command to the client with
the changes. The client implementation, which is aware
of this logic, will first lock the corresponding texture on
the client’s graphic card, change the texture and unlock it.
This is one example of commands virtualization that allows
avoiding synchronous commands, and reducing the number
of commands—typically such a set of commands is called
hundreds of times per frame.

The Serialization Layer serializes various structures
describing the graphics state to a buffer. Serializer’s addi-
tional function is to fill the buffers until certain criteria is
met (theoretically it can pass the buffer to compressor after
each command which, of course, would not be efficient for
networking). The compression layer’s purpose is to use an

6 International Journal of Computer Games Technology

Game executable

Interception layer

Delegates object
Delegates object

Delegates object

Answers
3D commands

3D streaming pipeline-server side

Buffer manager

Logic compressor

Lossless compression

Networking

Serialization commands

3D streaming pipeline-client side

Network listening

Lossless decompression

Logic decompressor

Deserializer

3D Renderer (DirectX/OpenGL)

Graphic layer

Server side Client side

Graphic layer API

Figure 2: 3D Streaming—detailed block diagram.

efficient third-party compression library (e.g., zlib or LZO
compression) to compress the 3D stream before sending it to
the network.

The Network Layer is responsible for maintaining the
connection with the client and for sending the buffers. After
each sent buffer, an ACK (acknowledgement) is sent back by
the client. The purpose of this ACK is to further synchronize
server and client and to try to not overflow network buffers.
The nature of the data requires that no buffer will be lost in
transmission (which, in the current implementation, implies
the use of TCP). A possibility to use or develop a transport
protocol (e.g., UDP based) which could replace TCP is
investigated.

On Microsoft Windows clients the renderer is using
DirectX to render the commands, while in Linux clients
the renderer is using OpenGL commands. There is a
certain overhead in OpenGL rendering because some data
(especially colour and vertex data) must be reorganised or
rearranged in the processing stack before it can be given
to OpenGL for rendering. This may result in increased
demand of Central Processing Unit (CPU) processing and
memory transfer between system memory and the Graphics
Processing Unit (GPU) [3].

Although the graphic streaming approach is the prefer-
able solution since it offers lower latency and enables
execution of multiple games on one server, it cannot be used
for some small handheld devices like PDAs or smart phones.
These end-devices typically lack the hardware capability for
accelerated rendering and cannot create the images locally
for displaying them. Therefore, the alternative solution using
video streaming techniques is described in the next section.

4.2. Video Encoding. The alternative approach to 3D Graph-
ics Streaming in the Games@Large framework is Video

Streaming. It is used mainly for end devices without a
GPU, like handheld devices, typically having screens of
lower resolution. Here the graphical output is rendered
on the game server and the frame-buffer is captured and
transmitted encoded as video stream. For video encoding,
the H.264 video coding standard is used [8], which is the
current state of the art in this field and provides the best
compression efficiency. But in comparison to previous video
coding standards, the computational complexity is signifi-
cantly higher. However, by selecting appropriate encoding
modes, the encoding complexity for the synthetic frames
can be significantly reduced while preserving high image
quality.

In order to keep the effort moderate for integrating
new client end devices into the Games@Large framework,
the video streaming subsystem has been developed in a
fully standard-compliant way. Nevertheless, the server side
encoding and streaming is adapted to the characteristics of
the present end device. This means that end device properties
such as display resolution or supported decoding profiles
are selected appropriately on the server (e.g., optional H.264
encoding with CABAC [10], which typically increases the
compression efficiency at the cost of increased computational
load of decoding at the client). Similarly, the proportion of
IDR frames in the resulting video stream, which are used to
resolve the dependence on previous frames, can be set under
consideration of the network properties.

The delay between image generation on the server side
and presentation on the client side is crucial and has to be
as small as possible in order to achieve interactive gaming.
To reduce this delay a H.264 decoder for end devices has
been developed which is implemented with a minimum of
buffering. As soon as a video frame has been received it
will be decoded and displayed. This is quite different to TV

International Journal of Computer Games Technology 7
E

n
co

di
n

g
ti

m
e

(m
s)

10

15

20

25

30

35

PSNR (dB)

26 28 30 32 34 36 38

Just cause shoot: inter
Just cause shoot: intra

Figure 3: Comparison encoding timings for different quantizer
settings.

streaming where large buffering is used to remove the effects
of network jitters.

H.264 video encoding is computationally quite demand-
ing. In Figure 3 the encoding times for a game scene
are depicted for streams encoded with different quantizer
settings which results in different qualities. It is clearly visible
that for increased image quality the encoding time increases.
Since the video encoding is executed in parallel to the actual
game both are competing for the processor time. Aside
from that, the desire to execute and stream several games
simultaneously from a single game server increases the need
for reduction in computational complexity in the video
streaming system.

One method for reducing the complexity at the server
is the removal of the scaling of the games output to the
required resolution of the client device. For that purpose, the
render commands of the game are intercepted and modified,
so that the rendered images always fit the end device’s
resolution. Besides the reduction in complexity, an advantage
of this technique is that the quality of the images achieved is
much better, because the images are already rendered at the
desired resolution without any scaling artefacts. An example
is depicted in Figure 4.

Current research is focused on reducing the compu-
tational complexity of the H.264 encoder itself by incor-
porating enhancements based on the available rendering
context information. The main idea is adapted from [11].
The motion prediction in video encoding, which is realized
in common encoders as a computationally very demanding
trial and error search, can be calculated directly by using the
current z-buffer as well as projection parameters available
in the games rendering context of OpenGL/DirectX. The
encoding complexity can be reduced further by predicting
the macroblock partitioning on the basis of discontinuities
in the z-buffer. This is also usually realized in common

encoders as a computationally demanding trial and error
search. The key difference to [11] is that in [11] the authors
assume to have full access to the rendering applications
source code. In the Games@Large framework the output
is generated from unmodified commercial games, which
use quite sophisticated rendering techniques. The challenge
here is to capture the appropriate information of the
rendering context in order to correctly perform the motion
prediction.

In order to transmit the encoded video stream in real-
time, the RTP Packetization (Real Time Protocol [12]) is
utilized. The structure of the H.264 payload for RTP is
specified in [13]. Further details about real-time streaming
and synchronization are discussed in Section 4.4.

4.3. Audio Encoding. Besides the visual appearance computer
games also produce sounds. In order to deliver this audio
data to the client in an efficient manner, an audio streaming
sub-system has been developed. Since computer games
typically produce their audio samples in a block-oriented
manner, the current state-of-the-art audio encoder in this
field has been integrated: the High Efficiency Advanced
Audio Coding version 2 (HE AAC-v2) [9]. Our HE AAC-v2
implementation is configurable so that it can encode mono
or stereo, 8 or 16 bits per sample and at several sample
rates, for example, 22.05, 44.1, or 48 kHz. In order to stream
the encoded audio data in real-time the RTP packetization
(Real Time Protocol [12]) is utilized. The structure of HE
AAC-v2 payload for RTP is specified in [14]. Further details
about real-time streaming and synchronization are discussed
in Section 4.4.

4.4. Synchronized Real Time Streaming. Since the perfor-
mance of the system is highly dependent on the delay
between content generation on the server side and its play
back on the client, the video streaming as well as the audio
streaming are based on the UDP-based RTP (Real Time
Protocol [12]). Every RTP network packet contains a time
stamp as well as a well defined structure of payload data.

In order to prevent errors of different timings among the
video and audio channels and to overcome different kinds of
network jitters, the RTP channels are explicitly synchronized.
For this purpose the RTCP (Real Time Control Protocol
[12]) has been integrated. The content-generating server
periodically sends a so-called Sender Report RTCP Packet
(SR) for each RTP channel. This SR contains a mapping
from the timestamps used in the associated RTP channel
to the global NTP (Network Time Protocol [15]). With
this synchronization of each RTP channel to NTP time,
all the RTP channels are synchronized implicitly with each
other.

4.5. Client Feedback to the Game Server. The return channel
on the server side is responsible for receiving the commands
from each connected client and injecting them to the
appropriate game; the one that the user is playing. The return

8 International Journal of Computer Games Technology

/usr/lib/torcs/torcs-bin

(a)

/usr/lib/torcs/torcs-bin

(b)

Figure 4: Rendering in resolution adapted to particular end device.

channel is constructed by two communicating modules; the
server side module and the client side module.

4.5.1. Server Side. The server side module that implements
the return channel is part of the core of the system and more
specifically the Local Processing Server. The return channel
on the server side is responsible for receiving commands
from each connected client and transforming them in such
a form that they will be readable by the OS (Windows
XP/Vista) and more specifically by the running instance of
the game. The method utilizes a proxy of the DirectInput
dynamic library and injects the commands directly to the
DirectInput functions used by each game.

A crucial part of the server and client side return channel
is the socket communication. The HawkNL [16] library is
used for the communication between the server and the
clients. This assures that the implementation of the socket
is based on a system that is tested by a large community
of users and that no major bugs exist on that part of the
code. For faster communication between client and server
we disable the Nagle Algorithm [17] of the TCP/IP commu-
nication protocol. Having done so, the delivery times of the
packets are almost instantaneous as we omit any buffering
delays.

4.5.2. Keyboard. The server side of the return channel
receives the keyboard commands that originate from the
client dedicated socket connection. The communication
between the server and the client follows a specific protocol
in order to (a) be successfully recognized by the server
and (b) preserve the loss of keyboard input commands. An
important aspect of the return channel infrastructure is the
encryption of keyboard commands which is described in the
following section.

For the case of a game that uses a DirectInput keyboard,
we implement a proxy dll method. For this method, we
create a modified dinput8.dll of our own, modifying only
the function that is used for passing data to the virtual

DirectInput keyboard device that is created when the game
launches in order to read data from the original keyboard.

Encryption. The encryption procedure is needed only for the
keyboard commands that the client transmits, since sensitive
user data, such as credit card numbers or passwords, are only
inserted using the keyboard. RSA encryption was selected as
it fulfils the demands of our specific environment.

Start-Up Phase. When both the client and the server start,
some local initializations take place. The client then launches
a connection request to the server which is advertised to
the network neighbourhood through the UPnP module. The
server accepts the new client generating a unique RSA public-
private key combination.

Transfer of Encrypted Keyboard Input. The idea that lies
beneath the communication command channel architecture
is depicted in Figure 5.

Each end device consists of many possible input devices
for interacting with the server. When the client program
starts, it initiates the device discovery procedure, which may
be offered either by a separate architectural module, for
example, the device discovery module which uses UPnP.
The next step of the procedure is to capture the input
coming from the controllers. This is achieved by recording
the key codes coming from the input devices. Mice or
keyboards are interrupt-driven while with joysticks or joy
pads the polling method is used for reading. If the command
that is to be transferred is originating from a keyboard
device, the client uses the server’s public key to encrypt
the data after it has been suitably formatted adhering to a
certain communication protocol. The encrypted message is
transmitted to the server using the already existing socket
connection.

Once the encrypted message has arrived at the server
side, the server decrypts it using its private key, obtaining
the initial keyboard commands that the client has captured.

International Journal of Computer Games Technology 9

Register input
devices

Capture
input

Format
input

Keyboard
input?

Encrypt
input

Send data

Permanent connection with LPS

Receive data

Decrypt data

Extract input
command

Send input to
game

Permanent connection with end device

Yes

No

LP server

Keyboard
input?

Yes

No

Figure 5: Encrypted command channel.

If the received message is not from a keyboard, the server
bypasses the decryption stage, delivering the commands at
the running game instance. The algorithm procedure of this
step is described in the following sections.

4.5.3. Mouse. The server side of the return channel receives
the mouse commands that originate from the client using
the already open socket connection. The communication
between the server and the client follows a specific protocol
in order to be successfully recognized by the server and is
exactly the same as the keyboard apart from the encryption
part and the resolution part that follows.

An issue that arises when using the mouse input device
is how the commands are executed correctly if the client
has a different resolution to the server. This is because what
is sent from the client to the server is the absolute mouse
position. We realized that when a game is running on the
client, the rightmost bottom position of the mouse equals the
resolution of the game when running in 3D streaming, and
it is equal to the screen resolution when running in Video
streaming. On the server side, we observed that the matching
of the resolutions should not be done with the resolution of
the screen but again with the resolution of the game running
on the server because every command is injected into the
game window. The mouse positions have to be normalized
on the client and the server side.

4.5.4. Joypad/Other. The server side of the return channel
receives mouse and keyboard commands that originate from
the client’s Joypad/Other input via the already open socket
connection. This means that any Joypad/Other input is firstly
translated into suitable keyboard and mouse commands on
the client side (using XML mapping files) and it is then
transmitted to the server for execution at the game instance.
The execution of these commands falls to the previously
described cases.

4.6. Quality of Service Optimized Transmission. The Games@
Large gaming architecture is based on streaming a game’s 3D
or video output to the client running on a separate device.
This kind of distributed operation sets high requirements
for the network in terms of bit rate and latency. A game
stream with sufficient quality is targeted to require a bit
rate of several megabits per second and the latencies have
to be minimized to maximize the gaming quality. The same
network which is used for gaming is also assumed to be
available to other applications such as web surfing or file
downloading. If the network did not have any kind of QoS
support, these competing applications would have a negative
effect on the gaming experience. Thus, the network has
to implement QoS to satisfy the requirements of gaming
regardless of other applications using the same network.

As presented in Figure 1, the network connection to the
game client can be wireless. This is a further challenge for

10 International Journal of Computer Games Technology

providing QoS for the gaming application. Our platform is
based on IEEE 802.11 standard family [18] wireless LAN
(WLAN) technologies. Currently, the most used WLAN
technology is IEEE 802.11g which could provide the band-
width needed for four simultaneous game sessions in good
conditions. The near future IEEE 802.11n will enhance the
maximum bit rate, but still shares the same basic medium
access (MAC) method which does not support QoS. Priority-
based QoS can be supported in IEEE WLANs with the Wi-
Fi Multimedia (WMM) extensions [19] specified by Wi-Fi
Alliance. WMM is a subset of IEEE 802.11e standard [20]
and divides the network traffic into four access categories
which receive different priority for the channel access in
competition situations. In this way applications with high
QoS requirements can be supported with better service than
others with less strict requirements. Our platform is based on
IEEE 802.11 (either g or n) and WMM. As presented later in
the results section, WMM can be used to enhance the gaming
experience substantially compared to the case of basic WLAN
MAC.

In addition to MAC layer QoS support, there is a need
for QoS management solutions in a complete QoS solution.
Our platform relies on UPnP QoS specification [21]. The
specification defines services for policy management and
network resource allocation. In practice, it acts as a mid-
dleware between the applications and the network devices
performing the QoS provisioning.

The experimental results presented later in this paper
prove that our standard-based solution enhances the game
experience and gives superior performance compared to
reference system without QoS support.

4.7. UPnP Device Discovery. To ensure easy system setup
and operation as well as flexibility in dynamic home
networks, various system components need to find each
other automatically and be able to exchange information
about their capabilities.

In the Games@Large system, we have selected to use the
UPnP Forum [22] defined technologies for this functionality.

UPnP technology defines architecture for pervasive peer-
to-peer network connectivity of intelligent appliances, wire-
less devices, and PCs of all form factors. The technologies
leveraged in the UPnP architecture include common internet
protocols such as IP, TCP, UDP, HTTP and XML [23].

The required functionality of device discovery is to allow
a Games@Large client to find Games@Large servers in the
network it is connected to. Device discovery is also available
in servers to find other servers in the larger Games@Large
network. For example, in a large system a Local Management
Server (LMS) needs to find all LSSs in the network; in
the home version, the logical servers are usually located
in a single PC, but in an enterprise version, such as a
hotel environment, there might be several physical server
machines.

The device discovery component is also able to find
information about services provided by the found devices. In
the discovery phase the devices are also exchanging capability
information, for example, an end device will inform the

G@L system

G@L HOME version server

UI (server manipulation)

Core system functionality

3D streaming Video streaming

Return channel

UPnP module (daemon)

Quality of service

W
eb

 s
er

ve
r

D
at

ab
as

e
tr

an
sa

ct
io

n
 la

ye
r

Figure 6: General server architecture.

server of its capabilities, like screen resolution, connected
input devices and so on. Servers can also advertise their
capabilities to other servers and end devices.

4.8. System Integration. The local servers of Game@Large
consist of three separate servers: LPS (Local Processing
Server), LMS (Local Management Server), and LSS (Local
Storage Server). In the (intended for the use in home
environment) version, the main server of the system, is the
Local Processing Server and at this stage it has (virtually) the
core functionality which includes LPS, LMS, and LSS.

4.8.1. Local Processing Server. The “virtual” Local Processing
Server is the core of the Games@Large System HOME
version. It handles every communication with the clients
while being responsible for every internal communication in
parallel. The following Figure 6 represents the general server
architecture.

At this stage of the implementation everything is manip-
ulated within the server application. This web server is an
Apache [24] server with support of PHP [25] and sqLITE
[26] (as a PHP module) which is the database used in the
HOME version of the system.

The LPS incorporates the implementations of 3D and
Video Streaming, the Return Channel and the Quality of
Service modules. In parallel it has a Web Server for serving
the Web UI (user interface) to the clients and a Database
Transaction Layer for the communication with the Database
and the File System (game installations).

The basic procedure of the Processing Server is depicted
in Figure 7.

When a client wants to connect to the system, it tries to
locate the LPS that is running the G@L HOME system. The
UPnP daemon that runs on the LPS “helps” each end device
to locate the server’s IP. The application that runs on each
client launches a web browser with the given IP address and
the LPS’s Web Server starts interacting with the clients. The
client is served with the corresponding web UI (different UI
for each end device). The server is informed which UI has to
be sent by a parameter that is passed together with the IP of
the server in the web browser.

International Journal of Computer Games Technology 11

Game selection phase

Trigger game phase

Initialization phase

Launching game

Game experience

Discovery phase

G@L server

UPnP module

Web server/database

Prepare

G@L clients

LPS discovery (UPnP)

Web browser/game selection

Execution

Loading
modules

Launch Game

Streaming

Return channel

Prepare

Play game

Figure 7: General flow of information.

After the log-in procedure of the end user, the game
selection phase is launched. When the user selects a game
to play the main client application is launched and the
main communication procedures between the client and
the server begin. The client is informing the LPS about its
request to play a specific game. The LPS is processing the
client’s command and more specifically it starts the decision
procedure.

During the decision procedure the server, with the
help of the UPnP and QoS modules, observes the current
system status and network utilization. If the game’s Software,
Hardware, and Network demands are met, then the game
initialization procedure begins. The client is also informed
that the launching of the game is imminent and thus it will be
able to begin its initialization procedure. After the successful
finishing of the initialization procedure, the game is launched
with the 3D commands or video of the game streamed to the
client. Additionally, the client is streaming the user’s input
commands to the server. The commands coming from the
client are furthermore processed on the server side and they
are delegated to the window of the game.

5. Experimental Results

In order to demonstrate multiple game execution and system
performance analysis we designed a testbed [27] in which
we could monitor the performance of network, devices and
Games@Large system processes while running simultaneous
game sessions. Figure 8 shows our testbed setup.

We performed our experiments with two client note-
books of which one was running Sprill (Casual game) and
the second one Red Faction Demo (first person shooter
game). The Games@Large server (Intel 2 GHz 2 CPUs,
2048 MB RAM, 256 MB dedicated video memory) running
Windows XP was connected to a 100 Mbps switch which

G@L client NB1
(red faction demo)

G@L client
NB2 (Sprill)

G@L server, PC WinXp

User1

User2

Wireless AP

Monitoring server

100 base T switch

Figure 8: Games@Large testbed.

in turn connected to the WLAN Access Point (AP) via a
wired Ethernet connection. The two client notebooks (NB1:
Intel 2 GHz 2 CPUs, 1024 MB RAM, 384 MB shared video
memory and NB2: AMD Athlon 2.1 GHz CPU, 1024 MB
RAM, 256 MB dedicated video memory) were connected to
the Wireless AP via the IEEE 802.11g wireless connection.
For system performance monitoring we used an external
Monitoring PC. All the PCs and NBs were SNMP/WMI
enabled for performance monitoring purposes.

We used the PRTG Network Monitor [28] on the Mon-
itoring PC to monitor network, device, and Games@Large
processes with minimal influence on system’s performance.
Additionally we used FRAPS [29] to measure the games’
frame rate.

The test scenario included a full system workflow which
consisted of the following steps, shown also in Figure 7: G@L
server discovery from the client device, web user interface
access and game list browsing, selection of the game, and
starting to play, described in detail in Section 4.8.1. Both the
test participants were familiar with the 2 games used for tests.

12 International Journal of Computer Games Technology

Table 1: Frame rate per second for tested games run natively and
on G@L system.

Mode Game Mean FPS Std Dev

Run Natively
(Server PC)

Red Faction 59.23 5.16

Sprill 349.14 87.65

Run on G@L
Red Faction (NB1) 18.26 12.12

Sprill (NB2) 125.27 108.59

We did not perform extensive user studies though we
were recording user observations and perceptions about the
gaming experience. Both participants commented that at
the beginning there were some pauses in the game while it
was loading, but after a while they disappeared. The gaming
experience in the Mean Opinion Score (MOS) scale [30] was
rated between 4 and 5. There were some differences with the
original game play but participants were not frustrated and
could enjoy the game play.

During the test sessions we were logging the frame rate of
the games on the client devices, network, and G@L processes
performance on the client and server. For analysis purposes,
we ran both games natively on the server PC and measured
their performance and frame rate in frames per second
(FPS). Measurement results for native and G@L system game
executions are presented in Tables 1 and 2.

Network usage during tests was measured on the server
and both clients. Figure 9 shows the network usage bitrates
for the G@L server simultaneously serving two clients. The
mean sum bitrate for the clients is 6956.04 kbit/s for Red
Faction game on NB1 and 8627 kbit/s for Sprill game on
NB2, respectively.

The average bandwidth usage on the client (as well as on
the server per single game) devices is correlated with the FPS.
From mean bit rate of NB1 and NB2, and Table 1 we can
see that when the frame rate is high, the network utilization
is higher (Red Faction versus Sprill). The same correlation
can be observed between the frame rate, CPU and memory
utilization on the client and server. According to some proof
of concept tests Windows based clients are running the games
at higher frame rates than the Linux-based ones and those
with the weak hardware capabilities.

The bandwidth that the game running on the LPS
requires is directly proportional to the frame rate of the
game. Clients that are capable of running games at high
frame rates will spend a large portion of their time reading
3D data from the socket. After a frame has been read, an
ACK is sent to the server so it can generate a fresh updated
frame. When the frame-rate is above sufficient (20–25 FPS is
enough for a good gaming experience), it can be artificially
limited by the LPS to save the network resources. In such a
way, it is possible for multiple (four good quality concurrent
sessions per 1 AP/LPS) devices to be connected to the same
LPS without overloading the network.

The server must have enough CPU power and memory
to run the game natively. Additionally, the amount of
video memory that a game requires when running natively,
must be available in the system memory when running

B
it

ra
te

(k
bi

t/
s)

0
2
4
6
8

10
12
14
16
18
20
×103

Time (s)

0 50 100 150 200 250 300 350

Sum (speed), kbit/s
Traffic in (speed), kbit/s
Traffic out (speed), kbit/s

Figure 9: Bitrate versus Time for G@L Server.

in the G@L environment (that is because the graphic
objects are emulated by the streaming module in the system
memory). As for the CPU requirements, most games still
do some graphics processing in software, so decoupling of
the rendering from the game actually leads to a CPU gain
on the server, see Table 2 (in spite the streaming and the
compression). As long as the processing server has sufficient
CPU and memory resources to run multiple games at once
it can run them. Since the games’ graphics are not rendered
on the LPS (when 3D streaming), there is no competition
between games for the GPU and neither for the full-screen
mode.

The most important hardware requirement for the client
device is the video adapter. It should have hardware accel-
eration capabilities to enable fast rendering of 3D scenes. As
on the server, the graphic resources that the game stores in
the video memory should be available in the system memory
to enable manipulation prediction and cashing. So memory
requirements for the client should be 200–300 MB available
to the client application for fairly heavy games.

Besides the frame rate and technical requirements, such
as hardware and network bandwidth, for a game to run
playable on the end device in the Games@Large system it
has to be compatible with the end device screen size and
controller capabilities (e.g., some games cannot be played
on small displays, other games cannot be controlled with the
gamepad).

The above mentioned tests were performed over a Wi-Fi
network without the QoS and with no other traffic (except
the SNMP/WMI packets for system monitoring, but these
crate a very small network load) present on the network than
the one produced by the two game sessions of the client
notebooks. Therefore latencies and other negative traffic
effects did not assert during the tests, for example, measured
mean round trip time (we sent an SNMP Ping of 30 Bytes
from the server, every second 30 times) for both clients was
<2 ms.

The solution for QoS optimized transmission described
in Section 4.6 was evaluated by performing a series of tests in
a laboratory environment. The experimental setup described

International Journal of Computer Games Technology 13

Table 2: G@L Server and Client process performance: Memory and CPU usage.

Mode Game Mean working set (Mbyte)/Std Dev Mean CPU usage (%)/Std Dev

Run Natively (Server PC)
Red Faction 61.03/4.19 49.03%/1.75%

Sprill 103.39/13.14 47.10%/7.68%

Run on G@L

Red Faction (NB1 process) 45.19/7.11 21.58%/7.03%

Red Faction (Server process) 66.46/12.29 22.00%/8.11%

Sprill (NB2 process) 112.15/30.36 67.69%/18.30%

Sprill (Server process) 139.42/41.15 31.65%/10.67%

Laptop A

Laptop C

AP

Laptop B

Laptop D

Figure 10: Test setup.

in Figure 10 includes four laptops and a WMM enabled
WLAN access point (AP). Laptop A was used as a game
client while laptop B was running the game server software.
The game server was connected with a wired Ethernet
connection to the WLAN and the client connection was
wireless. In addition to game-related laptops, there were two
additional laptops, C and D, which were used to generate
background traffic to the network when testing the QoS
capabilities of the solution. Similar to the game laptops,
Laptop C was connected using a wireless connection and
Laptop D with a wired connection. The laptops used were
standard PC laptops equipped with IEEE 802.11g and WMM
enabled wireless interfaces or 100 Mbps Ethernet interfaces.
The AP was a normal WLAN AP with an addition of priority
queuing in the AP kernel buffers in case of WMM queue
overflow.

In each of the test cases, playing the game (Sprill, using
3D streaming) was begun in a wireless network without
any additional traffic. From the middle until the end of the
test, competing traffic stream was introduced from Laptop
D to Laptop C. This stream was generated by an open
source traffic generator iPerf. A single TCP session was used,
thus simulating a file download between D and C using
FTP or HTTP. The tests were performed with two QoS
configurations. In the first one, all the traffic was sent using
best effort priority, and in the second, the game traffic was
using voice priority and the background best effort priority.
Downlink and uplink throughput, delay, jitter, and packet
losses for the gaming traffic were recorded using the QoSMeT
tool [31] and the game client’s realized frame rate was
measured with Fraps [29].

The downlink performance is visualized in Figure 11
in terms of throughput and delay for the case with equal
priority, and in Figure 12 for the case where gaming has

T
h

ro
u

gh
pu

t
(k

B
/s

)

101

102

103

D
el

ay
(m

s)

0

100

200

300

Time (s)

0 50 100 150 200 250 300 350

Downlink throughput
Downlink delay

Figure 11: Downlink throughput and delay when both the game
and the background traffic share the same priority.

T
h

ro
u

gh
pu

t
(k

B
/s

)

102

103

D
el

ay
(m

s)

0

5

10

15

Time (s)

0 50 100 150 200 250 300 350

Downlink throughput
Downlink delay

Figure 12: Downlink throughput and delay when the game has
higher priority than the background traffic.

higher priority. The effect of introducing the background
traffic can be seen very clearly in Figure 11 while it is not
visible in Figure 12.

The complete results are presented in Tables 3 and 4 for
both cases respectively. In the case without prioritization,
the game really suffers from the competing traffic in the
WLAN. The downlink delay increases up to around 20 times
as high as in uncongested conditions. This causes the realized
frame rate at the client to decrease almost 90 percent which,
together with the increased delay, practically destroys the
game experience. When the game traffic is classified with
a priority higher than the background traffic, the effect of
competition is negligible. The downlink delay remains an
acceptable level and the realized frame rate of the game at
the client decreases only less than 10 percent.

14 International Journal of Computer Games Technology

Table 3: Average values when both the game and the background traffic share the same priority.

Downlink
through-
put
(kBps)

Uplink
through-
put
(kBps)

Downlink
delay (ms)

Uplink
delay (ms)

Downlink
jitter (ms)

Uplink
jitter (ms)

Downlink
packet loss
(%)

Uplink
packet loss
(%)

Realized
frame rate
(fps)

Without
competing
traffic

651.3 26.6 3.4 1.7 1.0 0.8 0.020 0.009 82.8

With
competing
traffic

119.3 4.6 66.0 6.4 5.8 2.5 0.630 0.059 9.1

Ratio 0.18 0.17 19.60 3.67 5.73 3.24 31.16 6.65 0.11

Table 4: Average values when the game has higher priority than the background traffic.

Downlink
through-
put
(kBps)

Uplink
through-
put
(kBps)

Downlink
delay (ms)

Uplink
delay (ms)

Downlink
jitter (ms)

Uplink
jitter (ms)

Downlink
packet loss
(%)

Uplink
packet loss
(%)

Realized
frame rate
(fps)

Without
competing
traffic

665.8 28.1 3.5 1.8 1.0 0.7 0 0.002 80.9

With
competing
traffic

624.4 25.7 4.2 2.2 1.2 0.8 0.003 0 73.5

Ratio 0.94 0.91 1.19 1.23 1.13 1.19 — 0 0.91

6. Conclusions

In this paper, we have presented a new distributed gaming
platform for cross-platform video game delivery. An inno-
vative architecture, transparent to legacy game code, allows
distribution of a cross-platform gaming and entertainment
on a variety of low-cost networked devices that are not
able to run such games. This framework enables easy access
to the game catalogue via the web based interface adapted
for different end devices. A generalized protocol supports
end devices with both OpenGL and DirectX API’s. We have
shown that it is feasible to use a single PC for multiple game
executions and stream them with a high visual quality to
concurrently connected clients via a wireless network using
the QoS solution. The developed technology enables putting
PC gaming onto TV screens which is a rapidly emerging
trend in gaming market. Apart from that it also enables a
pervasive video game access on handheld devices.

Future work is to support wider range of titles, we
will need to implement the interception layer for all the
graphic libraries used by the games which can supported by
Game@Large. A possibility is investigated to use or develop
a transport protocol (e.g., RTP), which could replace TCP
for 3D streaming for the improvement of its performance
over a wireless network. For video streaming current research
is focused on reducing the computational complexity of
the H.264 encoder itself by incorporating enhancements
based on the available rendering context information using
the motion prediction and by predicting the macroblock
partitioning. In parallel, we will run extensive laboratory
tests and field trials in the home environment in order to

gather knowledge about users’ perceptions and investigate
the subjective expectations of gamers.

Acknowledgments

The work presented in this paper has been developed
with the support of the European Integrated Project
Games@Large (Contract IST-038453) which is partially
funded by the European Commission.

References

[1] Y. Tzruya, A. Shani, F. Bellotti, and A. Jurgelionis,
“Games@Large—a new platform for ubiquitous gaming
and multimedia,” in Proceedings of the Broadband Europe
Conference (BBEurope ’06), Geneva, Switzerland, December
2006.

[2] S. Cacciaguerra and G. D’Angelo, “The playing session:
enhanced playability for mobile gamers in massive meta-
verses,” International Journal of Computer Games Technology,
vol. 2008, Article ID 642314, 9 pages, 2008.

[3] I. Nave, H. David, A. Shani, A. Laikari, P. Eisert, and P.
Fechteler, “Games@Large graphics streaming architecture,” in
Proceedings of the 12th Annual IEEE International Symposium
on Consumer Electronics (ISCE ’08), pp. 1–4, Algarve, Portugal,
April 2008.

[4] D. De Winter, P. Simoens, L. Deboosere, et al., “A hybrid
thin-client protocol for multimedia streaming and interactive
gaming applications,” in Proceedings of the International
Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV ’06), Newport, RI, USA, May
2006.

International Journal of Computer Games Technology 15

[5] L. Cheng, A. Bhushan, R. Pajarola, and M. El Zarki, “Real-
time 3d graphics streaming using mpeg-4,” in Proceedings of
the IEEE/ACM Workshop on Broadband Wireless Services and
Applications (BroadWise ’04), pp. 1–16, San Jose, Calif, USA,
July 2004.

[6] Y. Noimark and D. Cohen-Or, “Streaming scenes to MPEG-4
video-enabled devices,” IEEE Computer Graphics and Applica-
tions, vol. 23, no. 1, pp. 58–64, 2003.

[7] S. Stegmaier, M. Magallón, and T. Ertl, “A generic solution for
hardware accelerated remote visualization,” in Proceedings of
the Symposium on Data Visualisation (VISSYM ’02), pp. 87–
94, Barcelona, Spain, May 2002.

[8] MPEG-4 AVC, “Advanced video coding for generic audiovi-
sual services,” ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,
2003.

[9] MPEG-4 HE-AAC, “ISO/IEC 14496-3:2005/Amd.2”.
[10] P. Eisert and P. Fechteler, “Low delay streaming of computer

graphics,” in Proceedings of the International Conference on
Image Processing (ICIP ’08), pp. 2704–2707, San Diego, Calif,
USA, October 2008.

[11] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based
adaptive binary arithmetic coding in the H.264/AVC video
compression standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 620–636, 2003.

[12] RFC 3550, “RTP: A Transport Protocol for Real-Time Appli-
cations”.

[13] RFC 3984, “RTP Payload Format for H.264 Video”.
[14] RFC 3640, “RTP Payload Format for Transport of MPEG-4

Elementary Streams”.
[15] D. L. Mills, “Network time protocol version 4 reference and

implementation guide,” Tech. Rep. 06-6-1, Department of
Electrical and Computer Engineering, University of Delaware,
Newark, Del, USA, June 2006.

[16] Hawk Software, Hawk Network Library, http://www.hawksoft
.com/hawknl.

[17] J. Nagle, “Congestion control in IP/TCP internetworks,” RFC
896, January 1984.

[18] IEEE Standard 802.11-1999, “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifica-
tions,” 1999.

[19] Wi-Fi Alliance Technical Committee, QoS Task Group, WMM
(including WMM power save) specification V1.1, 2004.

[20] IEEE 802.11e-2005, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,
Amendment 8: Medium Access Control (MAC) Quality of
Service Enhancements,” 2005.

[21] UPnP QoS Architecture V2.0, http://www.upnp.org/specs/
qos/UPnP-qos-Architecture-v2-20061016.pdf.

[22] UPnP Forum, http://www.upnp.org.
[23] UPnP device architecture, http://www.upnp.org/specs/arch/

UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf.
[24] Apache Software Foundation, Apache HTTP Server,

http://httpd.apache.org.
[25] PHP: HyperText Preprocessor, http://www.php.net.
[26] SQLite, http://www.sqlite.org.
[27] A. Jurgelionis, F. Bellotti, A. Possani, and A. De Gloria,

“Designing enjoyable entertainment products,” in Proceedings
of the Conference on Human Factors in Computing Systems
(CHI ’08), pp. 1–5, Florence, Italy, April 2008.

[28] PRTG Network Monitor, http://www.paessler.com.
[29] Fraps, “Real-time video capture benchmarking,” http://www

.fraps.com.
[30] Ch. Schaefer, Th. Enderes, H. Ritter, and M. Zitterbart, “Sub-

jective quality assessment for multiplayer real-time games,” in

Proceedings of the 1st Workshop on Network and System Support
for Games, pp. 74–78, Braunschweig, Germany, April 2002.

[31] J. Prokkola, M. Hanski, M. Jurvansuu, and M. Immonen,
“Measuring WCDMA and HSDPA delay characteristics with
QoSMeT,” in Proceedings of the IEEE International Conference
on Communications (ICC ’07), pp. 492–498, Glasgow, UK,
June 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

