
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 323095, 9 pages
doi:10.1155/2009/323095

Research Article

Player Profile Management on NFC Smart Card for
Multiplayer Ubiquitous Games

Romain Pellerin,1, 2 Chen Yan,1 Julien Cordry,1 and Eric Gressier-Soudan1

1 CNAM-CEDRIC, 292 rue St Martin, 75141 Paris Cedex 03, France
2 GET-INT, 9 rue Charles Fourier, 91011 Evry Cedex, France

Correspondence should be addressed to Julien Cordry, julien.cordry@cnam.fr

Received 30 January 2009; Accepted 14 July 2009

Recommended by Zhongke Wu

One of the goals of mixed reality and ubiquitous computing technologies is to provide an adaptable and personal content at any
moment, anywhere, and in any context. In Multiplayer Ubiquitous Games (MUGs), players have to interact in the real world at
both physical and virtual levels. Player profiles in MUGs offer an opportunity to provide personalized services to gamers. This
paper presents a way to manage MUG player profiles on an NFC Smart Card, and proposes a Java API to integrate Smart Cards in
the development of MUGs. This user centric approach brings new forms of gameplay, allowing the player to interact with the game
or with other players any time and anywhere. Smart Cards should also help improve the security, ubiquity, and the user mobility
in traditional MUGs.

Copyright © 2009 Romain Pellerin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

We deeply believe that the next step for the gaming industry
will be Multiplayer Ubiquitous Games (MUGs). In this type
of game, users play simultaneously in the real world and
in the virtual world [1]. To manage an MUG system which
supports social interactions among interconnected users in
both worlds, the system has to manage the equipments that
are deployed in the real world, and to compute the state of
the virtual world.

Our purpose here is to enhance the mobility and the
ubiquity in MUGs by using a user-centric approach. This
might give rise to new kinds of user interactions.

Various technologies, such as RFID tags, networked
objects or environmental sensors, can be used to help the
user interact with his/her physical environment. Moreover,
the players can have access to hand-held device, biomedical
sensors, interaction devices, virtual reality glasses, and so
forth. Then, various network connectivities are used to
link all these devices: Wi-Fi, Bluetooth, ZigBee, or cellular
phone networks. Finally, an MUG server could run the
global game logic, centralize the game data, and bring the
players together. A proper way to support this technological

heterogeneity is to use a middleware, like uGASP [2, 3],
which is an OSGi-based [4] open-source middleware dedi-
cated to MUGs.

On the gameplay level, MUG systems introduce the
concept of Real world Gaming system Interaction (RGI). It
is based on the following properties. Firstly, the gameplay
relies on the player’s physical mobility and often requires a
context and a user adaptation. Secondly, the game interacts
with the player in an ubiquitous way (at nondedicated
locations through nondedicated objects), and proactively (at
uncontrolled times, e.g., through email or phone). Finally,
the game leads to social interactions which can be effective in
the real world or in the virtual world.

So, MUG systems have to be flexible and adaptable
enough to be able to respond to these complex and uncertain
relations between the real world and the game world, and
between the player and the real world. Furthermore, the
player should be able to interact with the game despite
a network disconnection, for example, to interact with a
smart toy in a nonnetworked area. On the design level,
like all games, and, more generally, like all entertainment
applications, an MUG system should include a user model.
An MUG system can be seen as an information system

2 International Journal of Computer Games Technology

requiring some user personal data in order to integrate the
user’s real life into the game, for example, his/her phone
number or his/her real life social relations. Natkin and Yan
[5] propose a player profile model to provide a personalized
gaming experience to the player.

One of the ways to store a player profile in an MUG
system is to let the player carry the profile along with
him/her on an embedded computing device, such as NFC
Smart Card. The Near Field Communication (NFC, [6])
Smart Cards are a fast growing member of the large Smart
Card family. Today, Smart Cards are widespread devices
with cryptographic and storage capabilities, and tamper-
resistant properties. This makes those devices ideal for
many application contexts like in identification, transport,
telecommunication, or banking domains. Their non-self-
powered essence implies the use of a reader/Card Acceptance
Device (CAD) that can power up the card and interact with
it. The NFC technology enables them to interact with their
environment in a contactless manner, most primarily with
mobile phones.

No public attempt to manage an MUG player profile on a
Smart Card has been provided so far. Besides, it appears that
many game systems tend to understate the security and con-
fidentiality issues that should be addressed in any networking
environment while some personal data are involved. The
work undertaken here is part of the PLUG research project
[7]. PLUG is led by the CNAM-CEDRIC computer science
research laboratory in collaboration with Musée des Arts et
Métiers, Orange Labs, Institut Sud Telecom, L3i lab from
University La Rochelle, and a game studio: TetraEdge. It aims
at creating an MUG inside the CNAM museum that takes
into account the player characteristics. This MUG is built on
top of the uGASP middleware.

This paper introduces a user centric approach dedicated
to MUG systems. Our approach consists in using an NFC
Smart Card to store the MUG player profile, providing
mobility, and guaranteeing user privacy and confidentiality.
The player holds some game information in order to interact
with the surrounding NFC devices. In addition, the Smart
Card provides the player with a secure way to store confi-
dential data. In this work, we present an open-source service
to manage MUG player profile (MUGPP) for Java-based
devices (card, reader, and server levels): the MUGPPM API
(the API for our MUG Player Profile Management). Section 2
describes the MUGPP. Section 3 presents the technologies
used for user profile management on Smart Cards. Section 4
discusses the benefits of handling the player profile on an
NFC Smart Card for MUGs and the kinds of new interactions
it could bring to the user and the MUG system. In Section 5,
the general architecture of the system is presented and the
security issues related to the protection of the data in the
card are discussed. Section 6 describes the new kinds of
interactions using our API. The last section concludes and
gives our perspectives for future work.

2. Player Profile Definition for MUG (MUGPP)

The essence of gameplay is designing a game with regards
to the user point of view. This point of view is implicitly

or explicitly coded in the game system: all games and all
entertainment applications include a user model. In single
player games, it starts from a rough classification of the target
players and a limited memory of player actions in the game,
but it can also be a complex cognitive model. In multiplayer
games, the model contains social attributes and behaviors. In
multiplayer ubiquitous games, the model has to be cognitive,
social, and related to the history and to the current situation
of the player in both the virtual and the real world.

Considering that the user’s space of activity embeds
computing devices and that information systems become
more and more ubiquitous and pervasive, there is a need
to consider the interaction between the real and the virtual
world in a mixed reality mode, and the possible actions of the
user in both universes. So the user model will not only take
into account the state and behavior of the user as in classical
online gaming situations but also in augmented outdoor or
mobile gaming environments.

Our method is to use an explicit user model, the MUG
Player Profile (MUGPP), to gather and classify distinctive
information about the player. This information will be the
deductive basis for the game decision mechanism.

The MUGPP guides the game decision engine to offer
diverse game experiences to players. The game quests adapt
the game scenario to the personal context of the player, which
leads to an action that is executed both in the game and in the
real world. The main goal in the use of the MUGPP along
with the automatic generation of the narration is to decide
which type of quest can best relate to the player profile and to
the global narration needs, so as to promote social relations
between players. In this way, the playability of the game is
augmented: the game is persistent and adaptable. Each player
can have a unique experience.

The MUGPP depends on a set of parameters that can be
either statically defined by the game designer or dynamically
adjusted according to the real time changes in the user’s
physical states or even in the user’s social features. It implies
a personalized level of parameters in the user model [5].
Since the player is represented in both the real world and
the virtual system, we have to consider his/her knowledge
of the gameplay from several different points of view. It
is very useful to distinguish the user’s general information
from his/her in-game data, as his/her general profile could
be re-exploited by different game mechanisms. The following
three groups describe the kinds of user information that are
collected and identified.

The first group includes some data about the user “by
himself, ” that is, unrelated to his/her game practice: civil
status, preferences, and so forth. Most of this data can only
be provided directly by the player during the creation of the
game account. Since this data changes infrequently, it has
to be accessible by any MUG on the game platform, so the
player does not need to register his/her civil status every time
he/she plans to play a new game.

The second group collects the knowledge about the user
defined “as a player.” It includes some exact information
corresponding to the basic choices of the player: the type of
account, distribution of the duration of play in each location,
and so forth. It includes also statistical data or some real-time

International Journal of Computer Games Technology 3

data gathered during the play: his/her physical location,
his/her interaction with the various interactive devices in the
real environment, and so forth.

The third group defines the status of the player’s avatar in
the game from both a statistical and a real-time point of view,
such as the standard information of his/her avatar, his/her
equipment and inventory, or his/her social relations in the
game. This data could be used by the game server to propose
some special customized game events to the players, such as
a specific common quest requiring a particular object from
two players’ inventories.

This user model has been experimented in the prototype
MugNSRC [8]. The original game, NSRC, is based on car-
toon type wheelchair races in the office of a virtual Japanese
Company. MugNSRC uses this context and integrates a user
model with the player’s motivation profile in the game engine
as a mean to manage and develop a community through
cooperative and competitive goals assigned to the players.

The question of which device hosts the user profile
in the system relies on the global architecture of the
game. Generally, multiplayer games follow a client/server
architecture. The user profile is managed by the server, as in
MugNSRC. Initial values of each class of data in the MUGPP
are computed following the principle of a questionnaire.
The player is invited to fill a form used to set the initial
values of MUGPP parameters before the creation of his/her
game account. These values could be changed according to
a feedback loop related to the player choices and actions in
the game. The user can log in to access his/her account, and
retrieve his/her profile. On the other hand, P2P multiplayer
games manage the player profile on the client side. The
disadvantages of such an architecture are that the user has to
manage himself/herself his/her profile when he/she changes
to a new terminal, and that the players can cheat easily.

3. Smart Cards in the Management of
User Profiles

Our work focuses on finding a way to manage efficiently
player profiles in MUGs in order to provide a more
personalized game to the gamers. Since network coverage
and network connections are potentially unreliable, an
interesting approach to carry out the game in a continuous
manner would be to let the player carry his/her player
profile along with him, so that the user is still able to
play despite disconnection. This assessment leads to build
a distributed and persistent information system for game
data, and especially what we called MUGPP information.
To manage this information, wearable devices are appro-
priate. The list of such devices includes mobile phones,
PDA, Smart Cards, game consoles, memory cards, and
so forth. Among those, Smart Cards are a good compro-
mise in terms of wearability, security mechanisms, and
costs.

Smart Cards are the most secure and widespread portable
computing device today. They have been used successfully
around the world in various applications involving money,
proprietary data, and personal data (such as banking, pay-
TV or GSM subscriber identification, loyalty, health-care,

insurance, etc.). The Java Card [9] and the Microsoft.Net
framework for Smart Cards are platforms that support a
multiapplication environment, and in their modern versions,
tend to go multithread. One of the key elements of Smart
Cards is to improve on basic magnetic stripe cards with
dynamically programmable microcontrollers, cryptographic
Coprocessors, and means to protect the embedded data.
Furthermore, Java Card platforms usually embed some
code verifier, making those devices safer. Aside from their
small size (to fit on a flexible plastic card and to increase
hardware security) and from their low cost (to be sold in
large volumes), this makes them ideal for any ubiquitous
security-sensitive environment. Today Smart Cards are small
computers, providing 8, 16, or 32 bits CPU with clock speeds
ranging from 5 up to 40 MHz, ROM memory between 32 and
128 KB, EEPROM memory (writable, persistent) between
16 and 64 KB and RAM memory (writable, nonpersistent)
between 3 and 5 KB. Smart Cards communicate with the
rest of the world through Application Protocol Data Units
(APDUs, ISO 7816-4 standard). The communication is done
in client-server mode, the Smart Card playing the role of the
server. It is always the terminal application that initiates the
communication by sending a command APDU to the card
and then the card replies by sending back a response APDU
(possibly with an empty content).

Smart Cards can be accessed through a reader. The access
has traditionally meant inserting the Smart Card in the
reader. However, the trend is to interact in a contactless
manner, to improve the Human Computer Interface (HCI)
aspects. The Near Field Communication (NFC) technology
provides devices with the ability to interact within a short
range (less than 10 centimeters) by radio signal. This
technology stems from the recent RFID market development.
It works at a 13.56 MHz frequency, provides a 424 kbit/s
bandwidth, and supports a half-duplex communication
between devices. NFC Smart Cards combine the two previ-
ous technologies, so they are easily accessible in a contactless
manner. Since these cards are non-self-powered, the radio
signal from a reader is used to power the Smart Card-
integrated circuit, in the same manner as RFID tags.

In the context of ubiquitous systems, the user can either
carry an NFC Smart Card, which is readable within a short
range by an NFC reader, or carry a reader, which is able to
interact with the NFC devices disseminated over an area.
As far as we know, there is no MUG that makes use of a
Smart Card. However, there are some similarities between
using a Smart Card for an MUG and using a Smart Card
that is dedicated to commercial applications like public
transportation systems and banking applications. Today,
numerous cities in the world use contactless Smart Card-
based systems to manage their public transportation system.
For instance, the Paris commuters can use their contactless
Smart Card (Navigo) as a mean to access transportation
facilities (trains, buses, etc.) as well as the public bicycles
network (Velib). The later involves a network of bicycle
stations, which are equipped with an NFC readers, and a
central authority, to help regulate the traffic. The Smart Card
is used to store some user-related data, for example, the log
of the stations he/she went through.

4 International Journal of Computer Games Technology

The core of this type of distributed information system
is the management of user data on Smart Cards. There
has been some effort to manage a health profile with
PicoDBMS [10]. PicoDBMS is a Database management
system dedicated to Smart Cards. PicoDBMS has also been
used in some work undertaken by Lahlou and Urien [11]
to filter some Internet data through a Smart Card-based
user profile. They manage the profile dynamically (the user
can specify his/her preferences). The security approach is
that of the P3P (Platform for Privacy Preferences) [12]
normalization group. The framework offers two security
levels, the less secure being the less Smart Card intensive.
The approach leaves out any gaming/ubiquitous aspect, and
there is no mention of any authentication/confidentiality
of the information. Ubiquitous systems should introduce a
middleware to support this distributed information system.
There are three essential components for these systems which
are the users and their Smart Cards, the readers, and a central
authority server.

4. Playing MUGs with NFC Smart Cards

The game system of some existing MUGs, such as [13–15],
relies on the capability to control all the physical objects,
which are integrated in the game, their impacts on the player,
and all the various real-world embedded sensors, which take
part in a hierarchy of networks. The participants of MUGs
often experience the heavy load of physical wearable devices,
or they have to deal with network disconnection problems
[16]. Our proposal consists in using a Smart Card as an
add-on interface for the interactions between the player, the
virtual world, and the real world.

On the player’s side, the MUGPP can be specified on a
Smart Card, which enables the player to have access to some
of his/her game-related information. The player can monitor
his/her game process, manage his/her game objects, and even
visualize or being informed with the game progress by either
using one of the fixed terminals that are spread over the game
area or by using a mobile terminal. In the context of an NFC
Smart Card-based player profile, this would mean that the
player could interact by using a Smart Card with a fixed NFC
reader or with his/her mobile phone integrated reader.

The update of the MUGPP is executed automatically by
the system and manually by the player. Firstly the MUGPP
could be renewed by the player’s physical interaction, that
is to say, the player’s physical movement and behavior in
the real environment (outdoor and indoor). As the real
environment is embedded with tangible objects, the player’s
physical location could be “tracked” as he/she walks through
the game zones. The interaction between a Smart Card and a
smart object using NFC readers can be performed without
any connection to the game server. Every time the player
comes close to a Smart Card reader, some of the MUGPP
information can be updated and used in any way by dealing
with the “as a player” data. Secondly, the MUGPP is updated
following the communication or social interaction among
players in the real world. The players should be able to sell
and buy the game items they own to other players even while
they are offline. The third group of information, that is to say,

the “as his/her avatar” data can be updated dynamically. The
social dimension of the gameplay is extended to the spatial
and temporal dimension of the game. Therefore, the game
system could trigger and control some game events in real
time and real space for a group of players in the same game
zone. Thus, the MUGPP can be updated during the real time
interactions between the players, the game, and the physical
space.

Playing MUGs with a Smart Card is a relatively new
experience for the user, which will bring new forms of
interaction to the players, new contents, and new security
features.

Using a Smart Card gives the players new ways to interact
with the game, potentially without any display device. This
means that an automatic tangible interaction between the
NFC Smart Card and the NFC reader can take place by
bringing them close to one another. For the user, the most
accessible and affordable mobile terminal is the mobile
phone. Also, some are able to integrate the NFC technology,
like the Nokia 6131 NFC and the Sagem My700x. Therefore,
we suggest to use an NFC mobile phone to run a client
application in our MUG system.

An ideal MUG is a digital environment with smart
objects surrounding the user. This would allow him/her to
interact with the game anywhere. Therefore, we can embed
NFC readers in smart objects, such as Nabaztag [17], which
could interact with each user’s Smart Card. To enrich the user
experience, a television decoder may also integrate an NFC
reader so that the player could gain access to the multimedia
content related to the game.

On the Smart Card, we aim at defining and formalizing
an MUGPP which might help maintain decentralized user
data from the game server. This MUGPP allows the user’s
personal information to be reused by several game mech-
anisms and to be completed by several applications. The
interest of having an MUGPP on a Smart Card is not only
that users have a more “wearable” computing device but also
that the game designers can provide each individual with
a personalized gaming experience. In the mechanism of a
MUG, the MUGPP can take a central role rather than being
a peripheral or real context to influence the game server in
making the decision for a customized service to the end user.

Considering security aspects, the specification of player
profiles as separated from the server will guarantee the
confidentiality of each individual’s private information and
the related service. For example, it could be possible to
register the information of the player’s bank account on the
Smart Card which allows the player to have access to a paying
service. In “World of Warcraft” (Blizzard Entertainment,
2004), the user can register his/her bank account on the
game server, which can be unsafe despite the login/password
protection, in order to obtain some special services from
the game editor. From a perspective point of view, this
will enlarge the possibility of license management such as
biological or vocal based identity.

As a consequence, there is a need to support Smart
Card, NFC reader in the MUG system architecture. We will
describe an API which provides this service in more details
in the following sections.

International Journal of Computer Games Technology 5

5. Architecture to Manage MUGPP on
an NFC Smart Card

The NFC interactions in MUGs (see Section 4) and of the
MUG player profile (see Section 2) are key issues of our
proposal. The main component of this architecture is the
service that manages the MUG player profile on the external
NFC Smart Card. We have implemented a library which
enables Java 2 Micro Edition [18] (J2ME) Mobile Information
Device Profile- (MIDP-) based mobile phones to exchange
data with Smart Cards and game server logic. The server is
itself implemented in J2SE and the Smart Card part of the
application is a Java Card cardlet. Finally, we use the security
mechanisms to ensure the privacy of the player profile data.
Figure 1 presents an overview of the MUGPPM architecture.

5.1. Oncard Service. Our card-side implementation aims
the card applications based on Java Card platform which
complies with the ISO 14443 [19] standard part 1, 2, and 3
type A. An oncard Java applet is dedicated to the MUGPPM.
It implements a set of instructions to handle communication
with an NFC reader. These instructions are built using the
Application Protocol Data Unit (APDU) protocol defined in
the ISO/IEC 7816 standard. Besides, it maintains the player
profile data model with some added security features.

5.1.1. APDU Instructions. The APDU instruction set used in
MUGPPM allows the following:

(i) to manage the player profile,

(ii) to manage the default entries, for example, static
entries of our MUG player profile definition, for
example, the username, age, or playtime fields,

(iii) to manage object entries, for example, entries corre-
sponding to game data objects, like inventory items,

(iv) to manage the private and public key entries.

With this set of instructions, the reader can access a
profile stored on the Smart Card, save/load each profile
fields independently, and store/retrieve the game objects.
Objects can be defined as exchangeable between players.
Nevertheless, it is the MUG game designer who has to
decide if a game object is sharable or not. Table 1 shows the
instructions used by the MUGPPM. It details the parameters
of each instruction and the corresponding response of the
Smart Card.

5.1.2. Data Model. The field lengths have been bounded due
to the memory limitation that characterizes the Smart Card
platforms. We tested our implementation on an Oberthur
Cosmo Dual card which offers only 72 KB of memory space
(EEPROM).

Nevertheless the profile itself is not really heavy, since
the CAP file containing our oncard application uses around
6 KB. We also use a 4 KB memory buffer to deal with
large I/Os. The fields of the GameProfile class themselves
include a number of byte arrays (264 bytes), and a couple
of OwnerPIN objects to manage the user password and the

game provider password (the object size depends on the
Java Card Virtual Machine (JCVM) implementation, but the
password itself is limited to 8 bytes). Furthermore, the profile
is associated with three 2048 bits RSA keys (768 bytes). So the
application itself requires 8 KB and each instance of a profile
should require less than 2 KB (depending on the JCVM
implementation). Therefore, we could theoreticly manage
about 30 different game profiles with this Smart Card.

5.2. NFC Reader Side Service. The main functionalities of the
NFC reader API are to access the MUG player profile stored
on the Smart Card and to communicate with the profile-
based services that are hosted on the MUG server.

The APDUDataManager class is used to establish the
NFC communication toward the card and to some send
APDU formatted messages. The GameProfile class is used to
manage the player profile fields during profile manipulation
on the reader. Finally, the NetworkCom class handles object-
oriented HTTP communications with the server based on the
MooDS protocol [20].

We have prototyped a J2ME version of our MUGPPM
service to have a Java mobile phone access to the oncard
MUGPPM service. This choice is obvious considering the
mobile phone is the most widespread mobile terminal for
end-users. Moreover, in 2007, some J2ME mobile phones
embedding NFC readers, such as the Nokia 6131 NFC or
the Sagem my700X, were placed on the market. An API to
help establish a contactless communication between a J2ME
mobile phone and an NFC Smart Card has been released the
same year: the JSR257 [19].

A specific API is traditionally used to handle an APDU-
based communication on J2ME mobile phones: the JSR177
[21]. However, the use of this API is not mandatory in the
case of an external NFC Smart Card. In fact, it offers essential
mechanisms enabling the mobile phone to communicate
with its embedded SIM card. Thus, our prototype uses the
JSR257 functionalities to initiate a communication between
the mobile phone and the Smart Card.

In order to use the MUGPPM functionalities, the first
step for the player is creating his/her MUGPP on the Smart
Card. So, he/she has to enter a login and a password which
will be used to access his/her profile. In this first step, he/she
has to enter his/her personal information, for example, the
user “by himself” is part of the MUGPP. Thus, the API can
load the player profile fields from the card onto the mobile
phone, to store them in the profile object representation.
Afterward, the MUG client game engine can start using the
player profile as it is defined in the MUG game design.
Figure 2 summarizes the architecture used to provide the
MUG client game engine with an access to the oncard MUG
Player Profile Management service.

It is important to notice that the interaction between
the mobile phone and the NFC Smart Card depends on the
player since, he/she has to draw the card near the mobile
phone during all the process, for example, during a game
save. The MUG game designer must take into account this
specific Human Computer Interaction (HCI).

Besides, our prototype can communicate with an MUG
HTTP server. It uses the MooDS protocol to communicate

6 International Journal of Computer Games Technology

ApplicationApplication

HTTP serverNFC reader

Over NFC Network

NFC smart
card

MUGPPM
API

MUGPPM
API

MUGPPM
applet

Figure 1: MUGPPM architecture overview.

Table 1: APDU instructions used in MUGPPM.

Instruction P1 P2 Data Returns

CREATE PROFILE login+pwd status

LOGIN PROFILE login+pwd status

REINIT PROFILE login+pwd status

DELETE PROFILE login+pwd status

LOAD DEFAULT ENTRY key data

UPDATE DEFAULT ENTRY key data status

LOAD OBJECT ENTRIES data

LOAD OBJECT ENTRY key data

ADD OBJECT ENTRY key isSharable data status

DELETE OBJECT ENTRY status

with the MUG server in an object-oriented manner. The
developer can creates objects which represent the messages
used during the client-server communication. Thus, if the
MUG client needs a profile-based service from the server, it
has to instantiate the corresponding message object and send
it through the MooDS encoder. We have created a message to
invoke a server side service, the ProfileBasedServiceRequest
message class. It can also decode the server response using
the MooDS decoder and handle the decoded message objects.
If the service requires data from the Smart Card, the client
receives a CardDataRequest message from the server which
contains a list of required field keys. Then, the MUGPPM
API can retrieve the associated fields data from the Smart
Card and send it within a DataCardResponse object to the
server. Finally, it receives the service response, for example, a
player list from a lobby service.

5.3. Server Side Service. The MUGPPM server API offers a
Java based MUG server the ability to create a profile based
service. It helps create personalized services, for example,
profile based lobby or profile based quest provider. The
server API and the client API have a similar class to handle
MUGPP contents: theGameProfile class. For example, if the
server requires the player nationality, it has to request the
corresponding field key from the Smart Card and to handle
the card response. The communication part of the API is also
based on the MooDS protocol.

To request a service, the client has to send a ProfileBased-
ServiceRequest message with the name of the service needed.
Then, if the service requires personal data stored on the
Smart Card, it sends back a CardDataRequest message to the

client containing a list of required field keys. Afterwards, it
receives from the client a DataCardResponse message which
contains the required data. Finally, the service computes the
response based on the received player personal data and
returns a specific response message to the client.

5.4. MUGPP and Security. Some of the MUGPP data deal
with the user private life. Furthermore, the lack of a
sound and secure authentication procedure typically makes
cheating in MUGs an easy feat [22, 23]. There is a need to use
improved security mechanisms to act against those threats.

The players and the terminal the players use (in our case
a mobile phone) are by definition untrusted, but the oncard
application can be securely and reliably developed using Java
Card.

In order to insure the security of the player’s private data,
the card requires an authentication from the reader. This
authentication process is based on a personal login/password
chosen by the player during his/her account creation. We
use the OwnerPIN class on the card to safely store the
user password. The login procedure needs to be performed
to authorize the access to the smart card cryptographic
functionalities. When the user is not playing any more, the
user is logged out from the Smart Card. The application
provider uses another PIN code to block/unblock the user
from modifying certain fields.

We chose to use a public key infrastructure to help the
MUG system designers ensure the security of the application.
Yet, the management of the keys on a Smart Card is a
non trivial issue. The Smart Card requires a personalization
phase during which a key pair is created and stored on the

International Journal of Computer Games Technology 7

MUGPPM
API

MUGPPM
applet

Game engine

JSR257

J2MENFC

Dual interface
Java Card

Figure 2: MUGPPM architecture for J2ME devices.

card static memory. The server side also requires a key pair,
and an X.509 infrastructure is used to certificate the use of
public keys. This public key infrastructure guarantees the
privacy of communications between the server and the Smart
Card. Thus, when user logs in, he/she does so, not with a
Smart Card, and not with a server. He/she can then have
access to a higher security level than just a password-based
protocol.

When the application needs to interact with the server,
the server sends its public key as well as a certificate. The
Smart Card can then verify the validity of the key. If the
key happens to be valid, the Smart Card can keep the public
key. The Smart Card can send its public key to the server.
All subsequent interactions between the server and the client
can then use an encryption/decryption using one’s private
key and the other’s public key.

The overall mechanism guarantees a stronger identifi-
cation scheme than just a login/password and might help
thwart some common online games cheats. One advantage
here is that no critical data is transmitted in plain text format
over the network.

A common cheat is the replacement of code or data
concerning the game. The simple fact of using a Smart Card
to manage the MUGPP makes it considerably difficult to
tamper with the game profile, the cheater being unable to
directly hack into the profile/oncard game infrastructure.
The game designer might want to check an additional server
signature for any operation that modifies some elements in
the profile.

An other cheat consists in abusing the game procedures.
For instance, a player can log out before he/she loses a game.
Making the signing of some game procedures by the server
necessary can be used as a countermeasure against such
cheats.

The mobile aspect of our framework implies that
some interactions between two players can occur out of a
connection with the game server. For instance, in a role-
playing game, the players might want to exchange an item.
This operation could take place without a server while still
guarantying the nonrepudiation property.

6. MUG PPM Use Cases

Our library can be used for different types of interactions,
connected or disconnected interactions from an MUG server
point of view. For example, the secure architecture of the
MUGPPM can only be used safely with a network connection
in order to validate public keys with a signing authority
through a registered MUG server. So, secure interactions
have to be carried out in a connected way. However,
disconnected interactions are possible without strong secu-
rity mechanisms, particularly for local interactions. Thus,
an MUG can introduce NFC checkpoints or local object
exchange mechanisms between players using this API.

6.1. Connected MUG Interaction Examples. Our framework
can be used to provide various profile-based connected ser-
vices in a secure way, like providing players with personalized
quests or locating players who speak a common language in
a game area.

Via mineralia [24] is a pervasive search and quizz game
in the museum of Terra Mineralia in Freiberg. The goal of
the game is to realize quests in the context of the mineral
exposition. Each point of interest is represented by an RFID
tag on the mineral. The MUGPPM can be used in this
application to check the visitor card at the museum entry
(with an NFC reader) to adapt game content to his/her player
profile. For example, different levels of mineral knowledge
could be set to fit the category of the visitor (novice, expert,
etc.) and to propose personalized quests. Moreover, regular
visitors could resume a quest undertaken previously.

As an another use case, we have implemented a profile-
based lobby service on top of the MUGPPM secure archi-
tecture. This service uses the player’s age and the languages
he/she knows. The server asks for the user’s required personal
data while using the security part of MUGPPM. Finally, the
profile based lobby service computes the list of connected
players matching the required age and spoken languages
and returns it to the client. That type of service could have
been used in games like the item hunt game “Mogi Mogi”
[15]. In this game, some users have been using a lobby-like

8 International Journal of Computer Games Technology

application to spy on other younger players. Bypassing the
game rules this way can be controlled using our API. Indeed,
as the private data is stored on a secure decentralized device
(unlike a game server), fraudulent use of personal data is
rendered more difficult, while statistics can still help detect
that type of behavior.

6.2. Disconnected MUG Interaction Examples. MUG game
designers can integrate disconnected interactions in their
game by using the MUGPPM API.

Paranoia Syndrome [25] is a classic strategic game
that integrates some location based interactions, and RFID
tangible objects. One of the perspectives of the game, is
that multimedia content and basic AI will be added to the
tangible objects to serve different content by regarding the
player type (doctor, scientist, alien, etc.). With MUGPPM,
the interactive objects (with an embedded NFC reader) could
adapt their content and interaction to the player with regard
to the player profile in a disconnected way.

Furthermore, a MUG can integrate difficulty levels
corresponding to the player’s age in order to assign a course
to the player in the game area. This interaction can be made
between the player and a NFC checkpoint and does not
necessarily require a server side resolution.

In addition, MUGs can implement game object exchange
mechanisms between players. Such a service should give two
players in the same real world area, the ability to exchange
some game items from their inventories. This interaction
can be made by peering the mobile phones of the players
over a local communication link. The NFCIPConnection
class from the com.nokia.nfc.p2p package (available in the
Nokia JSR257 implementation) allows to establish a NFC
link between two phones. We have implemented a game
object exchange service, on top of our API, that offers to a
player to send one sharable item from his/her game inventory
to another player. We consider here that each player has
previously loaded his/her player profile from the Smart Card.
This list can be retrieved from the object representation in
the player profile (see Section 5.2 for more details about the
profile loading mechanism). So, a player who wants to send
an object to his/her friend has to select the item from his/her
list and the sender mode, whereas the other player has to
select the receiver mode. The players must approach their
mobile phones in order to set up the P2P link. As soon as the
connection is established, the object is sent as a byte array
onto the network. Then, the receiver handles the binary data
corresponding to the item and can add it to his/her inventory.
Finally, the new inventories of both players will be updated in
the Smart Card during their next game save.

These examples emphasize a major benefit provided
by our API in the MUG domain: it does not require the
players to be connected with the central MUG server in
order to interact in the game. Thus, our library enables new
interactions for MUG in a totally decentralized manner.

To evaluate the performance of our application, we used
the Mesure project [26], which is dedicated to measuring the
performance of smart cards. The Mesure project provides
detailed time performance of individual bytecodes and API
calls. Given the use cases described earlier, we monitored the

use of each bytecode and each API call for a regular use of
our application. We then matched the list of used bytecodes
and API calls with the individual performance of each feature
measured on our smart card. The results show that the time
necessary to perform a RSA encryption with the smart card
is close to half a second, and it is by far the costliest of the
operations described earlier. Login into the smart card, as a
title of comparison lasts less than 20 milliseconds.

7. Conclusions and Perspectives

This paper presents an NFC Smart Card based approach to
handle the player profile in the context of MUGs. This NFC
card centric architecture allows new kinds of interactions in
both centralized and decentralized ways. The main advantage
of our method is to allow the players to play at any time, and
anywhere, hence the ubiquitous aspect of the game. We have
presented the MUGPPM API which is dedicated to the Java
Card/J2ME/J2SE platforms. This enables MUG developers
to implement a Smart Card based architecture to provide
profile-based services. Thus, players can have a personalized
game experience. Besides, this API provides the player with a
secure way to ensure a certain level of data confidentiality. We
will release the MUGPPM server API as an open source OSGi
bundle to be integrated in the uGASP [2, 3] middleware.
Thereafter, game developers could implement MUGs based
on this framework, therefore offering personalized services.

On the basis of our framework, it is possible to specialize
and realize an authoring tool for the development of MUGs.
It would be interesting to consider using the NFC Smart Card
from a more conceptual point of view during the design of
the game. Using Smart Cards in MUGs may also give rise
to the future direction of game design by developing new
forms of interaction and narration based on new technology
of mobility and ubiquity.

The question of “who personalizes the Smart Card”
remains open. In traditional banking, telecom or transport
applications, this is carried out by the card emitting com-
pany. However, the ongrowing multiapplication aspect of
Smart Card makes it more and more questionable. For the
purpose of testing our API, we let the user fill out the form
which might be questionable for a secure application. Still,
the application provider has some control over the fields
through its own PIN code.

Future works include a generalization of the security
architecture in terms of key sizes and algorithms, depending
on the functionalities of a given Smart Card.

In addition, we will generalize the API to facilitate the
description of services and to manipulate the player profile
data structure. On the server side, this should help the
describe connected the player profile-based services. On the
card side, we will investigate PicoDBMS database to handle
the player profile data structure.

We await the results of an other project: T2TIT [27]
(Things to Things in the Internet of things). This project
proposes to interact with contactless object, going as far as
to give them a network identity, while keeping some strong
security properties. The eventual conclusion of T2TIT can
be helpful to us, for instance, we can expect to use some

International Journal of Computer Games Technology 9

encrypted channels. We intend to use the T2TIT security
mechanisms in our work. The newly published Java Card
3.0 specification [9] introduces multithreading mechanisms
in Smart Cards. This suggests other interactions between
different profiles, which were not considered in this paper.

In terms of oncard code verifiers, works like embedded
data flow analysis (see [28]) might also provide us with
some strong on card inter-application protection features.
We could reliably share some data from one profile to an
other, and deny the access to such data from other profiles.

We have not explored here the issues of biometric
identification. It is clearly complementary to the traditional
cryptographic schemes, and as the Smart Card industry is
integrating more and more of those, so should we.

References

[1] S. Björk, M. Börjesson, P. Ljungstrand, et al., “Designing
ubiquitous computing games—a report from a workshop
exploring ubiquitous computing entertainment,” Personal and
Ubiquitous Computing, vol. 6, no. 5-6, pp. 443–458, 2002.

[2] R. Pellerin, E. Gressier-Soudan, and M. Simatic, “uGASP:
an OSGi based middleware enabling multiplayer ubiquitous
gaming,” in Proceedings of the International Conference on
Pervasive Services (ICPS ’08), Sorento, Italy, July 2008, Demon-
stration Workshop.

[3] GASP/uGASP project, http://gasp.ow2.org.
[4] OSGi alliance, http://www.osgi.org/Main/HomePage.
[5] S. Natkin and C. Yan, “User model in multiplayer mixed

reality entertainment applications,” in Proceedings of the ACM
SIGCHI International Conference on Advances in Computer
Entertainment Technology (ACE ’06), Hollywood, Calif, USA,
June 2006.

[6] NFC Forum, http://www.nfc-forum.org/home.
[7] The PLUG project, http://www.capdigital.com/plug/.
[8] C. Yan, Adaptive multiplayer ubiquitous games: design principles

and an implementation framework, Ph.D. thesis, Cotutelle
Research Program with Orange Labs and CNAM, Paris,
France, 2007, Supervisor: Stephane Natkin.

[9] Java Card platform, http://java.sun.com/javacard.
[10] P. Pucheral, L. Bouganim, P. Valduriez, and C. Bobineau,

“PicoDBMS: scaling down database techniques for the smart-
card,” Very Large Data Bases Journal, vol. 10, no. 2-3, pp. 120–
132, 2001.

[11] A. Lahlou and P. Urien, “SIM-Filter: user profile based smart
information filtering and personalization in smartcard,” in
Proceedings of the Ubiquitous Mobile Information and Collabo-
ration Systems (UMICS ’03), Klagenfurt/Velden, Austria, June
2003.

[12] Platform for Privacy Preferences (P3P) Project, http://www
.w3.org/P3P.

[13] S. Jonsson, A. Waern, M. Montola, and J. Stenros, “Game
mastering a pervasive larp. Experiences from momentum,” in
Proceedings of the 4th International Symposium on Pervasive
Gaming Applications (PerGames ’07), Magerkurth, Carsten, et
al., Eds., pp. 31–39, Salzburg, Austria, June 2007.

[14] O. Sotamaa, “All the world’s a botfighter stage: notes on
location-based multi-user gaming,” in Proceedings of the
Computer Games and Digital Cultures Conference (CDGC ’02),
F. Mäyrä, Ed., Tampere, Finland, June 2002.

[15] Mogi Mogi,http://www.mogimogi.com.

[16] D. Cheok, et al., “Human Pacman: a mobile, wide-area enter-
tainment system based on physical, social, and ubiquitous
computing,” Personal and Ubiquitous Computing, vol. 8, no.
2, pp. 71–81, 2004.

[17] Friedrich von Borries, Steffen P. Walz, and Matthias Böttger,
“Mogi: Location-Based Services—A Community Game in
Japan ,” in Space Time Play, vol. 2007, pp. 224–225, Birkhäuser
Basel, Switzerland, 2008, http://www.springerlink.com/
content/j0277056ult42551.

[18] J2ME MIDP, http://java.sun.com/javame/index.jsp.
[19] JSR257, http://jcp.org/en/jsr/detail?id=257.
[20] R. Pellerin, “The MooDS protocol: a J2ME object-oriented

communication protocol,” in Proceedings of the 4th Mobility
Conference, Singapore, September 2007.

[21] JSR177, http://jcp.org/en/jsr/detail?id=177.
[22] J. Yan and B. Randell, “A systematic classification of cheat-

ing in online games,” in Proceedings of 4th ACM SIG-
COMM Workshop on Network and System Support for Games
(NetGames ’05), New York, NY, USA, October 2005.

[23] N. E. Baughman, M. Liberatore, and B. N. Levine, “Cheat-
proof playout for centralized and peer-to-peer gaming,”
IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 1–
13, 2007.

[24] G. Heumer, F. Gommlich, B. Jung, and A. Müller, “Via
Mineralia: a pervasive museum exploration game,” in Proceed-
ings of the 4th International Symposium on Pervasive Gaming
Applications (PerGames ’07), pp. 157–158, June 2007.

[25] G. Heumer, D. Carlson, S. H. Kaligiri, et al., “Paranoia
Syndrome: a pervasive multiplayer game using PDAs, RFID,
and tangible objects,” in Proceedings of the 3rd International
Symposium on Pervasive Gaming Applications (PerGames ’06),
pp. 157–158, June 2007.

[26] The Mesure project, http://mesure.gforge.inria.fr.
[27] P. Urien, et al., “The T2TIT research project. Introducing

HIP RFIDs for the IoT,” in Proceedings of the 1st International
Workshop on System Support for the Internet of Things (WoS-
SIoT ’07), Lisbon, Portugal, March 2007.

[28] D. Ghindici, G. Grimaud, and I. Simplot-Ryl, “An information
flow verifier for small embedded systems,” in Proceedings of
the International Workshop on Information Security Theory and
Practices (WISTP ’07), vol. 4462 of Lecture Notes in Computer
Science, pp. 189–201, May 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

