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We present a new point matching method to overcome the dense point-to-point alignment of scanned 3D faces. Instead of using
the rigid spatial transformation in the traditional iterative closest point (ICP) algorithm, we adopt the thin plate spline (TPS)
transformation to model the deformation of different 3D faces. Because TPS is a non-rigid transformation with good smooth
property, it is suitable for formulating the complex variety of human facial morphology. A closest point searching algorithm
is proposed to keep one-to-one mapping, and to get good efficiency the point matching method is accelerated by a KD-tree
method. Having constructed the dense point-to-point correspondence of 3D faces, we create 3D face morphing and animation by
key-frames interpolation and obtain realistic results. Comparing with ICP algorithm and the optical flow method, the presented
point matching method can achieve good matching accuracy and stability. The experiment results have shown that our method is
efficient for dense point objects registration.
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1. Introduction

Constructing alignment of 3D objects is a crucial element
of data representations in computer vision and graphics.
Generally the dense alignment is a point-to-point mapping
from one surface onto another surface, where each point gets
the correspondent point according to its inherent property,
such as the points of nose tip on different 3D faces are
correspondent points according to the feature of human
face. However, the practices and applications of dense point
correspondence have been increasing over the last years.
The straightforward application of the dense alignment is to
compute objects morphing and animation. More important,
if the point correspondence of a class of objects has been
established, it is achievable to construct a representation for
these objects. The most typical and simple model is the
linear combination model described in [1], where a 3D face
morphable model was constructed on the aligned 3D faces,
and given a facial image the 3D face can be reconstructed
by a model matching procedure. The other applications,
involving objects recognition based on 2D/3D images, shape
retrieval, and 3D surface reconstruction in computer vision,
are all relied on dense surface correspondence.

For dense 3D objects, as the complexity of model struc-
ture and the hugeness of data, it is a challenging problem to
get good correspondence result, especially to high-resolution
scanned 3D faces. In fact, the correspondence of different
3D faces is not a well-defined problem. When two faces are
compared, only some distinct feature points, such as the tip
of nose, the corner of mouth, and the center of eyes, have the
clearly correspondent points, while it is difficult to define the
correspondence for the points on the smooth regions, such
as the cheeks and the forehead. However, even matching the
distinct feature points may be a difficult problem because it
involves many of the basic problems of computer vision and
feature detection. To conquer the correspondence problem of
dense 3D faces, we present a closest point matching method
based on the thin plate spline (TPS) transformation. In
this method, the source 3D face is firstly transformed onto
the destination 3D face by TPS transformation, which is
constructed from the interpolation on the feature points
hand-placed on the source and target 3D face. Then using a
revised closest point matching algorithm, the point-to-point
alignment between 3D faces is obtained. We create 3D face
morphing and animation from the interpolation between
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the aligned 3D faces. The realistic deformation results and
the experiments comparing with the related methods show
that our correspondence algorithm may be an appropriate
approach.

The remainder of the paper is structured as follows. In
Section 2 we review some related work. In Section 3 the
TPS transformation of 3D faces is described in detail. Then
the point-to-point alignment is established in Section 4.
In Section 5, 3D face morphing and animation are imple-
mented, and experimental results are given. Finally this work
is concluded.

2. Related Work

In the past decades, there are many methods and algo-
rithms that are presented to solve surface alignment and
dense point correspondence for different applications. All
these researches fasten on two element problems about
the point matching: the spatial transformation and feature
correspondence searching. The former one is to find a
suitable transformation for the aligning objects. These spatial
transformations can be classified into rigid transformation
and nonrigid transformation. The rigid transformation is
generally used in the alignment of an object and itself, such as
the different viewpoint scenes or the overlapped parts of the
object. The nonrigid transformation, including affine trans-
formation, spline function, and radial-based function, now
is the dominant method used in the cases existing nonrigid
deformation. The latter issue of point alignment generally
concerns how to determine the right correspondence by the
inherent features of the objects, which commonly have the
forms in geometry properties, like points, lines, curves, and
surfaces, or the abstract measurements, such as moment,
entropy, and mutual information. There are several surveys
[2–6] that have given comprehensive reviews about this
subject. The following are some typical work related to our
method.

One of the most popular point matching methods is
the iterative closest point (ICP) algorithm proposed by Besl
and McKay [7]. It iteratively searches for closest points in
two surface patches and optimizes the rigid transformation
to minimize the average distance of these closest points.
The original ICP algorithm demands adequate prealignment
and does not usually guarantee the one-to-one correspon-
dence, as a result various improved ICP methods were
proposed. Rusinkiewicz and Levoy provided good surveys
over these ICP variants [8]. Although these improvements
have enhanced the convergence of ICP and achieved high
registration accuracy, the rigid transformation constrains its
application. In many nonrigid deformation cases, ICP is not
suitable, such as 3D faces.

Blanz and Vetter made dense correspondence between
3D facial scans [1, 9], taking advantage of the fact that the
radial coordinate from Cyberware scans can be expressed
as a height map image with the intensity representing the
radius in cylinder coordinate system. They used optical
flow technique to establish correspondence between texture
images and height maps images, and the correspondence

was refined by a bootstrapping method if large amount
of the prototypic scans obtained. A 3D face representation
named morphable model was constructed from the set of
aligned 3D faces. Recently, they proposed a new dense
3D correspondence method [10] based on their 3D faces
database. In this method, a facial feature learning strategy
and automatic properties extraction algorithm were used for
alignment optimization. Although their alignment has con-
vincing results, it demands large quantities of 3D facial scans,
and some 3D information will be lost when the alignment is
perceived from 2D images optical flow computation.

Similarly, the notable TPS-RPM method of Chui and
Rangarajan [11] attempted to incorporate TPS into the
framework of ICP for point matching. A binary corre-
spondence matrix was used in this method to record the
matching relation of all points and eliminate outliers. In
point matching procedure, a soft-assign and deterministic
annealing optimization was implemented to compute point
correspondence iteratively. Although their experiments show
good results on some sparse 2D/3D point sets, the method
can easily get trapped in bad local minima if the objects are
not approximately aligned initially [12]. And this method is
not suitable for the alignment of 3D faces with large quantity
of dense points because of the limitation of the dimension
of the correspondence matrix and the impracticalness of
applying TPS on the whole dense point sets.

The interpolation idea in [13] is very close to our
method. To synthesis facial expression from photographs,
a general 3D facial model was fitted to the individual faces
based on radial basis functions using 13 feature points [13].
But the general 3D facial model created by Alias—Wavefront
tools—is a relative sparse model comparing with the dense
3D faces. In addition, the fitting procedure and its refinement
are different from the closest point matching algorithm here.

There are other researches associated with surface or
dense point correspondence, but the applications are various.
The medical image registration may be the dominant
domain, others applications include 3D objects reconstruc-
tion, representation, and recognition. To get good corre-
spondence results, many approaches require large training
data. But we focus on the dense point correspondence of 3D
faces and its application on 3D face morphing and animation
which require only two objects.

3. 3D Face Deformation Based on
Thin Plate Spline

To get more accurate point matching result, the prototypic
objects are generally transformed into a reference before
alignment. There are rigid transformation, affine trans-
formation, and nonaffine deformation. As the 3D faces
have complex shape feature, it is difficult to find a rigid
or affine transformation with good deformation results.
The nonaffine transformation is considered as the proper
mapping method. For the scanned 3D faces with high
dimensional dense points, the data is too large to do a
global transformation for all points. The alternative solution
is to use subsampling sparse point sets. Here we use an
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Figure 1: The landmarks placed on the 3D faces for TPS
transformation using an interactive tool.

interactive tool to pick out 25 landmarks on the aligning
3D faces. Figure 1 shows the landmarks on the 3D faces.
These landmarks are the main feature points that refer to the
morphological properties of human face, and will be used
as the controlling points to constraint the TPS deformation
between 3D faces in our method.

It is frequent in spline theory to generate a smoothly
interpolated mapping between two sets of landmark points.
We adopt TPS to model the deformation of 3D faces. TPS was
introduced by Harder and Desmarais [14], and Bookstein
[15] firstly used TPS for medical image registration. TPS is
a class of nonrigid spline mapping functions with desirable
properties, such as globally smooth, and easily computable,
and the most important is that TPS transformation can be
separated into affine and nonaffine components. So TPS has
been widely used in 2D image or 3D data registration for
variety applications. The following gives the implementation
of TPS transformation for 3D faces in detail.

The TPS transformation can be regard as a mapping from
space R3 to R3, so we denote TPS as f : R3 �→ R3. For
the convenience of explication, we use F1, F2 that denote
the source 3D face and destination 3D face for aligning. F1,
F2 can be looked as two point sets hat have the following
expression:

F1 =
{
P1iP1i =

(
x1i, y1i, z1i

)
, i = 1, · · · ,N1

}
,

F2 =
{
P2 j | P2 j =

(
x2 j , y2 j , z2 j

)
, j = 1, · · · ,N2

}
,

(1)

where N1 and N2 are the points number of F1 and F2 such
that N1 ≤ N2. The landmark points sets of F1 and F2 are
denoted as

M1 =
{
L1 j | L1 j =

(
x∗1 j , y

∗
1 j , z

∗
1 j

)
, j = 1, · · · ,M

}

M2 =
{
L2 j | L2 j =

(
x∗2 j , y

∗
2 j , z

∗
2 j

)
, j = 1, · · · ,M

}
,

(2)

where M is the count of landmarks (here M = 25). These
landmarks are the controlling points for TPS transformation,
that is, TPS satisfies the following interpolation conditions at
the landmark points:

f
(
L1 j

)
= L2 j , j = 1, . . . ,M. (3)

(a)

(b)

(c)

(d)

Figure 2: The TPS deformation of the source 3D face. The top one
is the source 3D face with a standard partitioned cube. The second is
the source 3D face deformed by TPS, and the distorted cube shows
the spatial deformation of TPS. The third two are the images of the
source 3D face comparing with the deformed source 3D face which
displays as the sparse mesh. The bottom two are the images of the
destination 3D face comparing with the deformed source 3D face.
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At the same time, TPS is restricted by the blend smooth
constraint, formed by the minimization of the following
blending energy function, the sum of squares of all second-
order partial derivatives:

E
(
f
) =

∫∫∫

R3

⎡

⎣
(
∂2 f

∂x2

)2

+

(
∂2 f

∂y2

)2

+

(
∂2 f

∂z2

)2

+2

(
∂2 f

∂xy

)2

+ 2

(
∂2 f

∂xz

)2

+ 2

(
∂2 f

∂yz

)2
⎤

⎦dx dy dz.

(4)

It is proved that TPS can be decomposed by affine compo-
nent and nonaffine component [15]. This fact is generally
represented as the following formula:

f (P) = Pd + Kw, (5)

where P is the point on the source 3D face F1 and has
the homogeneous coordinates (1, x, y, z). d is a 4 × 4 affine
transformation matrix. K named TPS kernel is an 1 × M
vector with the form K = (K1(P), . . . ,KM(P)) such that
Kj(P) = ‖P − L1 j‖, j = 1, . . . ,M. w is an M × 4 warping
coefficient matrix representing the nonaffine deformation.

To get TPS transformation, the matrices d and w must
be determined. There are two solutions to this problem,
the interpolating and noninterpolating methods. If TPS
needs not be interpolated, that is, formula (3) is not strictly
satisfied, the following energy function can be minimized to
find the optimal answer:

E′(λ,w,d) = 1
M

M∑

j=1

∥
∥∥L2 j − f

(
L1 j

)∥∥∥ + λ · E( f ), (6)

where λ is the weight to control the smooth component, and
for a fixed λ there will be a unique minimum for the energy
function.

In the interpolating case, formula (3) is satisfied, putting
(5) into (3), and confining w to nonaffine transformation,
that is, M′T

1 w = 0, it leads a direct solution for d and w
formed by the following matrix relation:

⎡

⎣
w

d

⎤

⎦ =
⎡

⎣
K ′ M′

1

M′T
1 0

⎤

⎦

−1⎡

⎣
M′

2

0

⎤

⎦, (7)

where M′
1 and M′

2 are M × 4 matrix whose rows are the
homogeneous coordinates of the landmark points belonging
toM1 andM2, respectively. K ′ is anM×M symmetry matrix
which represents the spatial relation between the landmark
points of the source 3D face and hasthe element ki j with the
following formation:

ki j =
∥
∥∥Li − Lj

∥
∥∥, i = 1, . . . ,M, j = 1, . . . ,M. (8)

In our work, the landmarks placed on the source and
target 3D faces are looked as the correspondent points with
the same facial feature, hence the condition in (3) will be
satisfied, and the interpolating method is adopted here to
solve the TPS transformation. From (7) the matrices d and

w will be determined, and the source 3D face F1 will be
deformed by TPS transformation, we denote the deformed
3D face of F1 as F′1. Figure 2 shows the TPS deformation of
the source 3D face and the deformed 3D face is compared
with the source 3D face and the destination 3D face. It is
proved that the deformed source 3D face is closer to the
destination 3D face than the source 3D face, so it leads a more
accurate points alignment. In the next section, the point-to-
point correspondence between F′1 and F2 will be done by a
closest point matching process.

4. Dense Point Alignment by
Closest Point Matching

Although the rigid transformation of ICP algorithm is not
used in our method, we adopt the similar closest point
matching schemes like ICP. That is, for each point on the
deformed source 3D face F′1, the closest point will be found
on the destination 3D face F2. Before the closest point
matching, the closest point criterion must be defined. ICP
algorithm generally uses the distance between points or the
distance between point and point set to define the closest
point, and the distance refers to Euclidean distance. Here we
define the closet point in the sense of the distance from a
point to a point set. To the point P′1i on F′1, the correspondent
point P2 j on F2 is determined by the following minimum
requirement:

P′2 j = min
j=1,...,N2

DIS
(
P′1i,P2 j

)
, (9)

where DIS(, ) is a function defined to compute the distance
between two points. As the deformation among 3D faces is
a type of nonrigid transformation, the Euclidean distance
used to determine the closest points in rigid transformation
is not the proper method in nonrigid situation. Considering
the modality of human face, the curvature is an important
property interrelated to the local surface feature. Here the
distance is defined as a weighted combination of Euclidean
distance and the difference of the mean curvature of the
points. The distance DIS(P1,P2) of points P1, P2 has the
following formation:

DIS(P1,P2)=δ · ‖P1−P2‖+(1−δ) · |(MC(P1)−MC(P2))|,
(10)

where δ is the weight to balance the Euclidean distance
and the curvature difference such that 0 ≤ δ ≤ 1. In the
following experiments we set δ = 0.5. MC(·) is the function
to compute the mean curvature of the points on 3D faces.

Having determined the closest point matching criterion,
for each point on F′1, the closest point searching must be
executed on the target 3D face F2. As the huge data of the
source and target 3D faces, the whole closest points searching
is a very time consuming procedure with computation
O(N1 ×N2). To get high point matching efficiency, we adopt
the K dimensional binary search tree (KD-tree) technique
in the point matching method. The KD-tree algorithm was
introduced by Bentley [16] and has been widely utilized in
the nearest neighbor searching [17]. It is a binary search
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Figure 3: The collision points on the destination 3D face.

tree in which each node represents a partition of the k
dimensional space. The root node represents the entire space,
and the leaf nodes represent subspaces containing mutually
exclusive small subsets of the relevant points. The space
partitioning is carried out in a recursive binary fashion.
The average performance of the KD-tree searching has
complexity of O(N1 × logN2).

The other obstacle has to be settled for the closest point
matching is that the current method does not preserve one-
to-one mapping. In fact, some points on the deformed
3D face F′1 may be mapped onto the same point on the
destination 3D face F2. We denote these points on F2 as
collision points which have more than one correspondent
points on F′1. Generally the collision points are produced
by the points of outliers or the points with local complex
geometry feature. Considering the high resolution of 3D
faces and the distribution of these collusion points, the latter
one is concerned with the main problem. The distribution of
these collision points on the destination 3D face F2 is shown
in Figure 3. To eliminate these collision points, a revised
point matching algorithm is proposed. The main idea of the
method is to construct a distance list for every collision point,
and only the point with minimum distance is regarded as the
truly correspondent point. The following is the outline of the
one-to-one point matching algorithm.

(1) Create KD-tree for the destination 3D face F2.

(2) For each point on the deformed source 3D face F′1,
search its closest point on F2.

(3) Detect the collision points on F2, if not exist, go to 6.

(4) For each collision point P2 j , find the correspondent
points on F′1 reversely, denote the point with mini-
mum distance as P′1i, and record the correspondent
pair points (P′1i,P2 j).

(5) Remove the point P′1i from F′1, delete the node P2 j

from the KD-tree, then go to (2)

(6) Record the remained correspondent pairs of points
without collision.

By the revised closest point matching algorithm, the
correspondent point searching procedure maintains one-to-
one mapping, though more computation is required.

(a) (b)

(c) (d)

Figure 4: The texture and height mapping images for optical flow
computation. The top two are the texture and height mapping
images of the source 3D face. The bottom two are the texture and
height mapping images of the destination 3D face.

5. Experimental Results of 3D Face
Morphing and Animation

If the point-to-point correspondence of 3D faces is estab-
lished, the direct application of the alignment is to create 3D
face morphing and animation, which have wide applications
in computer game, virtual reality, and animating actor in
entertainment movies.

The scanned 3D faces we used come from MPI Face
database [18] and BJUT-3D Face Database [19]. As the
3D facial scans have high resolution, which generally have
more than 70 000 vertices and 140 000 triangles with texture
information, the realistic animation results will be achieved
if accurate point correspondence is obtained. Here we use the
simple key-frames interpolation method to produce the face
morphing and animation between the source and destination
faces. The points on the key-frames 3D face are computed
by linear interpolation between the correspondent points.
The texture and the geometry normal of the correspondent
points are interpolated at the same time.

The experiment of face morphing is implemented on two
3D faces selected from MPI face database, one face is female
and the other is male. As the difference of the two faces
is adequate to express variety of the human face modality,
the nonrigid transformation is demanded to do with the
deformation. The face animation is created on the same
person’s 3D faces with different expressions selected from
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Figure 5: The distances of the correspondent points are visualized
as colors on the source 3D face. The color of each point represents
the distance from the point to its correspondent point with the
color-mapping on the right. The top two are the results of the
optical flow method. The middle two are the results of the ICP
algorithm with rigid transformation. The bottom two are the results
of the TPS method.

BJUT-3D Face Database. The sequence of key-frames of the
face morphing and face animation is shown in Figure 7. On
the whole, the vision reality of the morphing and animation
is satisfied, though the local areas with relative complex shape
feature and the areas with missing points as the scanning
reason are not looking good, such as the areas of mandible
and ears.

To compare our TPS method with the original ICP
algorithm [7] and the optical flow method [9], the MPI
source 3D face is aligned to the target 3D face using
these three methods, respectively. To compute the point
correspondence by the optical flow method, the source
and target 3D faces are spread into texture and height
mapping images (shown in Figure 4) by cylinder coordinate
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Figure 6: The trend of the mean average and standard deviation
of the distances between the correspondent points of the 3D faces
in the aligning set with 3D faces number increasing. The top is the
mean average of the distances. The bottom is the mean standard
deviation of the distances.

transformation. Then the facial texture and height mapping
images are aligned by an optical flow algorithm, here we
adopt the optical flow algorithm proposed by Horn and
Schunck [20]. Finally the point correspondence of 3D
faces is obtained from the alignment of 2D images by the
reversed cylinder coordinate transformation. In ICP and
TPS methods, the source 3D face is transformed by rigid
transformation and TPS deformation, respectively. Then
using the proposed closest point searching method, the two
transformed faces are aligned with the destination 3D face.
To evaluate the alignment results of these three methods, the
average and standard deviations of the distances between the
correspondent points on the source and destination 3D face
are computed respectively.

The results of these three methods are shown in Table 1.
It is denoted that all the vertices of the 3D faces are
standardized into [0, 1] interval before the experiment. The
distances of correspondent points of these three methods are
also visualized on the source 3D face (shown in Figure 5).
The average and standard deviations of the distances and
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Figure 7: The sequence of 3D face morphing and animation. The left column and the right column are the source 3D faces and the
destination 3D faces. The top two rows are the middle frames morphing a female 3D face to a male 3D face selected from MPI 3D face
database. The middle two rows are the animation sequence of a person from the neutral state to an aspiratory action state. The bottom two
rows are the animation of a person from the neutral expression to smile expression. The 3D faces in the bottom four rows are selected from
BJUT-3D Face Database.

its visualization in Figure 5 reveal that the TPS method has
the best point matching accuracy, while the optical flow
method performs poorly in dense points alignment, and the
ICP is in-between of the former two methods. The optical

flow is generally used in perception of the movement of
objects in video sequence [21]. When the difference between
the facial images is too large to satisfy the continualness
requirement of adjoining frame images, the optical flow
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Table 1: The average and standard deviation of the distances
between the correspondent points on the source 3D face and
destination 3D face.

Optical flow ICP TPS

Average of the
distances

0.05683 0.01673 0.00804

Standard
deviation of the
distances

0.03840 0.01069 0.00637

computation will fail with obvious error. It is the main reason
for referring to the poor results of the optical flow method.
In fact, the nonrigid transformation is more suitable for 3D
faces deformation than rigid transformation, so that the TPS
method has the better results than ICP algorithm.

To examine the stability of the TPS method, we selected
30 3D faces from BJUT-3D Face Database as an aligning set.
The dense point alignment is implemented on the aligning
set using the above three methods. The experiment is done
with the 3D faces number of the aligning set increasing, that
is, the 3D faces are added into the aligning set gradually.
At first, the aligning set composes of two 3D faces, then
3D faces are added into one by one, until all 30 face are
added. At the same time, the mean average and standard
deviations of the correspondent points distances of the 3D
faces in the aligning set are computed. Figure 6 shows the
change of the mean average and standard deviations with the
increasing of 3D faces number respected to the optical flow
method, ICP algorithm and TPS method. The experimental
results show that the mean average distance and its standard
deviations of these three methods are all converging toward
a stable value, and TPS method has better stability and
correspondence accuracy than the ICP algorithm and the
optical flow method.

6. Conclusion

In this paper, we describe a new dense point-to-point
alignment method and apply it on scanned 3D faces. In
the method, TPS is adopted to model the deformation
of 3D faces, and a closest point matching algorithm is
proposed to search the correspondent points and simul-
taneously guarantees the alignment one-to-one mapping.
To reduce the closest points searching time and get good
point matching accuracy, a KD-tree technique and a user-
defined distance function which considers the points local
curvature are integrated with the point matching algorithm.
The dense point alignment is used in 3D faces morphing
and animation by key-frames interpolation and gets satisfied
realistic visual results. Contrasting with ICP algorithm and
the optical flow method, the error analysis on the selected
pair of MPI 3D faces and the experiment on 30 BJUT 3D
faces prove that our method is efficient for dense point
correspondence. Furthermore, the method does not require
large facial database and can easily extend to other dense
objects.

In our work, the landmarks of 3D faces are picked up by
an interactive tool, though the manual marking procedure
is simple, and taking little time, it limits the method apply
in many areas, such as realtime application and the large
quantity of objects situation. So the future work firstly
focus on the fully automatic point matching algorithm. The
intuitively thought is to find the suitable automatic feature
detection method, but it is another challenging problem in
pattern recognition and computer vision. The additional
points to be improved of this work include refining the
aligning accuracy by exploring proper representation of the
local geometry feature, constructing the whole head model
with hair to get more natural looking, and making practical
applications.
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