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Virtual illustration of a human face is essential to enhance the mutual interaction in a cyber community. In this paper we propose
a solution to solve two bottlenecks in facial analysis and synthesis for an interactive system of human face cloning for non-expert
users of computer games. Tactical maneuvers of the gamer make single camera acquisition system unsuitable to analyze and
track the face due to its large lateral movements. For an improved facial analysis system, we propose to acquire the facial images
from multiple cameras and analyze them by multiobjective 2.5D Active Appearance Model (MOAAM). Facial morphological
dissimilarities between a human face and an avatar make the facial synthesis quite complex. To successfully clone or retarget the
gamer facial expressions and gestures on to an avatar, we introduce a simple mathematical link between their appearances. Results
obtained validate the efficiency, accuracy and robustness achieved.
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1. Introduction

Over the last decade computer games have became more and
more an interactive entertainment. Virtual representation
of a character has gained the interest of both gamers
and researchers. Gamers do not want to sit and play the
games, instead they need to get involved in the game to an
extent to visualize opponent’s face and interact with him
virtually. The use of virtual representation of a human face
in game consoles or creating avatars has been tremendously
increasing. In addition, a growing number of websites now
host virtual characters technologies to deliver their contents
in a more natural and friendly manner. Gestures and features
(e.g., eyes, nose, mouth and eyebrows) of a human face are
actually the reflection of a person’s inner emotional state and
personality. They are also believed to play an important role
in social interactions, as they give clues to a gamer’s state of
mind and therefore help the communication partner to sense
the tone of a speech, or the meaning of a particular behavior.
For these reasons, they can be identified as an essential
nonverbal communication channel in game consoles.

To track, analyze and synthesize gamer’s face efficiently
and to ensure the interaction of a gamer, system needs to
overcome two bottlenecks in facial analysis and synthesis.
Facial analysis deals with the face alignment, pose, features,

gestures and emotions extractions. Excitements caused by
the tactical moves of a game, compel the gamer to move
around in various directions. These maneuvers produce
large lateral movements of a face, which makes it difficult
for a facial analysis system to track and analyze the face.
For a facial synthesis system, cloning or retargeting the
features, emotions and orientation of a human face on to
an avatar is again one of the challenging tasks. Cloning
or retargeting is difficult due to the facial morphological
differences between a real face and an avatar. Furthermore,
large and complex face deformations due to the expressions
made by a nonrigid human face makes the online system
computationally complex to clone or replicate it on to an
avatar.

We propose a robust and efficient gamer’s online cloning
interactive system as shown in Figure 1. Our system is
composed of two cameras installed on the extreme edges
of the screen to acquire real-time images of the gamer.
Gamer’s face is analyzed and his pose and expressions
are synthesized by the system to clone or retarget his
features in the form of an avatar so that the gamers
can interact with each other virtually. In the following
paragraphs we briefly explain solutions by the facial analysis
and synthesis systems, embedded in our proposed interactive
system.
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Figure 1: Global system.

1.1. Face Analysis. Human faces are nonrigid objects. The
flexibility of a face is well tackled with the appearance-based
or deformable model methods [1], which are remarkably
efficient for features extraction and alignment of frontal-view
faces. As we will see in Section 2, researchers worked out the
bottlenecks of face analysis by emphasizing on the model
generation and their search methodologies. However we
emphasize on increasing the amount of data to be processed
with the help of multiple cameras as shown in Figure 1. In
single-view system face alignment cannot be accomplished
when a face occludes itself during its lateral motion, such
as in a profile view only half of the face is visible. To
overcome this dilemma we exploit data from another camera
and associate it with the one unable to analyze at the
first place. In multicamera system, optimization of more
than one error is to be performed between a model and
query images from each camera. Searching for an optimum
solution of a single task employing two or more distinct
errors requires multiobjective optimization (MOO). Many
MOO techniques exist but to analyze the face we propose
optimization of MOAAM by Pareto-based NSGA-II [2] due
to its exploitation and exploration ability, nondominating
strategy and population based approach which provide the
mutual interaction of the results by multiple cameras. In this
paper, we use our previous work of [3] and improved our
system by obtaining new results based on a new synthetic face
database.

1.2. Face Synthesis. In facial synthesis system the purpose is
to retarget or clone gamer’s face orientation and its features
on the synthetic model so that the gamers can interact with
each other virtually. Cloning and retargeting is difficult,
because avatar does not have the same morphology as the
gamer. Our contribution in this system is the introduction
of a simple mathematical relation between their appear-
ances called ATM (Appearance Transformation Matrix). To
calculate it we make use of two databases explained in
Section 5.1. The first database is a large collection of human
facial expressions (H-database) and the second database
is an optimal database of synthetic facial expressions (A-
database) constructed for the avatar based on the analysis
of the H-database. Our second contribution is to provide an
interactive system for the gamer to build his own database
and calculate gamer’s specific ATM. The generation of the
gamer’s database is based on our face analysis system of
MOAAM and is obtained by requesting the gamer to imitate
few specific and relevant facial expressions displayed on the
screen.

Whole system works in two phases. First of all, user’s
oriented face is analysed by MOAAM, which gives its appear-
ance and pose parameters. These appearance parameters
are pose-free and belongs to the frontal face of the user.
Therefore they are transformed by ATM in the synthetic
face’s parameter space and synthetic face is synthesized
accordingly. After that pose parameters obtained previously
by MOAAM analysis are used to adjust the orientation of the
avatar being displayed on the screen.

Remaining of the paper is organized as follow. Section 2
presents the previous and related work in both the domains
of facial analysis and synthesis. Section 3 presents the
preliminary concepts of our system. Section 4 describes the
work done in face analysis. Section 5 explains the system
to synthesize a face. Detailed description of our proposed
interactive system is elaborated in Section 6, while Section 7
concludes the paper.

2. Previous and Related Work

In this section we have divided the previous and related work
for both facial analysis and synthesis into two subsections.
However, our first contribution in the facial analysis domain
is explained in detail in Section 4. And our second contribu-
tion in the facial synthesis domain is explained in Section 5.

2.1. Face Analysis

2.1.1. Multiple 2DAAM. Active Appearance Model (AAM)
is one of the well-known deformable method [1] efficient
in feature extraction and alignment of a face. References
[4, 5] performed pose prediction by using 3 AAM models,
one dedicated to the frontal view and two for the profile
views. References [6, 7] implemented Active Shape Model
(ASM) for the face alignment, by using 5 poses of each face
to create a model. Reference [8] also used 3 DAMs (Direct
Appearance Models) for face alignment. Reference [9] used
another appearance based architecture employing 5 view-
specific template detectors to track large range head yaw by
a monocular camera. The Radial Basis Function Network
interpolates the response vectors obtained from normalized
correlation from the input image and 5 template detectors.

Use of more than one model of AAM has some disad-
vantages: (i) Storage of shapes and textures of the images
of all the models requires an enormous amount of storage
memory. (ii) Extensive processing of computing 3 AAM in
parallel to determine the model required for query images,
eventually makes the system sluggish. Moreover classical
AAM search methodology requires precomputed regression
matrices, which become a burden on time and memory as
the amount of training images increases.

Coupled View AAM is used in [10] to estimate the pose.
In the training phase they include 2D shapes and 2D textures
of both frontal and profile views of each subject. Appearance
parameters of their CV-AAM have the capability to estimate
the pose. Appearance parameters of their model can tune
both the shape and the profile angle of a face. For the
profile angle estimation they have used several appearance
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Figure 2: AAM modeling.

parameters which can be replaced by one pose parameter
in a 3D AAM. Thus, increase in the number of parameters
decreases the rapidness of the system.

2.1.2. 3DAAM. Face can also be aligned by 3D deformable
model methods in which a set of images are annotated in
3D to model a face. Reference [11] used 3D face model
Candide along with simple gradient descent method as a
search algorithm for face tracking. References [12] used
2D+3D AAM along with a fitting algorithm, called inverse
compositional image alignment algorithm, which is again
an extension of a gradient descent method. Reference [13]
applied 3D AAM for face tracking in a video sequence
using same IC-LK (Inverse Compositional Lucas-Kanade)
algorithm. The optimization by gradient descent lack the
properties of exploration and diversity, hence cannot be used
in MOO. In our previous work of [14] we have used genetic
algorithm instead of gradient descent for the optimization in
2.5D AAM.

2.1.3. Multiview Fitting by 2D or 3DAAM. Pose angles can
be estimated by fitting the above 2D or 3D deformable
models on multiple images acquired by two, three or multiple
cameras. Reference [15] proposed a robust algorithm of
fitting a 2D+3D AAM to multiple images acquired at
the same instance. Their fitting methodology, instead of
decomposing into three independent optimizations from
three cameras, adds all the errors. Moreover they used gra-
dient descent (ICLK: Inverse Compositional Lukas Kanade)
algorithm as a fitting method, which eventually requires to
precompute Jacobians and Hessian matrix. Reference [16]
proposed another algorithm of face tracking by Stereo Active
Appearance Model (STAAM) fitting, which is an extension
of the above fitting of 2D+3D AAM to multiple images. Lack
of exploration capability of the method makes ICLK very
sensitive to initialization.

In [17] the advantages of adaptive appearance model
based method with a 3D data-based tracker using sparse
stereo data is combined. Reference [18] proposed a model-
based stereo head tracking algorithm and is able to track
six degrees of freedom of head motions. Their face model
contains 300 triangles compare to our 113 triangles usually

used in classical AAM and ICLK based AAM and so
forth. Moreover their initialization process requires user
intervention. Reference [19] performed 2D head tracking
for each subject from multiple cameras and obtained 3D
head coordinates by triangulation. Lack of ground truth
error calculations creates uncertainty in the accuracy of
their system. Furthermore slight calibration error massively
deteriorates the triangulation.

Our proposition of face alignment is based on two
cameras using 2.5D AAM optimized by Pareto-based mul-
tiobjective genetic optimization of NSGA-II. It not only
eliminates the steps of precomputation but also provides
both exploration and exploitation capability in the search by
NSGA-II. Hence it is not sensitive to initialization.

2.2. Face Synthesis. By facial cloning, we refer to the action of
transferring the animation from a source (typically a human
face) to a target (another human face or a synthetic one). The
cloning (or retargeting) can be either direct or indirect. In
direct retargeting, the purpose is to transfer the motion itself
of a few selected interest markers (and optionally a texture)
from one face to another [20]. The marker trajectories
usually undergo a transformation that compensates for the
morphological differences between the source and the target
face [21–24]. This morphological adaptation is not always
satisfactory, especially if the source and the target faces are
very different. An interesting way to get around this difficulty
is to turn to indirect retargeting. In indirect retargeting, the
motion data is not transferred as such, but is first converted
by a specific model to a better representation space, or
parameter space, more suited for the motion transfer [25–
27]. In the next paragraph we will go over some of the most
common representations used for indirect retargeting.

In order for a facial parameterization to be suited
for retargeting applications, it must be adapted to the
extraction of parameters from motion capture data, and
offer an accurate description of facial deformations. Early
parameterization schemes like direct parameterizations [28]
or pseudomuscle systems [29–31] usually have the advan-
tage of being simple to conceptualize and computationally
efficient, but the obtained parameter sets are generally not
optimal. In particular, when not operated carefully, they
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can generate inconsistent facial configurations. Besides, it is
not straightforward to extract the values of the parameters
from raw facial motion data (video or 3D motion capture).
Muscle physics systems attempt to simulate more rigorously
the mechanical behavior of the human face, and thus tend
to improve the degree of realism of facial deformations
[32]. Yet, as for direct parameterization, the manipulation
of the muscle network is not particularly intuitive, and
the extraction of muscular contractions from video or
motion capture data remains an open problem [33]. A
popular facial parameterization which directly originates
from observation is the Facial Action Coding System (FACS)
[34]. This scheme was originally meant to describe facial
expressions in a standardized way in terms of combination
of basic facial Action Units (AU). Its coherence and good
practical performances made it an interesting tool on which
to build performance based animation systems. The MPEG-
4 standard later extended this concept for facial animation
compression purposes, introducing the Facial Animation
Parameters (FAP) [35]. The FACS and MPEG-4 FAP have
been used to capture and retarget static and dynamic facial
expressions between human and synthetic faces [36, 37]. The
disadvantage of methods based on multiple separate action
units, is that the natural correlation between multiple facial
action occurring in each facial expression is ignored. Thus
the animation resulting from these approaches tend to be
somewhat nonhuman or robotic.

More recently studies have aimed at obtaining more
natural parameterization by performing a statistical mod-
eling of the facial motion. This consist in gathering a
collection of relevant examples (database) and to statistically
detect particular variation modes, which encompass the
specificity of the source or the target. The facial parameters
correspond to the contribution of these modes. When two
faces have corresponding models, Animations can be easily
transferred by mapping the model parameters from one
face to the other. Many studies have pointed that motion
data consisting of only the positions of a few markers
cannot efficiently capture the subtleties of human facial
expressions, and have proposed to also capture the textural
information [38]. Active Appearance Models (AAM) are
frequently used for that propose, since they encompass the
motion of well chosen geometric points as well as the pixel
intensity changes occurring on the faces, which account for
finer deformation of the skin [1]. References [39, 40] obtain
impressive results of facial expressions transfer between
multiple human faces based on an AAM parameterization.
For this type of retargeting scheme to be successful however,
the appearance models of the source and the target must
characterize the same scope of expressions. In particular
their databases must correspond. Constructing a database
of expressions for a synthetic face which matches the scope
of the source human database is not trivial. Reference [41]
transfer facial expressions from the AAM parameters of a
human face to an avatar based on a blendshape database.
The database of the avatar consists of key expressions selected
from the human database, however too few expressions are
used for the virtual face to allow for a detailed expression
retargeting. Reference [42] later improved this approach by

preprocessing the human database in order to automatically
isolate individual facial actions. Each of the facial actions can
then be reproduced on the avatar to construct a blendshape
database. For a reasonable number of facial expressions, this
approach ensures the compatibility between the source and
target database, without requiring the construction of many
avatar facial examples. Yet, for a more complete scope of
facial movements, the number of individual facial actions can
become large, and thus the number of facial configurations
for the avatar database as well. Moreover, by decomposing
the expressions into individual units, the correlation between
these units when performing an expression is lost in the
parameterization. Reference [27] performs a linear retarget-
ing of monocular human appearance parameters to muscle-
based animation parameters. The transfer function is based
on the matching of a human database of key expressions with
a database of corresponding animation parameters for the
synthetic face. Yet, the choice of the database key expressions
is subjective in that case. Moreover the synthetic face is
animated with muscle contraction parameters which can
sometimes lead to incoherent interpolation, and prevents
the system from being used with other types of animation
methods.

We propose a new method to efficiently transfer facial
expressions from a human face to a synthetic face, based on
pose-free active appearance model parameters delivered by
our multiple camera system. The method analyzes a human
expression database, and automatically determines which key
expressions have to be constructed in the avatar database for
the expression retargeting to be efficient.

3. Preliminary Concepts

3.1. 2.5D AAM Modeling. 2.5D AAM of [3, 14] is con-
structed by (i) 2D landmarks of the frontal view (width and
height of a face model) and x coordinates of landmarks in
profile view (depth of a face model) combined to make 3D
shape model and (ii) 2D texture of only frontal view mapped
on its 3D shape. In the training phase of 2.5D AAM, 68 points
are marked manually as shown in Figure 2.

All the landmarks obtained previously are resized and
aligned in three dimensions using Procrustes analysis ([43,
44]). The mean of these 3D landmarks is calculated which is
called mean shape. Principal Component Analysis (PCA) is
performed on these shapes to obtain shape parameters with
95% of the variation stored in them:

si = s + φs ∗ bs, (1)

where si is the synthesized shape, s is the mean shape, φs are
the eigenvectors obtained during PCA and bs are the shape
parameters.

The 3D mean shape obtained in the previous step is used
to extract and warp (based on the Delaunay triangulation)
the frontal views of all the face images. Only two dimensions
of the mean shape are used to get 2D frontal view textures.
That is why we call our model as 2.5D AAM, since it is
composed of landmarks represented in 3D domain but only
2D texture is warped on this shape to adapt 2.5D model.
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Figure 3: Snapshots of rotating 2.5D AAM.

Mean of these textures is calculated. Followed by, another
PCA to acquire texture parameters with 95% of the variation
stored in these parameters:

gi = g + φg ∗ bg , (2)

where gi is the synthesized texture, g is the mean texture,
φg are the eigenvectors obtained during PCA and bg are the
texture parameters.

Both of the above parameters are combined by concate-
nation of bs and bg . And a final PCA is performed to obtain
the appearance parameters:

b =
[
bsbg

]T
, b = φC ∗ C, (3)

where φC are the eigenvectors obtained by retaining 95%
of the variation and C is the matrix of the appearance
parameters, which are used to obtain shape and texture of
each face of the database.

2.5D model can be translated as well as rotated with the
help of pose vector P:

P =
[
θx, θy , θz, tx, ty , Scale

]T
, (4)

where θx corresponds to the face rotating around the x axis
(pitch: shaking head up and down), θy to the face rotating
around the y axis (yaw: profile views) and θz to the face
rotating around the z axis (roll). tx, ty are the offset values
from the supposed origin and Scale is a scalar value for the
magnification of the model in all the dimensions. Figure 3
shows the model rotating by changing θy , making left and
right semi profile views.

In segmentation this deformed, rotated and translated
shape model obtained by varying C and P parameters, is
placed on the query image I to warp the face to mean frontal
shape. After this shape normalization we apply photometric
texture normalization to overcome illumination variations.
The objective is to minimize pixel error

e =
√∑

x

[I(C,P)−M(C)]2, (5)

where I(C,P) is the segmented image and M(C) is the model
obtained by C parameters. To choose good parameters we
need an optimization method. In our proposition, both of
these pose P and appearance parameters C are optimized by
genetic optimization of NSGA-II.
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Figure 4: MultiView System.

3.2. Multiple Camera System. In single-view system face
alignment cannot be accomplished when a face occludes
itself during its lateral motion. Such as in a profile view
only half of the face is visible. To overcome this dilemma
we exploit data from another camera and associate it
with the one unable to analyze at the first place. This
association helps the search methodology to reduce the
possibility of divergence. Moreover better outcomes of one
camera can escort the other. In multiview systems, higher
the amount of processing data higher is the robustness
ability of a system however efficiency deteriorates due to
high consumption of processing time and memory. In
other words a trade-off is required between robustness and
efficiency.

A database of facial images capable of self assessing is
desired to validate our application. The community lacks
such a database which involves lateral motion of a face
captured by more than one camera. In order to implement
our application we developed a multiview scenario. The
purpose of constructing this multiview system is to emulate
the scenario of integrating two off the shelf webcams placed
on the extreme edges of the display screen facing towards the
user as shown in Figure 4.

AAM rendered on the facial images of both webcams
are blended together to represent a face model seen by a
virtual camera placed in between. The results of this virtual
webcam are compared by a third camera actually placed
at the center. In other words it is a comparison between a
multicamera system by MOAAM with single-camera system
by SOAAM (Single-Objective AAM). These three cameras
are placed 25 degrees apart on a boundary of a circle with
a radius of 70 cm as shown in Figure 4. Center of this circle
serves as a principal point for each camera. Seven individuals
from a research team are invited for screen shots with the
intention of obtaining 1218 images with lateral motion. Each
individual rotates his face gradually from frontal view to
left and right profile views. At each instance three images
from each webcam are acquired simultaneously to obtain
temporally synchronized images.
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Figure 5: Test database images: Same pose from 3 webcams.

3.2.1. Illumination. It remains steady through out the
sequence. It is accomplished by a white ambient light placed
behind the central camera as shown in the Figure 4. The light
we used comes with the stand and a built-in umbrella holder
to give extra flexibility. By adjusting the umbrella’s position
we have rejected the bright spot on the face. It works well for
taking facial images with webcams.

3.2.2. Camera Calibration. It is performed by a publicly
available toolbox [45]. A simple planar checkerboard is
placed in front of the cameras and sequence of images are
taken to calculate calibration parameters. With the help of
the toolbox, four corners of the checker board are extracted
and calibration is performed with respect to the grid of the
checkerboard. The toolbox calculates intrinsic parameters
(focal length, principal point, distortion and skew) and
extrinsic parameters (rotation vector and translation vector)
for each camera. With the help of these parameters, all the
facial images of these cameras are calibrated.

Figure 5 shows some images of test database acquired
from three webcams. A similar scenario is emulated in the
software MAYA for a video of synthetic faces. The synthetic
face database does not contain camera calibration error
hence it is helpful to analyze results free of calibration errors.
Figure 6 show some examples of test database of synthetic
faces (Synthetic face in the first row was obtained from
www.ballistic.com, while remaining face models were made
in a software named as “Facial Studio”. All of them were
imported in MAYA for rendering the synthetic facial images).
Some of the facial images of M2VTS [46] (learning database)
are also shown in Figure 7.

4. Face Analysis

The main objective of our application is to clone a real
human face in the form of an avatar. For such an application
face analysis plays an important role for face synthesis. The
more efficient the analysis is, facial synthesis is likely to be
more accurate. To obtain an efficient and robust face analysis
system we acquire a human face with two cameras and
analyze it by an appearance based morphable model of 2.5D
AAM.

4.1. MOAAM. In single-view system, single error between
model and query image is optimized. However in multiview
system, the optimization of more than one error is to be
performed between a model and query images from each
camera. AAM fitting on multiviews is shown in Figure 8.
In multiview AAM, the model is rendered on both the
images from each camera with the same C parameters.

Figure 6: Test database synthetic images.

Figure 7: Learning database images.

The P parameters also remain the same except a yaw angle
offset (θoffset) is introduced between the models rendering on
two images. After segmentation, pixel errors between both
the images and models are calculated. The objective is to
minimize pixel error of (5) obtained from each of the two
cameras

e1 =
√∑

x

[I1(C,P1)−M(C)]2,

e2 =
√∑

x

[I2(C,P2)−M(C)]2,

(6)

where P1 and P2 are linked by an offset of yaw angle. In order
to optimize both errors we propose Pareto-based NSGA-II
MOO.

4.1.1. NSGA-II. Genetic Algorithm is a well-known search
technique. We have used its multiobjective version of Non-
dominated Sorting Genetic Algorithm (NSGA-II) proposed
by [2] to optimize the appearance C and pose parameters
P. The target is to find out the best possible values of these
parameters giving minimum pixel errors between the model
and the query images of both cameras. In this optimization
technique each parameter is considered as a gene. All the
genes of C and P are concatenated to form a chromosome.
A population of particular number of chromosomes is
randomly created. Pixel errors (fitness) between query
images and the model (represented by each chromosome)
are calculated. Tournament selection is applied to select



International Journal of Computer Games Technology 7

C1

C2 

Cn

θx

θy

θz

tx

ty

Scale

…

NSGA II

θy− θoffset θy + θoffset

Figure 8: Fitting of MOAAM.

parents from the population to undergo reproduction. Two
point crossover and Gaussian mutation is implemented to
reproduce the next generation of chromosomes. Selection
and reproduction is based upon nondominating sort. The
objective is to minimize both of these pixel errors, hence
nondominating scenario is to be implemented by Pareto
optimization.

4.1.2. Pareto Fronts. The fitting of AAM to image data is
performed by minimization of the error function. In MOO
several error functions are to be minimized, hence mutual
relation of these errors point towards the appropriate MOO
method. Dominating errors can be dealt with non Pareto-
based MOO, but in this scenario both cameras serves the
same purpose of acquiring images of a face. Hence non-
dominating scenario is to be implemented with the desired
Pareto optimum solution. The basic idea is to find the set
of solutions in the population that are Pareto nondominated
by the rest of the population as shown in Figure 9(a). These
solutions are assigned the highest rank and are removed from
further assignment of the ranks. Similarly, the remaining
population undergoes the same process of ranking until the
population is suitably ranked in the form of Pareto fronts
as shown in the Figure 9(b). In this process some kind of
diversity is required in the solutions to avoid convergence to
a single point on the front. This diversity can be achieved by
the exploration quality of Genetic Algorithm.

4.1.3. Switching of MOO to SOO. Processing data from two
cameras is meaningful as long as they are relevant. With
respect to a camera if a face is oriented such a way that it
occludes itself there is no need of processing data from this
camera. Eventually in order to avoid wastage of processing
we divide field of views of both cameras in three regions R1,

R2 and R3 as shown in Figure 4. To determine the region
of the face orientation Pareto-based NSGA-II is applied to
evolve populations until small number of generations. After
each generation evolution, the histogram of genes of the
entire population representing the yaw of a face is observed.
This histogram follows one of the three curves of Figure 10.
Histogram curve-1 corresponds to region-1, where the
information from both the cameras are meaningful and
data from any one of them cannot be neglected. Whereas
histogram curve-2 and curve-3 corresponds to region-2 and
region-3 respectively, where the information from one of the
camera is sufficient enough to localize the facial features and
other camera can be discarded. After few generations, current
population decides whether to stay in MOO or to switch to
single objective optimization (SOO). Mathematically, let us
suppose Pop is a set of population given as

Pop =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X11 X12 · · · X1k · · · X1M

X21 X22 · · · X2k · · · X2M

...
...

. . .
...

. . .
...

XN1 XN2 · · · XNk · · · XNM

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

where N is the number of chromosomes X and M is the
number of genes of each chromosome. Now we observe
the kth gene of each chromosome which represents yaw
angle of the model. In order to calculate the histogram of
chromosomes, we assign 1 to ζ such as

ζi =
⎧⎨
⎩

1 −θth ≤ Xik ≤ θth

0 Xik ≤ −θth or Xik ≥ θth

1 ≤ i ≤ N , (8)

where θth is the threshold angle equals to the half of the
angle between two cameras. ε is the ratio of number of
chromosomes representing the face position in region-1 to
the total number of chromosomes:

ε =
∑N

i=1 ζi
N

=
⎧⎨
⎩
< 0.50, Single camera mode,

≥ 0.50, Multiview mode.
(9)

The value of ε decides whether to stay in MOO and
utilize both cameras or to switch to single camera mode.

4.1.4. MOAAM Fitting. For MOAAM (also called MVAAM:
Multiview AAM) fitting we refer readers to our previous
work of [3], which illustrates stepwise detailed description
of MOAAM fitting on a query image. It includes steps of ini-
tialization, reproduction, segmentation, fitness calculations,
nondominating sort, replacement and switching of MOO to
SOO. In our previous work we have highlighted the effects of
slight errors caused by the camera calibration and the ground
truth points for a real face database.

Camera calibration problem arises when we compare
MOAAM results to SOAAM. As we have already mentioned
in Section 3.2 that models obtained from two cameras placed
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Figure 9: Pareto Fronts.
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Figure 10: Histogram of chromosomes versus head orientation.

at the extreme edges of the display are blended together to
compare it with the one obtained from the central camera.
This comparison is highly prone to the calibration error of all
the three cameras. Whereas the results from a single camera
(SOAAM) do not experience any calibration problem. In this
paper we have manage to overcome this dilemma by building
a synthetic face database of several individuals. The scenario
shown in Figure 4 is emulated, in the software named as
MAYA, by placing different synthetic characters in between
two virtual cameras each calibrated and located 50◦ apart.
A third camera is placed in-between these two cameras for
the comparison of results of a single camera and double
camera. These cameras have all the characteristics of an
actual camera along with the capability to fix intrinsic and
extrinsic parameters to obtain 100% calibration.

Ground truth points are the exact localization of the
face orientation and features (nose, eyes and mouth). In

real face database there is a possibility of slight errors in
the ground truth points since they are marked manually
on each facial feature of each image. However in synthetic
facial images this problems is solved by obtaining these
locations automatically through scripts written in MAYA.
With all these modifications we have verified our proposition
of MOAAM and have updated our results.

4.2. Experimental Results. We performed simulations using
64 × 64 pixels AAM by annotating 37 subjects of publicly
available databases of M2VTS [46]. However for testing
database we have used both real face database and synthetic
face database. Both these databases contains 2418 facial
images, of 7 real and 10 synthetic faces, from each camera.
Among 2418, 806 images are considered to be taken from
central camera to validate our results. In testing phase face
alignment is performed on all the views from left profile
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(a) (b) (c) (d)

Figure 11: (a) and (b) Comparison of SOAAM and MOAAM (operating in R2 or R3). (c) and (d) Comparison of SOAAM and MOAAM
(operating in R1).
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Figure 12: (a) Comparison of GTEmean for MOAAM and SOAAM (Synthetic face images). (b) Comparison of GTEmean for MOAAM and
SOAAM (Web-cam images).
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Figure 13: (a) Comparison of GTEmax for MOAAM and SOAAM (Synthetic face images). (b) Comparison of GTEmax for MOAAM and
SOAAM (Web-cam images).

to right profile. Two sets of experiments are performed:
SOAAM and MOAAM.

4.2.1. Single-Objective AAM. In SOAAM, AAM is rendered
on the image sequence from the central camera, which
is placed to highlight the benefit of MOAAM. As far as
optimization is concerned, SOAAM is optimized by classical
GA optimization. Same selection and reproduction criteria
of NSGA-II are implemented in GA, in order to give a good
comparison.

4.2.2. Multiobjective AAM. In MOAAM, same AAM is
rendered on the face image sequence from the other two
cameras, which are actually the part of our multiview system.
Localization of face on these two images from each camera is
performed by Pareto-based MOO of NSGA-II.

Best chromosomes obtained at the end of MOAAM and
SOAAM contain best appearance and pose parameters for
a given face. Features like eyes, nose and mouth can be
extracted from these shapes as shown in Figure 11. First three
rows correspond to synthetic faces while remaining rows
represent real human faces. It can be seen from the images
that as the face moves laterally the feature localization gets
far better in two cameras (MOAAM) than in single central
camera (SOAAM).

Figure 12(a) shows percentage of aligned synthetic
images versus mean ground truth error (GTEmean) of facial
features (eyes, nose and mouth). GTEmean is actually the
mean error obtained by comparing MOAAM analyzed
locations and manually marked locations of all the facial
features of a facial image. The error is normalized by Deye

which corresponds to the distance between eyes, that is, an
error of 1 corresponds to a mean error equal to the distance
between the eyes. To eliminate the vagueness of ground truth

markings we consider results starting from 0.1 of Deye, which
means any two algorithms having a GTEmean less than 0.1 is
considered to be equally accurate. While for the maximum
threshold results less than 0.25 of Deye is considered to be
well converged results. Figure 12(a) depicts that our system
of MOAAM fitting by NSGA-II is a lot better than SOAAM
fitting. In MOAAM 69% of the images are aligned with a
GTEmean less than 0.2 of Deye. Whereas SOAAM aligned 41%
of the total images. Similarly Figure 12(b) shows the results
of experiments on real faces (previous work); MOAAM 68%
and SOAAM 50%.

Figures 13(a) and 13(b) illustrate the comparison of both
algorithms with respect to normalized maximum ground
truth error (GTEmax) for both synthetic and real facial images
databases respectively. GTEmax represents worst localization
of a facial feature (eyes, nose or mouth) normalized by Deye.
Figure 13(a) depicts that MOAAM aligned 50% and SOAAM
aligned 28% of synthetic facial images with GTEmax less than
0.2 of Deye. Whereas Figure 13(b) shows MOAAM aligned
30% and SOAAM aligned 10% of real faces.

As far as time consumption is concerned, it is obvious
that at the worst MOAAM required twice of the processing
time compared to SOAAM but at the same time accuracy,
robustness and increased field of view (FOV) is achieved.
Moreover our technique of finding the region of face and
discarding the data from the camera by NSGA-II reduces
this twice factor. SOAAM required 1600 warps whereas
MOAAM instead of 3200 warps required 2700 warps. Each
warp equals 90% of the time consumed by an iteration, that
is, 0.03 milliseconds in Pentium-IV 3.2 GHz. Therefore each
facial image requires 90 milliseconds for the analysis without
any prior knowledge of the pose, however in tracking mode
we can reduce this time by employing pose parameters of
previous frames, which eventually reduces the number of
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Figure 14: Overview of the face synthesis system. (Colors represents different types of expressions and are shown for the clarity of the display
only).

warps (iterations). Moreover facial analysis by MOAAM can
be made as a generic or a person specific MOAAM. In generic
MOAAM the query face is totally unknown and to analyze it
we need a vast learning database, whereas in person specific
MOAAM model is generated from facial images of the same
individual who would be analyzed by the system. Eventually
person specific MOAAM is more time efficient and robust
compared to generic MOAAM.

5. Face Synthesis

The goal of our application is to clone the gamer’s facial
expression to an avatar. The cloning consists of transferring
the facial expressions from a source (typically a human
face) to a target (another human face or a synthetic one).
The avatar facial deformations then originates from real
human movements (performance-based facial animation),
which usually look more natural than manually-designed
facial animation. Moreover, since the expressions of the
gamer are captured and transferred in real-time, the facial
animation of the avatar acts as a real gaming experience, and
significantly improves the interactivity of the game compared
to prerecorded animation sequences.

5.1. System Description. In this section, we present a general
description of a system that provides an efficient parameter-
ization of an avatars face for the production of emotional
facial expressions, relying on captured human facial data.
Here we make use of two databases of our previous work
of [47]. An illustration of the system and its applications is
displayed on Figure 14.

5.1.1. H-Database. The entry point of the system is a
database of approximately 4000 facial images of emotional
expressions (H-database). These images have been acquired
on an actor performing facial expressions without rigid
head motion. The database was constructed to contain an
important quantity of dynamic natural expressions, both
extreme and subtle, categorical and mixed. A crucial aspect
of the analysis is that the captured expressions do not carry

any emotional label. The facial images will allow us to model
the deformation of the face according to a scheme used in
Section 3.1. The AAM procedure delivers a reduced set of
parameters which represent the principal variation patterns
detected on the face. Every facial expression can be projected
onto this parameter space referred to as the appearance
space (Figure 14 presents symbolic 3D representations of this
space, although it may contain 15 to 20 dimensions). Note
that this process is invertible: it is always possible to project a
point of the appearance space back to a facial configuration,
and thus synthesize the corresponding facial expression as a
facial image.

5.1.2. A-Database. A reduced parameter space similar to the
one described above can be constructed for the synthetic face,
provided that a database of facial expressions for the virtual
character is available (A-database). In this section we show
how to identify a reduced set of facial configurations from
the human database so that a coherent appearance space is
constructed for the avatar (typically 25 to 30 expressions).
The purpose of this avatar database creation scheme is that
the appearance spaces of the human and the synthetic face
have the same semantical meaning, and model the same
information. It is then easy to construct a mathematical link
between them (the ATM as illustrated on Figure 14).

The appearance space for the synthetic face is built
through statistical modeling, similarly to the human appear-
ance space (Section 5.1.1). For real faces, thousand of
database samples can be produced with a video camera and
a feature-tracking algorithm, whereas the elements of an
equivalent synthetic database are manually-designed facial
configurations, which are not easy to obtain. It is thus
desirable to keep the number of required samples small.

Our idea for building the A-database, is to use the human
database, and extract the expressions that have an important
impact on the formation on the appearance space. Indeed,
a lot of samples from the human database bring redundant
information to the modeling process, and are therefore not
essential in the A-database. Following this logic, we are able
to reduce the set of necessary expression to a reasonable size.
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Figure 15: The first elements of the human expression located on
the convex hull of the point cloud formed by all database elements
(top). Avatar’s expressions corresponding to each human expression
(bottom).

Practically, We select the extreme elements of the database,
meaning the elements presenting the maximal variations
with respect to a neutral facial expression. In terms of
parameter space, these elements are located on the convex
hull of the point cloud formed by all database elements
and are detected using [48]. These samples are responsible
for shaping the meaningful variance of the database and
thus encompass the major part of its richness. By manually
reproducing these selected expressions on the face of the
virtual character, we can build its very own appearance
model according to the method presented in Section 3.1. Our
studies have shown that 25–30 expressions are enough to
train an efficient appearance model.

For the human database, we used more than 4000 ele-
ments. Using the convex hull procedure we have been able to
identify 25–30 representatives for the reduced database (see
Figure 15), with a small reconstruction error. Such a reduced
database can be constructed for any synthetic character,
and any human face based on the same extracted elements
(see construction of the gamer’s database in Section 6.2).
Having to design several facial configurations manually on
a synthetic character is a limitation of the method, yet it
also can be seen as an advantage: our system does not rely
on any particular facial control method (muscle systems,
blendshapes, etc). Any scheme able to provide good facial
configurations can be used. Our system can therefore easily
be integrated in already-established workflows.

The database construction method creates a specific
connection between the two databases, and thus the two
appearance spaces. In the next sections, we will see how we
benefit from it to animate the avatar based on the human
motion data.

5.1.3. Appearance Transformation Matrix (ATM). The ideas
developed in the previous section have lead to the con-
struction of analogous appearance spaces for the human
face and the synthetic face. Both spaces are connected, since
the construction of the avatar appearance space is based on
elements replicated from the human database. It follows that
we have a correspondences between points in the human
appearance space and points in the avatar space. We propose
to use this sparse correspondence to construct an analytical

Figure 16: Examples of cloning of facial expressions. The expres-
sions captured on the human face (left) are successfully transferred
to the faces of avatars (middle and right). First row shows neutral
faces.

link between both spaces. This link will then be used to
transform human appearance parameters CH into avatar
appearance parameters CA, and thus clone a human facial
expression on the synthetic face.

It can be noted that the modeling scheme of AAM we
use is linear equations (1), (2) and (3). Linear variations
and combinations are thus preserved by the modeling steps,
and we wish to maintain this linear chain in the retargeting
process. Therefore, as in other approaches like [27], we
applied a simple linear mapping on the parameters of the
appearance spaces:

∣∣∣∣∣∣∣∣∣∣∣∣∣

CH(11) CH(12) · · · CH(1k)

CH(21) CH(22) · · · CH(2k)

...
...

. . .
...

CH(m1) CH(m2) · · · CH(mk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= A0 ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣

CA(11) CA(12) · · · CA(1k)

CA(21) CA(22) · · · CA(2k)

...
...

. . .
...

CA(n1) CA(n2) · · · CA(nk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(10)

where m and n are the number of appearance parameters of
human and synthetic appearance space respectively, while k
is the number of expression stored in the database. Hence if
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Figure 17: Block diagram of the interactive system.

Table 1: Experimental details. (Avatar1 and Avatar2 are shown in
the middle and right columns of Figure 16 resp.).

C-Parameters Expression (k)

Human m = 24 28

Avatar1 n = 20 28

Avatar2 n = 18 28

CH is a m × k matrix and CA is a n × k matrix, A0 will be of
m× n.

The matrix A0 is obtained through linear regression
on the set of corresponding points. Depending on the
dimensionality of the appearance spaces (usually 15 to 20), it
can be profitable to turn to Principal Component Regression
[49] to cope with a possible underdetermination of the
regression problem. Retargeting results are illustrated by
a few snapshots on Figure 16. Experimental details used
are given in Table 1. Complete sequences of expression
retargeting can also be found on the accompanying video.

6. Interactive System

Our proposition is a complete human machine interactive
system for a game console. Figure 17 is a detailed description
of our system. This time it is viewed from perspective of
stages of the global system. System is composed of three
stages.

6.1. Avatar’s Face Modeling. In this section, we make use of
procedure of Section 5.1.2 to obtain a database of simple
and realistic facial expressions of an avatar called A-database.
The visual aspect of the synthetic character is chosen by
the user. Different classes of synthetic faces are available
representing different ages, races, gender, physique and
features and so forth. Once the class of the avatar is chosen,
the required facial expressions, already stored in the system,
are generated for this face (from the expressions identified in
Section 5.1.2). Note that the system’s user has the possibility
to edit the suggested facial expression to personalize the look
of its avatar by manually clicking and moving the vertices.
Ultimately the A-database contains the expressions, on the
user-chosen character, which are necessary to form the A-
Database.

We can build the its appearance model according to the
method presented in Section 3.1. This procedure delivers
a reduced set of parameters which represent the principal
variation patterns observed on the synthetic face (CA).
Manual marking of the landmark on the synthetic face is
not needed as the synthetic face is already generated by the
system and it contains the location of each vertex.

6.2. Gamer’s Face Modeling. The procedure of training is very
simple and unproblematic. The essence of this phase is to
make the system learn the facial deformations of the gamer’s
face so it can replicate the localization of features, emotions
and gestures on the synthetic face. The construction of the
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Table 2: Processing time for Gamer’s face modeling. (offline).

Processing block Time

Generic MOAAM 90 milliseconds/frame

Fine tuning 30–40 sec/image

AAM modeling 5.68 sec (28 expressions)

Computation of ATM 24 milliseconds

Gamer’s database is similar to the one of the avatar. The
gamer has to mimic the expressions that have an important
impact on the formation of the appearance space (identified
in Section 5.1.2). In practice, the required facial expressions
are displayed serially for the user to imitate. Facial images
are captured by generic MOAAM, as explained in Section 4
to automatically localize the facial features. Since user is
unknown to the system therefore generic MOAAM contain-
ing an AAM model based on M2VTS facial images database
is used. Feature localized by MOAAM is displayed on the
screen for the user to fine tune the location of each feature.
Finally all the facial images of the gamer are generated,
each corresponding to synthetic facial expression of the A-
Database. By reproducing these selected facial expressions of
the gamer, we can build its very own appearance model along
with its reduced appearance parameters CG according to the
method presented in Section 3.1. With CG and CA (obtained
in previous section) we can calculate ATM mathematically
(see Section 5.1.3). This ATM is gamer dependent and can be
used for cloning only for particular gamer who was involved
in generating it in the first place. Time cost for this phase is
tabulated in Table 2.

CA = A0 ∗ CG. (11)

6.3. Online Cloning. From the previous two sections we
obtained an ATM capable of transforming the appearance
parameters from the gamer’s appearance space to the avatar’s
appearance space. In online cloning, this transformation
involves only a matrix multiplication of real-time gamer’s
appearance parameters CG with A0 to obtain avatar’s appear-
ance parameters CA. This analytically simple framework
enables real-time performances. The virtual illustration of a
gamer is cloned in the form of an avatar synthesized by CA

and ultimately display on the screen as shown on Figure 17.
The appearance parameters of a gamer are acquired in

real-time by our facial analysis system of multiple cameras.
Tactical moves of the game causes the gamer to move a lot in
different direction. Yet the retargeting scheme of Section 5.1
has been designed for stable heads. Employing multiple
cameras resolved this problem. Two cameras placed at the
extreme edges of the screen acquire real-time image of the
gamer and at the same time his facial features and pose
are analyzed by person specific MOAAM. Person specific
MOAAM model is generated from the gamer database of
the previous section and it contain all the pose-free facial
variations of the gamer.

User’s oriented face is analysed by MOAAM, to give
its appearance and pose parameters. These appearance

Table 3: Processing time for online cloning.

Processing block Time (msec/frame)

Person specific MOAAM 34

Transformation by ATM 0.015

Rendering (800× 600) 30

(2740 vertices)

parameters are pose-free and belongs to the frontal face
of the user. These parameters are transformed by ATM in
the synthetic face’s parameter space and synthetic face is
synthesized by them. After that pose parameters obtained
previously by MOAAM analysis are used to adjust the
orientation of the avatar being displayed on the screen. As
shown in the cloning section of the Figure 17, appearance
parameters undergoes transformation while pose parameter
are directly reproduced on the avatar face to clone both the
gamer’s expressions and gestures. Time cost of each block, for
a Pentium-IV 3.2 GHz platform, is tabulated in Table 3. The
linearity of the AAM scheme allows the reproduction of both
extreme and intermediate facial expressions and movements,
with low computing requirements.

7. Conclusions

In this paper we proposed a solution to solve two bottlenecks
of facial analysis and synthesis in an interactive system
of human face cloning for nonexpert users of computer
games. Facial emotions and pose of gamers cloned to bring
their realistic behavior to virtual characters. Bottlenecks of
analyzing the human face and synthesizing it in the form of
an avatar are dealt with.

Large lateral movements of a gamer makes it impossible
to analyze and track his face with single camera. To overcome
this dilemma we exploit data from another camera and
associate it with the one unable to analyze at the first
place. Earlier the cost of a webcam and slow processor
demotivated the possibility of managing excessive amount of
data from multiple cameras. Currently with wide availability
of inexpensive webcams the multiview system is as practical
as single-view. To analyze the acquired multiview facial
images we proposed multiobjective 2.5D AAM (MOAAM)
optimized by Pareto-based NSGA-II. We have presented new
results (Section 4.2) because of the problem of calibration
and ground truth points in our previous work. Our approach
of MOAAM is accurate, robust and capable of extracting the
pose, features and gestures even with large lateral movements
of a face.

As far as facial synthesis is concerned, cloning the
human facial movements onto an avatar is not trivial due
to their facial morphological differences. We proposed a
new technique of calculating the mathematical semantic
correspondence between the appearance parameters of the
human and avatar (ATM matrix). We calculated this ATM
for the gamer to be able to clone his emotions on the avatar
in real-time. The interactive system we have presented is
complete and easy to use. We have shown the results of facial
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features and pose extraction and how we synthesize these
facial details on an avatar by calculating the ATM with the
gamer’s help.

Although gamer’s and avatar’s database construction and
its training is a long and tedious job. But it is supposed to
be done once every time a new gamer is introduced. On
the other hand our system is capable of performing online
cloning of each frame in 64.015 milliseconds (i.e., 15 frames
per second), as being nearly a real-time system. For the
moment, this approach is limited to be used in an interactive
system for the gamers, but it would be interesting to extend
it for larger events, like conferences and meetings, with
multiple cameras installed on different corners of the room
and displayed on video projectors. Moreover it can be used
efficiently in communication where the channel bandwidth
is limited, since only the small amount of appearance and
pose parameters are transmitted from the human face to the
avatar for face synthesis.
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