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That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in
the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the
simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due
to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on
a novel tree model representation—Ball B-Spline Curves (BBSCs) are proposed. By taking advantage of the good features of the
BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The
method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.
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1. Introduction

In current computer games, plants in scenes are usually con-
sisted of simple plane pictures positioned in four orthogonal
directions. 3D models of plants are seldom used in computer
games. Recently, 3D plants come forth in some computer
games which make users feel more realistic. For example,
in [1], a palm tree model with approximately 400 Polys was
created by Amped Labs LLC for the use in the Rise of Power
game. There are also some top-level visualization corpora-
tions like Interactive Data Visualization, Inc. (IDV) provid-
ing functional system like SpeedTree for modeling 3D trees
and simulating simple tree animation in computer games
[2].

However, in the scope of our knowledge, we do not
find any research publications on discussing 3D tree motion
in computer games. In fact, many researchers have made
contributions in tree modeling and its motion, but none is
actually applied in computer games. In tree modeling, the
main methods include the followings: L-system [3], image
based tree modeling [4-6] and space colonization algorithm
[7]. In the aspect of tree motion simulation, there are also
many works. The earliest work can be retrieved was done
by Wejchert and Haumann [8]. They used four simple fluid
flow including uniform, sink, source and vortex to design
and control the movements of the wind. And then the
animation of the leaves going with the wind is simulated

by computing the movement produced by wind force from
normal and tangential direction in accordance with the
traditional Newton theory. Mikio Shinya created a stochastic
wind area and then simulated the tree swaging in the wind
based on a modal analysis method [9]. Hiromi simulated
tree motions like flying and breaking in tornado in the movie
“twister” in which the tornado model was constructed with
the turbulence theory [10]. In Feng’s study [11], a single
branch is divided into several little segments, and each of
these segments can be viewed as a pole which cannot deform
in the axis direction. Then the position of each point on
a little segment after motion can be computed by applying
the deformation equations of pole. In Alkagi’s work [12],
level of detail (LOD) technique was employed to reduce the
computational complexity, and the animation of trees in
real-time was implemented. During the computation of tree
motion, a single branch is divided into seven parts of cone-
shaped “links” that are interconnected by six “joints”. And
the bending of a branch is represented by the rotation of
each of its joints. In [13], William Van Haevre realized tree
motion at each arbitrary moment using a goal-based motion
algorithm. As for recent works, Khalid Saleem animated
tree branch breaking and flying effects in a 3D interactive
visualization system for hurricanes and storm surge flooding
[14]. Yubo Zhang introduced a data-driven approach that
synthesizes tree animations from a set of precomputed
motion data [15].



However, because of the high demand for real time
in computer games, most of the above work cannot be
applied directly in computer games. Some can be used
to animating trees in computer games like Akagi’s work
as extra speeding technique was employed to reduce the
computational complexity, and thus real-time animation can
be generated [12].

There are two main factors hampering the application
of 3D tree motions in computer games. For one thing,
most of the tree representations are too complicated to
implement real-time animation; for another, the simulation
of tree animation is a sophisticated work because many
physical computations like animation aerodynamics, mate-
rial mechanics, and pole kinematics are involved.

In our paper, a novel tree model based on BBSC is
introduced, and the method of simulating tree motions
based on this model is proposed [16]. This model combined
with this method is efficient for generating real-time tree
motions in computer games. In the following sections, the
paper is organized as follows. In Section 2, a novel tree model
based on BBSC is described in detail; in Section 3, the model
for physical simulation of wind is briefly introduced; in
Section 4, the simulation of the tree animation is illustrated;
in Section 5, the animation effect by our method is demon-
strated, and the conclusion is given.

2. BBSC-Based Tree Modeling

Ball B-Spline Curve (BBSC) is a parametric solid represen-
tation of freeform tubular objects, which are skeleton-based
parametric solid model. BBSC directly defines objects in
B-Spline function form by using control sphere instead of
control point in B-Spline curve. BBSC not only to describe
every point inside 3D solid objects but also provides its center
curve in B-Spline form directly. So the representation is more
flexible for modeling, manipulation, and deformation.

2.1. Ball B-Spline Curve (BBSC). Let Nj,(t) be the ith B-
Spline basis of degree p with knot vector [ug,...,um] =
{a,...,a,upr15. . s Um—p-1,b,..., b} (Pis1;) is a ball centered
at P; with radius r;.

The Ball B-Spline Curve (BBSC) is therefore defined as
(B)(t) = Zf:ON,;p(t) (P;; 1;), where P; are control points, and
r; are control radii.

As (B)(t) = XLoNip(t)(Psri) = (ZiLoNip(t)Ps
>moNip(8)ri), a Ball B-Spline curve can be regard as two
parts: a 3D B-Spline curve, that is, the center curve (or
skeleton): c(t) = > oNj,(t)P;, and a B-Spline scalar
function, that is, the radius function r(t) = >N, ().
Therefore most properties and algorithms can be obtained
by applying B-Spline curve and function to the two parts of
BBSC, respectively. Owing to the perfect symmetry property
of balls, the curve c(t) constructed from the centers of balls
is exactly the center curve of the 3D region represented
by the BBSC. Different from BBSC, B-spline curve only
represent a curve in 3D space. But BBSC inherits good
properties from B-Spline curves. Most algorithms in B-
Splines can be extended to BBSC. For example, we also
have interpolation and approximation algorithm generating
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(a) The data spheres (red) and the control spheres (green)

(b) The BBSC after transforma-
tion

(c) The rendered BBSC

FiGure 1: A BBSC created by interpolation.

a BBSC. These algorithms are implemented by employing
B-Spline curve’s interpolation (approximation) algorithm to
position data to get the center curve part of BBSC and B-
Spline scalar function interpolation to these widths data to
get radius function. Similarly we can modify the 3D shape
by deforming BBSCs through modifying its control points
and radii. Detailed description of the algorithm can be found
in [16]. In Figure 1(a), a BBSC generated by interpolation
is shown, in which the red balls are the data spheres, and
the green spheres are the control spheres. In fact, the two
end spheres are both data spheres and control spheres.
The whole curve is tessellated so that later rendering and
texture mapping processes can be implemented. In this figure
we can easily see that, different from traditional B-Spline
curve with 2D control points, the BBSC has the control
spheres consisted of center points and radii. Figure 1(b)
shows the BBSC in a different viewpoint, and Figure 1(c) is
the rendering result of the transformed BBSC.

The BBSC presented above has many features which
make it very suitable to construct 3D trees in games.

(a) Solid mathematical fundamentals.
(b) Precise evaluation.
(c) Flexibility of manipulations and deformations.

(d) More compact dataset than discrete or linear repre-
sentations when defining a freeform 3D object.
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FIGURE 2: Geometrical model represented by BBSCs.

(a) Mesh mode

(b) Rendering result

FiGURE 3: Tessellated BBSC-based tree.

Therefore, we can generate real-time animation of the
BBSC-based trees easily.

2.2. Geometric Representation with BBSC. BBSC is a para-
metric representation of 3D freeform solid objects [16]. Its
evaluation is precise and efficient, and it is flexible for manip-
ulations, deformations, and morphing. These properties
provide the potential to build flexible botanical tree model.
Figure 2 shows the geometric relationship between these data
spheres of a BBSC-based tree. The whole tree is consisted of
several BBSCs which are created by interpolation. The red
spheres are the data spheres used to be interpolated. Each
sphere is consisted of its center point and radius. Each sphere
is represented by its center point and radius. Thus a tree
is described by these center points and radii of these data
spheres. And in Figure 3, the resulting tree constructed from
BBSCs is shown. Figure 3(a) is the tessellation result of the
BBSC-based tree model, and Figure 3(b) is the rendering
result. After tessellation, texture mapping technique can be
applied. Therefore, various kinds of trees can be generated
through texture mapping techniques in games.
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F1GURE 4: Topological structure of representing a tree.

2.3. Topological Representation. A graph-based data structure
(tree data structure) is built to represent the complex hier-
archical structures of trees shown in Figure 4. In each node
of the tree data structure, the topological information of its
parent and children and its geometric representation based
on BBSC are stored. The construction of the topological
model aims to generate real-feeling animation of the whole
tree. The hierarchical structure will be made use of to
compute the movements of the branches from low level to
top level.

3. Model for Physical Simulation of Wind

In the wind model, we adopt Feng Jinhui’s method for
physical simulation of wind [11, 17]. Here, a summary of the
method is given.

3.1. Wind Force Size. In our method, the users are allowed
to choose the wind force model and set the wind direction
according to their requirements. Two kinds of wind force
model are provided, and arbitrary wind direction in x-z
panel can be set.

3.1.1. Gust of Wind. The gust of wind increases gradually
from zero to the highest point and then decreases gradually
to zero again. The model can be represented in the following
equation:

at +b, O<t=<t,
Fr =1 c—dt.—1) . (1)
— t, <t < max_time.
c

3.1.2. Stable Wind. The stable wind increases gradually from
zero to certain grade, and for some seconds retains at this
grade, then finally decreases gradually to zero. The model can
be represented in the following equation:

at+b, OStStc)

F=]ct dsin(t),

e_f(tc_t)
te

t. <t < mid_time, 2)

,  mid_time < t < max_time.



(a) The gust of wind model

(b) The stable wind model

F1GURE 5: The relationship between the wind force and the time.

In the above two equations, f. is the time constant, and
different wind models can be easily obtained by modifying
the model parameters.

Figure 5 shows the wind force changes with the time.
Figure 5(a) gives an example of the gust of wind changing
with the time, and Figure 5(b) is the example of the stable
wind changing with the time.

3.2. Wind Force Direction. Users are allowed to set arbitrary
wind direction in x-z panel by inputting the angle between
the wind direction and the x-axis positive direction. 360 wind
directions along with the counter-clockwise can be obtained
by increasing the angle from zero degree to 360 degree.

The later computation of the motion of the branches is
based on the above wind model.

4. Animation of BBSC-Based Trees

In the introduction part, we have noticed that when com-
puting the motion of a certain branch, those researchers
generally segment a certain tree branch into several segments
and then view those little segments as poles. Therefore, the
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deformation method of a pole can be applied to the little
segment very easily to generate relatively natural-looking tree
animation.

As described in Section 2, our tree model based on
BBSC is a proper and efficient model in computer games.
In fact, this model shows more value when computing tree
motion. Now that the branches are generated from several
data spheres within, we can just use the position of the data
spheres to segment the current branch. And considering a
branch is an actually BBSC created by interpolating several
data spheres, we need only compute the position of the
data spheres after motion rather than every point within
the segment. The new curve obtained by interpolating the
new data spheres after motion is hence regarded to be the
new representation of the branch after motion. With this
model, the deformation of tree branches can be computed
by defining the relationship between wind forces and data
spheres repositioning. And the new position of the data
spheres can be computed by simulating the bending of a pole.

4.1. Dynamics Model for Branches. As shown in Figure 6(a),
a pole with one end A fixed bends under the distribution
force q. Then the displacement and the rotation angle can be
computed for each position x. According to pole kinematics
theory, the deformation of a pole can be represented by
two parameters: the deflection and the rotation angle.
The deflection can be just viewed as the displacement
of the current position. However, in order to lessen the
computation complexity, we consider only the rotation angle
in our model. Furthermore, rather than each point in the
current segment, we should only consider the rotation angle
of the end B under force g, which can be obtained from the
following equation:

_ gL
0 = 6EI,

In the above formula, g is the wind force, L is the length
of the pole, and I, is the Bending Section Modulus. E
is the Young’s Modulus, which is used to measure the
elastic characteristic of certain materials and is decided only
by the physical feature of the material. We indeed have
omitted many complex computation processes which are
indispensable in the field of Mechanics of Materials; however
it is fully accepted in computer games for realistic.

And the BBSC-based tree’s bending by simulating a
pole’s bending is shown in Figure 6(b), in which P, is the
original coordinates of the current moving point, P;-H is the
coordinates of the points after moving, P;H is the position
of Pjy after horizontal translation, and P’ is the coordinates
of the former points after moving within the current branch.
The rotation angle under the wind from x-axis direction is 6.
By applying (3), we get

 Fuina - dist(P, P/,
a 6EI;

In the above equation, Fying is the wind force, and
dist(P},Pj— +1) is the distance between P; and P; +1 which
represents the length of the current segment.

(3)

(4)
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Wind force (distribute force)

G,

(a) Pole’s bending

>
Control
sphere

(b) BBSC model’s bending

F1Gurg 6: BBSC model’s bending by simulating pole’s bending.

4.2. Solution of Motion. In our model, the branches have
been already divided into several segments, and each segment
between two data spheres can be viewed as a pole. Consider-
ing the high request for real-time in computer games, we just
apply simple deformation method of a pole to each segment.
Therefore only bending is taken into account. The rotation
along the cross section and the deformation along the axis
direction are both neglected. The bending of a branch can
then be described as three Eula angles which represent the
rotation angles of the data spheres around the x-axis, y-axis,
and z-axis, respectively.

Suppose the coordinate vectors of the data point before
and after deformation are (x, y,z) and (x',y’,2’), respec-
tively. Then the two vectors has the relationship as in the
following equation:

’

x x
Y r=I[RI{yt (5)
z z

In the above equation, R is the rotation matrix, which can be
described as in (6). The rotation sequence is as follows: firstly,
rotates around z-axis by angle 0,; then rotates around the

Pole L

: iLz X
Lx

z

Ficure 7: Wind decomposition and pole decomposition.

Upper level branches

Data sphere within
more than two
branches

Lower level branch

FIGURE 8: Data spheres contained by more than two branches.

rotated y-axis by angle 6,; finally rotates around the rotated
x-axis by angle 0,:

€9, Co, €9, 56, =56,

[R] = | so.56,c0. — Co.0. So.56,%. +Co,Co. Co,50, [.  (6)

CQXSQ), Co, + So, 56, CGXSQY Sg, — So,.Co, C@y o,

In the above equation, ¢ and s are the cosine and sine values of
the related angles. And the position of any data points after
deformation can be computed with this rotation matrix as
long as all the angles have been figured out.

The three angles can be obtained by applying the pole
deformation theory under the situation of decomposing the
wind vector and the pole segment vector, respectively. The
wind force vector can be decompounded into two vectors
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F1GURE 9: Six states extracted from the 20 seconds animation of a tree.
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FiGure 10: Eight states extracted from the 40 seconds animation of a tree.
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which are along x-axis and z-axis as the wind force always lies
in the x-z panel. And the vector between the start point and
the end point of a segment can be decompounded into three
vectors which are along x-axis, y-axis, and z-axis, respec-
tively. The decomposition process is illustrated as in Figure 7.

Then there are four situations about the wind force acting
on the segment vector.

(a) The wind force along the x-axis acting on the seg-
ment vector along the y-axis leads the segment to
rotate around the z-axis by angle ;.

(b) The wind force along the x-axis acting on the seg-
ment vector along the z-axis leads the segment to
rotate around the y-axis by angle «,;.

(¢) The wind force along the z-axis acting on the segment
vector along the x-axis leads the segment to rotate
around the y-axis by angle ay,.

(d) The wind force along the z-axis acting on the segment
vector along the y-axis leads the segment to rotate
around the x-axis by angle a.

In each above situation, the related angle can be com-
puted through (4).

And finally, the rotation angle of the data points can be
computed as follows:

O = a,
Gy = Oyl + Ay (7)
0, = a,.

The rotation matrtix for the current data sphere can be
obtained through (6). Then, the position of the data sphere
after motion can be figured out by multiplying the rotation
matrix to the original vector of the data sphere as (5).

4.3. Movements of the Whole Branch. In fact, the solution of
motion described as above just aims to the little segment
between two data spheres. And the motion of the whole
branch is obtained by computing the motion of its data
spheres from bottom to top one by one and then interpo-
lating the new data spheres after motion. For a backbone
branch, the initial data sphere is the root; otherwise the
initial data sphere is also within another branch. The root
data sphere is obviously not moving. But the motion of the
data spheres contained by more than two branches should
be computed carefully. If the current branch is an upper
level one, then the position of the initial data sphere could
just employ the position obtained in lower level branch.
For example, in Figure 8, the data sphere bounded by the
rectangle is contained by three branches. Then for the upper
level branches, the motion of the initial data sphere doesn’t
need to be computed anymore as it can be obtained by
employing the motion which has been computed in the lower
level branch directly.

4.4. Animation of the Whole Tree. As the tree has been
constructed in accordance with the hierarchical structure as

in Figure 4, the motion of the whole tree can be obtained
by computing the motion of the branches from root branch
to the leave branch hierarchically. The depth-first traverse
algorithm is employed to solve the computing sequence
problem.

5. Results and Conclusions

5.1. Results. Giving related parameters and certain time ¢, the
movements of each data sphere, furthermore each branch,
and finally the whole tree under the wind force in the current
moment can be gotten. And by giving a period of time, we
can get the continuous animation of the tree under different
wind model. In Figure 9, the states of one tree in the moment
of 0 seconds, 3 seconds, 7 seconds, 10 seconds, 15 seconds,
and 20 seconds during 20 seconds animation under the gust
of wind from x-axis direction are shown. In Figure 10, eight
states of one tree during the 40 seconds animation under the
gust of wind from x-axis direction are demonstrated.

5.2. Conclusions. In this paper, an approach of generating
real-time animation of trees based on a novel model—
BBSC—is proposed, which can be applied in computer
games. BBSC is a good representation for 3D trees and plants
in particular for computer games as its solid mathematical
representation and more compact dataset. Moreover, anima-
tion of trees can be generated easily as the data spheres have
divided the branches into little segments automatically thus
the motion of the tree can be obtained by computing the
motion of each of these data spheres. By interpolating these
data spheres after moving, the motion of the branch, and
finally the motion of the whole tree can be implemented.
The experimental results show that this method is proper and
efficient for simulating tree animation in computer games.
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