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With the advancement of virtual reality and 3D game technology, the demand for high-quality 3D indoor scene generation has
surged. Addressing this need, this paper presents a method leveraging a VAE-GAN-based framework to conquer two primary
challenges in 3D scene representation and deep generative networks. First, we introduce a matrix representation to encode
fine-grained object attributes, alongside a complete graph to implicitly capture object spatial relations—effectively encapsulating
both local and global scene structures. Second, we devise a unique generative framework based on VAE-GAN and the Bayesian
optimization. This framework learns a Gaussian distribution of encoded object attributes through a VAE-GAN network,
allowing for sampling and decoding of the distribution to generate new object attributes. Subsequently, a U-Net is employed to
learn spatial relations between objects. Lastly, the Bayesian optimization module amalgamates the generated object attributes,
spatial relations, and priors learned from data, conducting global optimization to generate a logical scene layout. Experimental
results on a large-scale 3D indoor scene dataset substantiate that our method effectively learns inter-object relations and
generates diverse and plausible indoor scenes. Comparative experiments and user studies further validate that our method
surpasses the current state-of-the-art techniques in indoor scene generation and is comparable to real training scenes.

1. Introduction

The comprehension and creation of 3D models serve as vital
challenges within the fields of computer graphics and vision,
with a particular emphasis on 3D indoor scene generation.
Technological advancements in robotics, virtual reality,
smart homes, and 3D gaming have surged the need for
high-quality virtual 3D indoor scenes. Concurrently, strate-
gies for analyzing and modeling 3D models are increasingly
shifting towards data-driven learning techniques. Further-
more, the evolution of 3D scanning technologies, combined
with a decrease in cost for scanning devices such as lidars
and Kinect, has drastically reduced the expense of obtaining
3D data. Recent research demonstrates that generative neu-
ral networks are adept at producing high-quality images,
speech, and 3D shapes. These progresses have made deep-
learning-based 3D indoor scene generation a tangible reality.

3D indoor scene generation presents two principal chal-
lenges, the first of which is the issue of scene representation.

Unlike isolated 3D shapes, 3D indoor scenes display sub-
stantial variation in terms of object categories, shapes, posi-
tions, and orientations, leading to intricate structures. The
scene representation must account for a wide array of pat-
terns, encompassing continuous factors like object sizes
and relative positions, as well as discrete elements such as
object adjacencies, symmetries, and cooccurrences. More-
over, it should accommodate geometric constraints like
interpenetration avoidance and support relations. Various
methods, including top-view representations [1, 2], hierar-
chical graph structures [3], and hybrid representations [4],
have been developed to tackle this. While top-view-based
methods can depict adjacency relations between objects, they
concentrate solely on local information in the projection plane
and fail to illustrate the scene’s hierarchical structure. Despite
the ability of graph-based representations to convey object
hierarchies, they necessitate the predefinition of various rela-
tions, making it challenging to express implicit relations and
thus somewhat curtailing their representational power. In
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contrast, our approach entails representing the object set of a
scene as a matrix, with each column vector encoding an object.
We use a parameterized complete graph to express the spatial
relations between objects, which implicitly represents both
local and global spatial relations without necessitating addi-
tional local or global supervision. The benefit of this compre-
hensive relational representation is its ability to optimize all
factors in scene generation concurrently, a feat not easily
achieved by recursive methods due to their difficulty in recov-
ering from errors.

Another formidable challenge in 3D indoor scene gener-
ation is crafting suitable neural networks that can capture
the intricate geometric structures and spatial relations within
a scene. Neural networks possess boundless expressive
capacity, allowing them to effectively encode both continu-
ous and discrete scene patterns and learn scene priors that
are not manually inserted by human designers. Certain
methodologies [4–6] have endeavored to apply successful
generative models such as variational autoencoders (VAE)
[7, 8] and generative adversarial networks (GAN) [9–12] to
the 3D domain. Despite these models marking significant
advancements in 3D model generation, issues such as mode
collapse and the generation of blurry results persist. VAE,
with its structured continuous latent space, is less susceptible
to mode collapse but often produces blurry samples. Con-
versely, GAN, despite its latent space being insufficiently
structured and continuous which could lead to mode col-
lapse, is capable of efficiently generating realistic samples.
To address this, our paper merges the strengths of both
models, proposing a novel 3D indoor scene generation
method founded on VAE-GAN and the Bayesian optimiza-
tion. Specifically, we first encode the object attributes of the
scene via VAE-GAN and generate new object attributes by
sampling and decoding the latent space. These new attributes
are subsequently processed by a U-Net to learn spatial rela-
tional attributes. Deeper networks are utilized to learn global
relations, a key aspect of indoor scene generation. Ultimately,
the new object attributes, spatial relational attributes, and the
priors learned from the input data are collectively fed into a
Bayesian scene optimization framework for further global
optimization, leading to the generation of realistic new scenes.

We conducted a comprehensive evaluation of our method
on the large-scale 3D indoor scene dataset 3D-FRONT [13].
We tested the generation performance on two room type-
s—bedroom and living room. Comparisons were made
against two state-of-the-art methods. The results show that
our method is capable of generating realistic and diverse
indoor scenes, outperforming the previous advancedmethods.

In summary, our main contributions are three-fold: (1)
We introduced a matrix and compete graph scene represen-
tation that can effectively encode object attributes, as well as
local and global interobject relations. (2) We proposed a
novel scene generation framework based on VAE-GAN
and the Bayesian optimization, which reduces blurriness
and improves quality and realism of the generated 3D
scenes. (3) We conducted comprehensive experiments on a
large-scale 3D indoor scene dataset, validating the efficacy
of our method and demonstrating performance surpassing
current state-of-the-art techniques.

2. Related Work

Our work proposes to design a deep generative neural net-
work for 3D indoor scene modeling. As such, the related
work section focuses primarily on previous methods for
3D modeling and synthesis.

2.1. 3D Representation. 3D object and scene representations
form the crux of various fields such as computer vision,
robotics, augmented reality, and virtual reality. Unlike the
natural vector representations of images and videos, para-
metric encoding of 3D geometry provides a high degree of
flexibility. Over the past decades, AI and vision researchers
have proposed various 3D model representations, including
multiview [14–16], voxel [17–19], point cloud [20], part-
based [21, 22], graph/mesh [23, 24], and spherical [25, 26]
representations.

Contemporary research focused on creating parameter-
ized 3D model representations has primarily targeted 3D
shapes. For instance, Wu et al. [27] put forth 3D-GAN, a
voxel-based 3D shape generation network, which exhibited
promising results in shape generation and reconstruction.
However, voxel representations grapple with resolution lim-
itations that result in the loss of local details, rendering their
extension to 3D indoor scene modeling and generation chal-
lenging. Tulsiani et al. [22] suggested a part-based model
that assembles shapes using 3D voxel primitives. Similarly,
Nash and Williams [28] introduced ShapeVAE, employing
an encoder-decoder structure to generate 3D point clouds
with semantic labels.

These aforementioned methods are specifically tailored
to the characteristics of 3D shapes, and their extension to
3D indoor scenes presents inherent challenges. The varia-
tions in indoor scenes are substantially more complex than
those in 3D shapes, and the spatial relations prove to be dif-
ficult for shape generation models to capture. Methods that
are effective on shapes often do not replicate the same effi-
ciency on scenes. Such challenges have spurred us to con-
ceive new specialized representations and training schemes
specifically designed for 3D indoor scene generation.

2.2. 3D Indoor Scene Synthesis. Indoor scene modeling
stands as a vital component of 3D content creation. The
prevalent strategies for automatically synthesizing virtual
3D indoor scenes include probability modeling centered
around assembly, graph models, and deep neural network-
based methods.

Historically, an array of early research utilized probabi-
listic graphical models, such as the Bayesian networks, to
facilitate assembly-based modeling and synthesis [29, 30].
Fisher et al. [31] devised a probabilistic model for scenes,
built upon the Bayesian networks and the Gaussian mixture
models, thereby addressing challenges related to object
appearance and layout optimization in subscene modeling.
This approach harnessed subscenes to glean prior knowl-
edge for synthesizing novel scenes. Concurrently, graph
models have been employed to encapsulate the overarching
layout structure of scenes. In their work, Kermani et al.
[32] treated the scene as a graph model, adhering to
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cooccurrence and permutation models, and progressively
integrated objects into the scene, synthesizing 3D indoor
scenes. In a unique approach, Wang et al. [33] proposed a
method that melds relational graphs with top-view, bifurcat-
ing scene generation into planning and instantiation stages.

In more recent years, deep neural networks have gained
widespread adoption for 3D indoor scene generation. Wang
et al. [1] pioneered learning convolutional priors and pro-
posed an indoor scene synthesis approach rooted in convo-
lutional neural networks. They utilized semantically rich
orthogonal top-view images to encode scene composition
and layout and trained convolutional networks to produce
a two-dimensional distribution of object placement. In an
innovative step, Li et al. [3] became the first to utilize varia-
tional autoencoders (VAEs) for recursively learning the sup-
port and cooccurrence relationships within scenes,
portraying the scene as a hierarchical tree structure and
deploying encoders for object grouping and decoders for
scene generation. Zhang et al. [4] suggested a hybrid method
of matrix and 2D image representation, employing a VAE-
GAN model for training and generating fresh indoor scenes.

In our methodology, we also leverage a matrix to repre-
sent the object arrangement in indoor scenes. However, to
depict the spatial relationships between objects, we employ
a parameterized complete graph representation, eschewing
an image representation that lacks spatial information.

2.3. Deep Generative Models for 3D Modeling. The surge of
online visual data repositories like ImageNet [34] and Sha-
peNet [35] has catalyzed a significant focus within computer
vision: learning parametric models from vast datasets to cap-
ture subtle shape variations in geometric data. Initial para-
metric learning models were predominantly trained on
faces and bodies [36–38], using deformation of templates
for modeling. However, these approaches are only fitting
for objects with minor geometric and topological alterations,
making them unsuitable for 3D indoor scenes that display
substantial variations.

The remarkable success of deep neural networks in
recent years has ushered in new opportunities for data-
driven 3D modeling. The vision community is now concen-
trated on utilizing neural networks to encode mapping func-
tions, as demonstrated in models such as generative
adversarial networks (GANs) [9–12], variational autoenco-
ders (VAEs) [7, 8], and autoregressive models [39]. These
models are proficient at modeling high-dimensional data
and can generate new samples by sampling from lower-
dimensional spaces. Despite their impressive performance
on 2D images, scaling these techniques to accommodate
3D data continues to pose challenges.

3. Indoor 3D Scene Representation
and Generation

3.1. Overview. Our scene generation framework, based on
the VAE-GAN model, is trained using the extensive 3D
indoor scene dataset 3D-FRONT [13]. Each scene in this
dataset is presegmented into objects across various catego-
ries, with each object defined by a category label, size, pose,

and shape encoding. After training, our framework can gen-
erate new indoor scenes by decoding randomly sampled
noise vectors and replacing the shape encodings with
retrieved 3D object models.

3D indoor scene representation necessitates the capture
of both the continuous patterns of object attributes and the
discrete patterns of spatial relations between objects. Conse-
quently, the quality of scene generation is intrinsically tied to
the effectiveness of scene representation. To encode object
attributes, we employ a matrix representation for the set of
objects in a scene, a technique reminiscent of approaches
used in references [4, 5]. Each column vector within this
matrix embodies the attribute encoding of an object along
with a binary indicator delineating the selection status of
the object category. For encoding spatial relations, our
method diverges from the one in reference [3], eliminating
the requirement for predefined interobject relations. Instead,
we extract relative attributes using a U-Net, enabling us to
parameterize spatial relations between objects. In every
newly generated scene, a VAE-GAN is utilized to create
the attributes of objects. The synthesized relative attributes
are then produced by inputting these attributes into the U-
Net, thereby providing an overcomplete constraint set for
the final object attributes. This process permits the restora-
tion of accurate attributes through consistency constraints,
regardless of any potential erroneous predictions.

To further refine the results generated by the VAE-GAN,
we learn the prior distributions of both object attributes and
relative attributes, thereby providing a measure of prediction
uncertainty. This approach encompasses both continuous
variables such as relative positions, and discrete variables
like object counts and cooccurrences, thereby enhancing
the regularization of the final output. Ultimately, a Bayesian
scene optimization framework amalgamates these neural
predictions and prior distributions to produce the final
object attributes.

3.2. 3D Scene Representation. To enable a viable representa-
tion of the 3D indoor scene, denoted as S, we employ a para-
metric approach. This results in each 3D indoor scene being
represented as a matrix, MS, as illustrated in Figure 1. We
represent the collection of objects within the indoor scene
as set O. Each object code, denoted as column vo within
the matrix MS, corresponds to an object oϵO present in
the scene. Assuming a total of Nc object categories, each
object in the scene belongs to a specific category kϵC. Given
the possibility of multiple identical object categories within a
scene—for instance, multiple chairs around a dining table or
several bedside tables around a bed—we further assume that
a scene can include up to mk objects from each category k.
Consequently, the total number of objects within each scene
is bounded by n =∑Nc

k=1mk. In our experimental setup, we set
nc = 20 and mk = 4, which implies that each scene can con-
tain a maximum of 80 objects.

In terms of object attributes, we represent each object o
ϵO within the scene using a state vector voϵR10. The compo-
nents of this vector are as follows. so = vo0, vo1, vo2

T encodes
the scale of the object o, aligned with the axis of the
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coordinate system associated with each object. ro =
vo3, vo4, vo5

T encodes the Euler angles of the orientation of
each object o in the world coordinate system. to =
vo6, vo7, vo8

T encodes the position of each object o in the
world coordinate system. zo = vo9 acts as an object presence
indicator, specifying whether the object o is present in the
scene.

As a result, the set of objects in a 3D indoor scene can be

parameterized as a matrix MSϵR
10× ∑Nc

k=1mk . Each column of
the matrix, denoted as Ao, represents an object attribute
encoding so, ro, to, zo T .

Relative attributes capture spatial relationships such as
adjacency, support, symmetry, and others between pairs of
objects within a scene. Unlike predefined explicit representa-
tions, we also parametrically express these object relation-
ships implicitly. For relative object attributes, we employ
the method described in [5] to represent these properties.
We visualize a 3D scene as a complete graph G = V , E , as
depicted in Figure 2. Each vertex vϵV represents an object
in the scene, while the edges eϵE signify the connections

between objects. Each edge eϵ v, v′ is encoded as the asso-
ciated attribute ae = se, re, te T , where seϵR

9 represents the
pairwise differences between sv and sv ′ for the three scale
parameters. reϵR

3 denotes the Eulerian angle of the pose of
v′ in the local coordinate system of v; teϵR

3 denotes the cen-
ter position of v′ in the local coordinate system of v.

Therefore, the entire set of a scene’s relative attributes
can be represented by a tensor Aε, i.e.

AεϵR
15× 〠

Nc

k=1
mk × 〠

Nc

k=1
mk

1

3.3. 3D Scene Synthesis Network. Our network architecture,
depicted in Figure 3, leverages the VAE-GAN framework
described in [40] to synthesize object attributes. This archi-
tecture combines the high-quality generative capabilities of
GANs with the efficient data encoding into latent space
offered by VAEs, facilitating the generation of samples con-
ditioned on prior data. Our network comprises two primary
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Figure 1: Representation of indoor scene using matrix.
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Figure 2: Spatial relationship graph representation of indoor 3D scenes.
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4 International Journal of Computer Games Technology



components: a complete VAE and a GAN, which share a
decoder, parameters, and a simultaneous training regimen.
The first part of our network, the encoder, learns the
latent space of the data from the input. The generator
then samples from this latent space to create novel object
attributes, attempting to fool the discriminator. Tasked
with distinguishing between real and synthesis object attri-
butes, the discriminator serves as a critic in this architec-
ture. As illustrated in Figure 4, the encoder within our
VAE-GAN model boasts a unique design, mirrored in
the architecture of the generator. We have designed our
network to mitigate overfitting and enhance generalizabil-
ity by using sparsely connected layers as an alternative to
fully connected ones. The layers in our network module
alternate between sparse and full connections. For
improved training stability, we incorporate batch normali-
zation and ReLU layers between each layer. The encoder’s
latent space, once generated, is sampled to synthesize the
attributes of objects in a new 3D scene via the generator.
The output from the VAE-GAN network is then fed into
a separate U-net network, which generates the relative
attributes of the objects’ spatial relationships in the new
scene.

In the VAE-GAN network, we refer to the encoder,

generator, and discriminator as hΦ1 , gθ11 , and DΦ2
, respec-

tively. The U-Net module, responsible for the relative attri-

butes of objects, is denoted as gθ2
2 . Here, ∅ = Φ1,Φ2 , and

θ = θ1, θ2 represent the network parameters. The training
set is denoted as T = Av, Aε , where Av and Aε correspond
to the encoded object attributes and relative attributes,
respectively.

Similar to the VAE-GAN setup, our loss function is
composed of three components: the reconstruction loss
Lrecon, the discriminator loss LD, and the KL divergence loss
LKL. The latter is used to constrain the distribution of the
encoder’s output. Therefore, the total loss can be expressed
as follows:

L = Lrecon + μεLD + λKlLKL, 2

where με and λKl are the weights of discriminator loss and
KL divergence loss, respectively.

Lrecon =
1
T

〠
Av ,Aε ∈T

λε f Av, Aε + g Av , 3

where

f Av, Aε = gθ22 gθ1
1 hΦ1 Av − Aε

2
,

g Av = gθ1
1 hΦ1 Av − Av

2
,

LD = 1
T

〠
Av ,Aε ∈T

DΦ2
Av − Ez~Nd

DΦ2
gθ11 z ,

LKL = KL hΦ1 Av Nd

4

Ultimately, we learn the modules in the network archi-
tecture by optimizing the following objective function:

min
Φ1,θ

max
Φ2

1
T

〠
Av ,Aε ∈T

λε f Av, Aε + g Av

+ με
1
T

〠
Av ,Aε ∈T

DΦ2
Av − Ez~Nd

DΦ2
gθ11 z

+ λKlKL hΦ1 Av Nd

5

This function integrates the autoencoder (AE) loss and
the discriminator loss from the GAN. Both of these losses
are defined on latent variables, with the discriminator loss
penalizing discrepancies between scenes generated by the
generator and the corresponding input scenes. The latent
distribution Nd is a standard normal distribution. KL repre-
sents the Kullback–Leibler divergence loss term. The dis-
criminator DΦ shares the same network structure as the

SC+BN+ReLU
FC+BN+ReLU

Latent vectorsInput scenes

B × 80 × 10 B × 200 × 30 B × 20 × 30 B × 80 × 40 B × 10 × 40 B × 20 × 50 B × 20

B × 4 × 50

Figure 4: Encoder structure.
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generator gθ1
1 , expect for the use of a single value of the latent

vector. In this study, we set λε = 1, με = 1, and λKL = 0 01.
Considering the highly nonconvex nature of the afore-

mentioned objective function, its direct optimal solution
poses a considerable challenge. In this study, we adopt the
alternating minimization method. This approach decom-
poses the objective function into two subproblems, each eas-
ier to optimize. Specifically, we proceed as follows.

3.3.1. Generator Optimization. With Φ2 held constant, the
optimization problem simplifies as follows:

min
Φ1,θ

1
T

〠
Av ,Aε ∈T

λε f Av, Aε + g Av − Ez~Nd
DΦ2

gθ1
1 z

6

We employ the ADAM optimizer [41] to address this
problem, using a learning rate of 0.001.

3.3.2. Discriminator Optimization. When Φ1 and θ are held
constant, the aforementioned optimization problem reduces to

min
Φ2

−
1
T

〠
Av ,Aε ∈T

DΦ2
Av − Ez~Nd

DΦ2
gθ1
1 z 7

Once again, we utilize the ADAM optimizer [41] to opti-
mize the aforementioned problem, adopting a learning rate of
0.001.

3.3.3. Bayesian Optimization of Scene. Neural networks have
robust expressive capabilities and can learn scene design
priors from large-scale indoor scene datasets, a feat typically
beyond the scope of human design. To further optimize the
generated scenes and achieve superior results, we learn the
prior distribution of the data from the training set. We then
integrate these priors with the neural network’s predictions
(object attributes, relative attributes) using the Bayesian
framework described in [5]. Let av = so, ro, to, zo T , a0v , and
a0e denote the vertex edge predictions from the VAE-GAN
and U-Net neural network outputs, respectively. The input
for the Bayesian scene optimization consists of the predic-
tion a0v associated with each vertex vϵV and the prediction

a0e associated with each edge e = v, v′ T
ϵE. We then formu-

late the scene optimization as a posterior distribution maxi-
mization problem:

P av a0v ∪ a0e ~ P a0v ∪ a0e av ∙P av
8

Here, P a0v ∪ a0e av and P av represent the
total likelihood term and the prior term, respectively. The
symbol ~ denotes proportionality. For the solution to this
posterior maximization problem, please refer to [5].

4. Experiment

Our experiments were performed on a desktop with an NVI-
DIA GeForce 1070 GPU, an Intel Xeon(R) E5-2640 v3
@2.60GHz CPU with 16 cores, and 32GB of memory. The
training stage of the scene generation model rans on the
GPU, with the training time depending on the size of the
dataset and the complexity of the scenes.

4.1. Dataset and Preprocessing. Over the past few years, there
have been significant advancements in neural network-
based, data-driven indoor scene generation methodologies,
such as those reported in [1–4]. These works were predom-
inantly implemented on the SUNCG [42] dataset, which is
now unavailable due to legal concerns and differs from the
3D-FRONT dataset [13] in several ways. To provide a fair
comparison, we selected state-of-the-art 3D indoor scene
synthesis models Sync2Gen [5] and FastSynth [2] as our
benchmarks on the 3D-FRONT dataset. It is worth noting
that FastSynth was initially evaluated on the SUNCG data-
set, so we made some modifications based on the author’s
implementation for training and evaluation on 3D-FRONT.

This extensive synthetic indoor scene dataset covers a
broad range of scene types, such as bedrooms, living rooms,
kitchens, and offices, and encompasses 18,797 rooms replete
with high-quality textured 3D objects. In keeping with previ-
ous studies [1–4, 33], for comparability, we extracted two
types of scene data from the dataset—bedrooms and living
rooms. These categories are predominant in residential
indoor scenes and represent the largest categories within
the dataset, making them our choice for the training set.
The bedroom category includes three subtypes: bedroom,
master bedroom, and second bedroom, while the living
room category comprises two subtypes: living room and liv-
ing dining room.

To ensure synthesized scenes were more type-specific,
given the comprehensive size of the 3D-FRONT dataset,
we performed some preprocessing. This entailed extracting
the 20 most frequently appearing object categories in each
room type, thereby omitting the least common object cate-
gories. We excluded scenes with fewer than six objects,
excessively large dimensions (length and width exceeding
8m), or rooms containing more than four objects per cate-
gory. For bedroom-type rooms, we specifically omitted data
from rooms devoid of beds. Following this preprocessing, we
acquired 3,397 bedroom-type rooms (3,000 for training, 397
for validation) and 4,893 living room-type rooms (4,000 for
training, 893 for validation). The distribution of these statis-
tics is detailed in Table 1.

4.2. Evaluation Metrics. To evaluate the realism of the scenes
generated by our approach, we follow the evaluating meth-
odology adopted in [2]. The main idea of the evaluating
methodology is to use machine learning methods to distin-
guish images. If a trained binary classifier cannot accurately
distinguish whether an image is a synthesized image or a real
photo, it indicates that the synthesized image has a good
sense of realism and can be confused with fake images.
Therefore, we in advance train a binary classifier to
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distinguish between synthesized and real scenes, reporting
the resulting classification accuracy. Specifically, this classi-
fier, same as depicted in Figure 4, integrates an encoder
framework. However, in place of the latent vector, a binary
classification head is employed. This structure takes the
same matrix representation leveraged by our model. Train-
ing of the classifier is undertaken on 2,000 scenes, evenly
split between real and synthesized scenes. We then evaluate
the classifier’s accuracy on 200 synthesized scenes. It is
worth highlighting that this classifier bears similarities to
the discriminator component in generative adversarial net-
works (GANs). In scenarios where the generated scenes are
closely the real ones, the classifier grapples with distinguish-
ing between the two. Consequently, an accuracy rate approx-
imating 50% is indicative of superior performance—the
closer to this benchmark, the better the quality of the synthe-
sized scenes.

Additionally, we also evaluate the Kullback–Leibler (KL)
divergence also adopted in [2] between the distributions of
synthesized and real scenes, providing a measure of their
similarity. This metric offers insights into their similarity,
with a lower value being more desirable.

Moreover, we undertake a perceptual study involving
nonexpert users, contrasting rendered views of scenes gener-
ated by our approach against baseline and ground truth
scenes. Specifically, we present 60 pairs of scene view images
to 30 participants in a questionnaire, soliciting their choices
for the scene with the more plausible layout. Critically, we
utilize the same object category models for rendering all
scene types, ensuring that we eliminate potential biases from
factors such as object shapes and material appearances.

Lastly, we quantify the results by calculating the percentage
of cases in which scenes generated by our method are
deemed to exhibit more appealing and logical layouts than
those of the baseline and ground truth scenes—the higher
the percentage, the better the performance.

4.3. Experiment Results. We conducted 1000 iterations of
training on both scene types, which took 34 hours for bed-
room scenes and 44 hours for the more intricate living room
scenes. The testing and optimization stages ran on the CPU,
averaging around 5 seconds to generate a new scene.

4.3.1. Scene Generation. Figures 5 and 6 showcase examples
of the two scene types synthesized by our method. The gen-
erated 3D indoor scenes demonstrate satisfactory and plau-
sible layouts, encompassing a variety of object types. As
illustrated in the figures, we can observe that objects within
both room types exhibit excellent adjacency and spatial rela-
tionships. For example, nightstands are positioned on either
side of the bed; wardrobes are usually placed against the wall
and located close to the bed in bedroom scenes; TV stands
typically face the bed or the sofa, and so on. Simultaneously,
we can see that pendant lamps are found overhead in the
overall scene, usually situated above the bed or dining table.
This suggests that our network can successfully learn not
only adjacency relations but also hierarchical spatial rela-
tions among objects in the scene.

As depicted in Figure 6, we notice that dining chairs are
arranged around dining tables and can be tucked under
them, underscoring our network’s ability to grasp embed-
ding relations among objects. These visualizations confirm

Table 1: Experimental data statistics table.

Bedroom Living room
Bedroom Master bedroom Second bedroom Living dining room Living room

3323 4526 3485 4844 1848

Train Validation Train Validation

3000 397 4000 893

Figure 5: Eight randomly generated bedroom scenes, showcasing variability in object count and layout design.
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that our neural network is adept at generating sensible and
appealing room layouts for both simpler bedroom scenes
and more complex living room scenes. It is capable of learn-
ing adjacency, spatial relations, and embedding relations
among objects in the scenes.

4.3.2. Realism Evaluation. In addition, to evaluate the real-
ism of the samples generated by our method quantitatively,
we trained a binary classifier to measure the similarity
between our synthetic samples and the real samples present
in the 3D-FRONT dataset. As depicted in Table 2, our
method’s classification accuracy is consistently closer to
50% for both scene types compared to the other two baseline
methods. This indicates that the samples generated by our
model closely resemble real scenes, making it challenging

for the classifier to distinguish them, hence suggesting higher
realism.

We also report the KL divergence between the distribu-
tions of samples generated by our method and real samples.
Our method consistently demonstrates lower KL divergence,
indicating that our model generates samples that closely mir-
ror the training set’s distribution, which further attests to the
realism of the scenes generated by our model. The visual com-
parison results are depicted in Figure 7. Both baselinemethods
exhibit suboptimal layout designs, whereas our method can
generate more realistic and reasonable scenes.

4.3.3. Diversity Evaluation. The scenes generated by our
method are diverse. Figure 8 displays these generated scenes
alongside the most similar scenes from the training set. The

Figure 6: Eight randomly generated living room scenes, showcasing variability in object count and layout design.

Table 2: Quantitative comparisons of scene synthesis.

Scene classification accuracy (↓) Category KL divergence (↓)
Sync2Gen FastSynth Ours Sync2Gen FastSynth Ours

Bedroom 0.862 0.896 0.753 0.0064 0.0085 0.0056

Living room 0.915 0.963 0.825 0.0188 0.0399 0.0272

Bedroom

O
ur

s
Sy

nc
2G

en
Fa

stS
yn

th

Living room

Figure 7: Visual comparison of different methods. The first row represents scenes generated by our method, the second row illustrates the
Sync2Gen method, and the third row displays the FastSynth method.

8 International Journal of Computer Games Technology



first column presents the scenes generated by our method,
while the second column exhibits the scenes from the train-
ing set that bear the most resemblance.

For the bedroom scenes, in the first row of Figure 8, both
our generated scene and its corresponding scene from the train-
ing set contain similar elements such as a bed, two nightstands,

Figure 8: Nearest neighbor analysis of synthesis scenes. The first column showcases scenes generated by our method, while the second
column presents corresponding nearest real scene from the training set.
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Figure 9: Perception research bar chart.
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a wardrobe, and a cabinet. However, our generated scene also
includes a pendant lamp and an additional cabinet, and the
wardrobe’s size differs from its counterpart in the training
scene.

In the case of living room scenes, our generated scene
diverges more markedly from its most similar scene in the
training set, featuring extra elements such as a single sofa,
a chair, a pendant lamp, and a bookcase. These results show-
case the discernible differences between our generated scenes
and the real scenes in the training set, indicating that our
model does not merely memorize the training data but effec-
tively captures a range of inherent feature patterns within
the scene data, thus demonstrating robust generalization
capabilities. Notably, we determine the distance between
scenes by calculating the Euclidean distance between their
data matrices. This is achieved by computing the Frobenius
norm of the difference between each generated scene’s data
matrix and those of the training scenes, thereby identifying
the most similar scene.

4.3.4. Subjective Assessments. To comprehensively assess the
realism of scenes produced by our method, we conducted a
perceptual evaluation involving nonexpert users. We pre-
sented 30 participants with the same 60 pairs of scene
images, asking them to choose the most visually appealing
result from each pair. The findings are depicted in Figure 9.

It is evident that our method surpasses the two baseline
methods, exhibiting a distinct edge particularly in generating
bedroom scenes. Moreover, when juxtaposed with the
ground truth, our method’s virtually generated scenes hold
their own against real 3D indoor scenes. These findings sub-
stantiate that our method is capable of producing visually
engaging results.

5. Conclusions

For improving the efficiency, stability, and diversity of 3D
indoor scene generation, we utilize matrix and graph repre-
sentations to depict object attributes and the spatial relation-
ships among objects within the scene, respectively.
Leveraging the strengths of both VAE and GAN via the
VAE-GAN module, we generate synthetic object attributes,
and, using the U-Net module, we produce relative attributes
of these synthetic objects. Ultimately, through the Bayesian
scene optimization framework, we amalgamate scene prior,
object attributes, and relative attributes to optimize and yield
optimal object attributes. Our deep generative network is
adept at comprehensively learning the adjacency, spatial,
and embedding relationships of objects within indoor
scenes, thereby producing highly reasonable 3D indoor
scene layouts with extensive diversity.

Nonetheless, our present approach exhibits certain limi-
tations, including its failure to take into account the styles of
the objects within the indoor scenes. Our model is primarily
geared towards the spatial location data of the objects in the
scene, such as object position, orientation, and size, inadver-
tently neglecting the harmonizing styles of objects through-
out the scene. In future research, we aim to incorporate the
style information of the objects into our model to achieve

consistently styled indoor scenes. Another drawback is that
our model exclusively concentrates on generating regular
scenes, i.e., rectangular rooms, without consideration for
the generation of nonrectangular rooms. Although regular
scenes predominate in daily life, irregular scenes remain a
crucial component, and automating their layout generation
would offer significant utility. Moving forward, we intend
to delve into the layout generation of irregular scenes, aim-
ing to enhance the applicability of our model.
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