

Research Article

Association between Different Types of Edible Oils and Anthropometric Indices, Mood, and Appetite among Women

Nahid Kangani¹, Mohammadreza Mohammadi¹, Mobina Zeinolabedin¹, Nick Bellissimo¹, and Leila Azadbakht¹

¹Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran ²Toronto Metropolitan University, School of Nutrition, Toronto M5B-2K3, Canada

Correspondence should be addressed to Leila Azadbakht; azadbakhtleila@gmail.com

Received 3 April 2022; Revised 19 August 2022; Accepted 24 September 2022; Published 19 October 2022

Academic Editor: Bing Niu

Copyright © 2022 Nahid Kangani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction. The objective of this study was to evaluate the relationship between consumption of dietary oils and anthropometric indices, mood, and appetite among women staff of Tehran University of Medical Sciences. *Methods.* A cross-sectional study design was used, and 245 women staff of Tehran University of Medical Sciences participated. A 168-item food frequency questionnaire was used to evaluate dietary and nutrient intake. The association between liquid vegetable oils, hydrogenated vegetable oil, and animal fat intake and anthropometric indices, appetite, and mood was evaluated. The Profile of Mood States (POMS) questionnaire was used to assess mood. A Visual Analogue Scale (VAS) was used to evaluate appetite status. The tape measure was used to measure the waist circumference and height. SPSS was used to compute body mass index (BMI) and waist-to-height ratio (WHtR). *Results.* In the present study, sunflower and frying oil were the most consumed liquid oils (n = 135/245 participants). Participants with a moderate intake of MUFA had greater odds ratio (OR: 3.47; 95% CI: 1.20-10.7; *P* trend = 0.025) of a high appetite compared to those with a low intake of MUFA. However, the study found no evidence of an association between consumption of edible oils (vegetable oils, animal fat oils, and other fatty acid sources) and mood, anthropometric indices, or appetite. *Conclusions.* In the current research, we noticed a significant connection between moderate intake of MUFA and a large appetite and no association between consumption of edible oils, and sweets is suggested to limit the consumption of artificial trans-fatty acids.

1. Introduction

The prevalence of overweight and obesity is a major health concern worldwide, which continues to gradually increase [1]. In 2016, the World Health Organization (WHO) reported that over 1.9 billion people were overweight and over 650 million people were obese [2]. A study published in 2020, based on data from STEPs 2016, found that the incidence of obesity and overweight/obesity in Iranian adults was reported to be 22.7% and 59.3%, respectively, and the prevalence of obesity was higher among women compared to men [3].

Based on global health trends and the prevalence of chronic and noncommunicable diseases, managing and preventing obesity is critical for public health [4]. Due to the nature of their occupation, sedentary lifestyle [5], and likely dietary changes, employees have expressed worry about their general health and anthropometric indices [6]. In particular, women with obesity in Asia were subjected to harsh public criticism, severe social pressure, and discrimination based on their weight and appearance [7, 8]. Some factors that influence obesity risk include heredity, physical activity, stress and mood, dietary habits, and lifestyle changes [9]. Poor morale and mood can impair social interaction, work quality, and appetite [10]. Increasing fruit and vegetable consumption, whole grains, legumes, nuts, polyunsaturated fatty acids (PUFA), and omega-3 fatty acids and decreasing simple carbs, fast meals, and saturated fatty acids have been found to have a favorable effect on mood and sadness [11]. Two RCTs studies have examined the influence of medium-chain triglycerides (MCT) and conjugated linoleic acid (CLA) on overweight and fullness, which shows consumption of MCT reduces energy intake in the subsequent 48 h, whereas CLA does not [12]. The other one has shown that data on the appetite effects of CLA is limited but does suggest potential [13].

Among macronutrients, fats have the highest energy density. Due to observed correlations between excessive fat intake and obesity, there has been increased attention on understanding the association between consumption of various types of fatty acids and obesity or fat storage [14]. In the population, liquid vegetable oils (such as olive oil, canola oil, corn oil, sunflower oil, sesame oil, etc.), solid vegetable oils, and animal fat are commonly consumed. Research has suggested that the consumption of omega-3 fatty acids improves mood and depression [15]. A study also found that a high omega-6:omega-3 PUFA ratio was associated with excessive fat mass and unfavorable metabolic indices [14]. Monounsaturated fatty acids (MUFA) have been shown to lower abdominal obesity compared to PUFA, which is essential for treating and preventing metabolic syndrome [16]. However, consumption of PUFA may improve appetite regulation [17]. Commonly used oils, such as olive oil, have been found to help support the maintenance of body weight [18, 19]. In addition, canola and sunflower oils have been shown to effectively lower total cholesterol, LDL, and triglyceride levels and increase HDL while having no effect on body weight [19]. Conversely, hydrogenated vegetable oils have been found to raise the risk of metabolic syndrome [20].

To the best of our knowledge, previous work has not evaluated the relationship between consumption of hydrogenated oils and mood, anthropometrics, and appetite. Therefore, we hypothesized that dietary habits and consuming healthy fats will have a positive effect on improving anthropometrics, poor mood, and high appetite. The purpose of this research was to investigate the relationship between the intake of edible oils and anthropometric indices, mood, and hunger in female staff members of Tehran University of Medical Sciences.

2. Materials and Methods

2.1. Study Design and Subjects. A cross-sectional study design was used and included female staff members (n = 245) from the Tehran University of Medical Sciences. Simple random sampling was used to select the participants. To determine the sample size appropriate for this investigation, we considered the prevalence of obesity among Iranian adults as the primary dependent variable [21]. The required sample size was calculated by first retrieving data on the

prevalence of obesity from previous studies and then using the following formula:

$$N = \frac{\left[(z1 - \alpha/2)^2 \times (p1(1 - p1)) \right]}{d^2},$$

$$N = \frac{\left[(1.96)^2 \times (17.5 \times 82.5) \right]}{25} = 221.$$
(1)

With d = 5, the number of samples with alpha = 0.05 and p = 17.5 percent was computed. Due to the likelihood of under- and over-reporting of subjects, 245 participants were included in our study.

The inclusion criteria were as follows: willingness to participate (all participants provided online informed consent); those between 30 and 50 years of age; absence of chronic diseases including diabetes, hyperlipidemia, thyroid disease, cardiovascular disease, kidney disease, malignancy, hypertension, and acute liver disease; and no use of corticosteroids, thyroid medications, neuropsychiatric medications, metformin, or allergy medications. Furthermore, participants were not pregnant, lactating, or in menopause and were not eligible if they had reported following a special diet in the three months prior. Finally, participants were excluded from the study during analysis if their self-reported energy intake was <800 kcal/day or >4,200 kcal/day. All data were self-reported and collected using an online questionnaire. The Human Ethical Committee of Tehran University of Medical Science approved the study protocol (IR.TUMS.MEDICINE.REC.1400.241).

2.2. Data Collection Tools. Due to the COVID-19 pandemic, we were unable to gather in-person data. Therefore, all data were collected online through widely used, reliable, and validated questionnaires. The data collection online link had seven sections: (1) the consent form, (2) anthropometric characteristics, (3) assessment of socioeconomic status, (4) physical activity questionnaire (IPAQ) [22], (5) appetite questionnaire (VAS) [23], (6) mood assessment questionnaire (FFQ) [25].

2.3. Dietary Intake. We measured edible oils intake including vegetable oils and animal oils using FFQ-168 food items to estimate routine consumption of dietary oils by participants (Table 1). Detailed instructions on accurately reporting the quantity and type of oil consumed were provided to the participant prior to initiating the questionnaire. Participants were asked how frequently they consumed each food item on the FFQ over the past year. To improve simplicity and efficiency, participants were provided with nine options for frequency (three options in a day, three options in a week, and three options in a month). The Nutritionist IV (N4) nutrient analysis software was utilized to determine the total calories and nutrients consumed by each participant. Finally, total daily grams, total energy intake, and nutritional counts were entered into SPSS for statistical analysis. Finally, the following food

Type of edible oil	Number of consumers	Mean \pm SD in total sample	Mean ± SD in consumers
Sunflower oil	52	1.74 (4.2)	8.2 (5.7)
Canola oil	7	0.18 (1.2)	6.4 (3.9)
Frying oil	39	1.25 (3.6)	7.8 (5.7)
Corn oil	6	0.16 (1.2)	6.7 (4.3)
Cooking oil	18	0.39 (1.8)	5.3 (4.8)
Sesame oil	25	0.79 (3)	7.7 (5.9)
Rice bran oil	1	0.003 (0.05)	0.8
Sunflower + frying oil	44	1.38 (3.7)	7.8 (5.3)
Sunflower + sesame oil	7	0.18 (1.1)	6.4 (1.2)
Sunflower + cooking oil	3	0.06 (0.5)	5 (1.7)
Frying + cooking oil	25	0.82 (3)	8 (5.7)
Frying + sesame oil	13	0.42 (2.2)	7.9 (6.3)
Frying + canola oil	2	0.04 (0.4)	5.3
No consumed	3	—	—
Olive oil	167	1.96 (3.2)	2.8 (3.5)

TABLE 1: Intake of vegetable liquid oils in participants (g/d).

confounders were extracted from the FFQ questionnaire: B vitamins, iron, and zinc (that increase appetite); calcium, caffeine, and fiber (that reduce obesity, WHtR, and waist circumference); and iron, B vitamins, magnesium, and zinc (that support mood).

2.4. Demographic and Socioeconomic Status. For this purpose, the socioeconomic status and demographic questionnairewas applied, which had questions on marital status, education, job, family size, means of support, and method of transportation. Each questionnaire item was coded in order to calculate the socioeconomic status score, and the codes were added. The score was divided into three groups, and people were placed into one of three categories depending on their socioeconomic status: poor, middle class, or rich.

2.5. Anthropometric Indices. Height (cm), weight (kg), and waist circumference (cm) were measured by the participants, and detailed instructions were provided. To measure body weight, the participants were instructed to stand in the center of the scale while wearing minimal clothing and be barefoot. To measure height, the participants were instructed to use a height meter while barefoot, place the soles of their feet on the ground with their heels pressed together, place their hand next to their torso with their shoulders relaxed, and place their spine, buttocks, and the back of their heels in contact with the height gauge or wall. To measure waist circumference, participants were instructed to wear no clothing around their abdomen or as little clothing as possible. Participants were instructed to ensure that the tape measure was parallel to the ground and to identify the waist prior to measuring, which was classified as the smallest portion of the trunk, typically from the navel or above. SPSS was used to compute body mass index (BMI) and waist-toheight ratio (WHtR). Finally, the classification of general and abdominal obesity followed the WHO recommended cut-offs [26].

2.6. Appetite. A Visual Analogue Scale (VAS) questionnaire was used to evaluate subjective appetite during past 6 months. This questionnaire included four questions that measured desire for food, hunger, fullness, and prospective food consumption. The individuals select a number from two options, not hungry at all (0 points) and have not been so hungry (100 points). To facilitate response, we investigated five options (Table 2). The overall score was calculated by taking the sum of all of the scores and dividing by 4; therefore, it varied from 0 to 100. We were unable to identify a usual cut-off for hunger upon a review of the literature; therefore, we categorized the scores into tertiles for analysis. A score >55 was classified as a voracious appetite (third tertile); a score between 45 and 55 was classified as a moderate appetite (second tertile); and a score <45 was classified as a poor appetite (first tertile).

2.7. Mood and Emotions. The POMS questionnaire was utilized to evaluate mood throughout the preceding year. This questionnaire includes 65 items organized into 6 categories: anxiety, depression, tiredness, confusion, anger, and ability. This questionnaire's Likert scale ranged from 0 (absolutely not) to 4 (very high). To obtain an overall mood score, the scores of the 5 negative mood categories (anxiety, depression, anger, fatigue, and confusion) were added together, and the score of the positive mood category (ability) was subtracted. The overall mood score ranged from -22 to 177, with a lower score suggesting a more positive mood. Since we were also unable to identify a usual cut-off for mood, mood scores were classified into tertiles as follows: a score >38 indicates a poor mood (third tertile), a score between 11 and 38 indicates a middling mood (second tertile), and a score <11 indicates a great mood.

2.8. Physical Activity. To assess physical activity level, we used the short-form International Physical Activity Questionnaire (IPAQ). IPAQ consisted of seven questions. Overall, the questions evaluated the number of days and

_0 I am completely empty	50	100
I am completely empty		
		I cannot eat another bite
0	50	100
Not at all full		Totally full
0	50	100
Nothing at all		A lot
0	50	100
▲ Nothing at all		A lot
0	50	100
	Not at all full 0 Nothing at all 0 Nothing at all	Not at all full 0 50 Nothing at all 0 50 Nothing at all

TABLE 2: Visual analogue scale for the appetite questionnaire.

minutes of participation in light and heavy activities and the average time spent walking and sitting over the past seven days. Physical activity level <600 METs-min/week was classified as low physical activity; that between 600 and 3,000 METs-min/week was classified as moderate physical activity; and that >3,000 METs-min/week was classified as high physical activity.

2.9. Statistical Analysis. The FFQ data were analyzed by the Nutritionist IV software, and we obtained the amount of consumed oils and fatty acids (MUFA, PUFA, omega-3, omega-6, linoleic acid, olive oil, vegetable oils, animal fat, etc.). There were no other separate groups of vegetable oils (liquid and solid) to explore the link between the factors and these oils. Tertiles were conducted on total vegetable liquid oil, animal fat, fatty acids, and trans-fatty acid sources.

Two tables were achieved from variables analysis in fatty acid (w3—it was obtained from linolenic acid, EPA, and DHA—MUFA, and w3/w6 ratio) and trans-fatty acid sources tertiles (natural—from animal sources, artificial, and total sources). Scores of the variables in these tertiles are shown in Tables 3 and 4 (based on covariance analysis). Also, the odds ratio and 95% CI of variables are shown in Tables 5 and 6 (based on logistic regression). In these tables, omega-3 is totalized from linolenic acid, EPA, and DHA.

SPSS software (22.0; SPSS Inc.) was used for all statistical data analysis. A histogram and the Kolmogorov–Smirnov test were used to determine the normality of the variable distribution. A one-way ANOVA was used to evaluate the association between the consumption of various edible oils as independent variables (i.e., vegetable liquid oil, hydrogenated vegetable oil, and animal fat) and anthropometric indices, mood, and appetite as dependent variables. For descriptive characteristics (i.e., supplement and drug use, socioeconomic level, etc.), the chi-square test was used to compare how individuals were distributed throughout the groups. An analysis of covariance was also used to compensate for the confounding influence of physical activity. The Bonferroni correction was used if the differences were significant. Linear and nonlinear regression models were

used to assess the relationship between dietary oil consumption and anthropometric indicators, hunger, and mood. We used a binary logistic regression model to estimate the association between edible oil consumption in two categories, vegetable oil and animal fat oil, and outcomes including poor mood, high appetite, waist circumference, overweight and obesity, and waist-to-height ratio. An odds ratio (OR) with a 95% confidence interval (CI) was reported in three statistical models: crude, model 1, and model 2, which were specific to the outcome variable.

High appetite was adjusted for energy intake, age, infected with COVID-19 in the past, and body mass index in model 1 and adjusted for model 1+micronutrients (thiamine, niacin, vitamin B12, iron, zinc, fiber, and simple sugar), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omega-3), socioeconomic status, and macronutrient (fiber + simple sugar) in model 2. The poor mood was adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status in model 1 and adjusted for model 1+micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc and magnesium, fiber, and simple sugar) and supplements (vitamin D, zinc, multivitamin, iron + vitamin D, iron, iron-+ multivitamin, zinc + vitamin D, multivitamin + calcium, and multivitamin + zinc + omega-3), and macronutrient (fiber + simple sugar) in model 2. Overweight and obesity were adjusted for energy, age, infected with COVID-19, and socioeconomic status in model 1 and adjusted for model 1+micronutrients (calcium, fiber, caffeine, and simple sugar), supplements (vitamin D, zinc, multivitamin, cal-D, iron, iron + multivitamin, cium, iron + vitamin multivitamin + calcium-D, zinc + vitamin D. multivitamin + zinc + omega-3, and iron + calcium), and macronutrient (fiber + simple sugar) in model 2. Finally, waist circumference and waist-to-height ratio were adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status in model 1 and adjusted for micronutrients (calcium and caffeine), supplements (vitamin D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D.

International Journal of Clinical Practice

TABLE 3: Appetite, mood, and anthropometric indices in tertiles of different fatty acids.

				(I I		-			/					
							Terti	Tertiles of different fatty acids	nt fatty acids					
			Ter	Tertile of $w3 ~(g/d)$	(p		Tertil	Tertile of MUFA (g/d)	(g/d)		Tertile o	Tertile of $w3/w6$ ratio (g/d)	(b/g) o	
Variable		Participants 71: <0.34	T1: <0.34	T2: 0.34 -0.49	T3: >0.49	<i>P</i> value	Tl: <18.4	T2: 18.4–24.2	T3: >24.2	<i>P</i> value	<i>T</i> 1: <0.03	T 1:0.03-0.04	T3: >0.04	P value
		N = 245	N = 81	N = 82	N = 82		N = 81	N = 82	N = 82		N = 75	N = 86	N = 84	
	Crude	51.8 (13.2)	51.3 (14.4)	53.5 (10.5)	50.7 (14.5)	0.378	50.6 (12.7)	52.5 (12.5)	52.4 (14.4)	0.601	52.1 (13.8)	53.7 (11.9)	49.6 (13.8)	0.124
Appetite score	¹ Model 1	I	51.6 (1.5)	53.1 (1.4)	50.7 (1.5)	0.510	50 (1.6)	52.4 (1.4)	53 (1.6)	0.446	52.1 (1.4)	53.5 (1.3)	49.9 (1.3)	0.182
	² Model 2	I	50.9 (1.52)	53.1 (1.44)	51.5 (1.62)	0.544	49.6 (1.68)	52.6 (1.43)	53.3 (1.8)	0.318	52.2 (1.49)	53.5 (1.39)	49.7 (1.39)	0.158
	Crude	29.5 (32.7)	21.9 (29.7)	29 (30.6)	37.6 (35.7)	0.008	25.2 (28.2)	23.6 (30.7)	39.7 (36.3)	0.002	29.3 (36.5)	26.3 (28.2)	33 (33.3)	0.403
Mood score	³ Model 1	Ι	25.5 (3.7)	30.4(3.5)	32.6 (3.8)	0.420	32.1 (4)	24.4 (3.5)	32.1 (4.1)	0.210	29.2 (3.6)	27 (3.4)	32.4 (3.4)	0.534
	⁴ Model 2	I	28.01 (3.5)	28.01 (3.5) 30.67 (3.35)	30.0(3.81)	0.853	28.98 (3.91)	23.2 (3.32)	36.50 (4.18)	0.053	30.21 (3.50)	27.35 (3.23)	31.2 (3.27)	0.689
Overweight and	Crude ⁵ Model 1	24.8 (3.9) —	24.7 (3.7) 24.7 (0.4)	24.9 (3.5) 25 (0.4)	24.6 (4.5) 24.6 (0.4)	$0.905 \\ 0.781$	24.8 (3.8) 24.7 (0.4)	24.7 (3.7) 24.7 (0.4)	24.8 (4.3) 24.9 (0.5)	0.996 0.948	25 (4.2) 24.9 (0.4)	24.7 (3.7) 24.8 (0.4)	24.6 (3.9) 24.5 (0.4)	0.803 0.797
obesity	⁶ Model 2	I	24.8 (0.45)	24.9 (0.43)	24.6 (0.48)	0.923	24.5 (0.49)	24.5 (0.42)	25.3 (0.52)	0.548	25.3 (0.44)	24.8 (0.41)	24.2 (0.41)	0.224
	Crude	80 (13)	79 (13.3)	80.3 (12.3)	80.6 (13.5)	0.700	80.4 (14.7)	80.4 (10.9)	79.2 (13.3)	0.792	80 (12.7)	80.2 (14.1)	79.8 (12.3)	0.977
Waist circumference ³ Model 1	³ Model 1	Ι	78.6 (1.2)	79.9 (1.1)	81.4 (1.2)	0.332	80.7 (1.3)	80.4(1.1)	78.9 (1.3)	0.669	79.4 (1.2)	80.4(1.1)	80.1 (1.1)	0.823
	⁶ Model 2	I	78.5 (1.54)	80.0 (1.47)	81.5 (1.64)	0.468	80.3 (1.71)	79.8 (1.71)	79.9 (1.80)	0.978	80.9 (1.53)	80.2 (1.43)	78.9 (1.421)	0.626
	Crude	0.49 (0.07)	0.49 (0.07) 0.48 (0.08) 0.49 (0.07)	0.49 (0.07)	0.49 (0.08)	0.724	0.49 (0.08)	0.49 (0.06)	0.48(0.10)	0.579	0.49 (0.07)	0.49 (0.08)	0.49 (0.07)	0.935
Waist-to-height ratio ³ Model 1	³ Model 1	I	0.4(0.009)	0.4 (0.009)	0.4 (0.009)	0.417	0.4(0.010)	0.4 (0.009)	$0.4\ (0.010)$	0.811	0.4(0.009)	0.4 (0.008)	$0.4\ (0.008)$	0.774
	⁶ Model 2	Ι	0.48 (0.009)	0.49 (0.009)	0.50 (0.10)	0.460	0.49 (0.010)	0.49 (0.009)	0.48 (0.011)	0.932	0.49 (0.009)	0.49 (0.008)	0.48 (0.009)	0.633
*The crude model was resulted from one-way ANOVA, and the numbers are reported as mean ± SD. *Models 1 and 2 were resulted from covariance analysis, and the numbers are reported as mean ± SE. *Model 2 is the main model. <i>P* P</i> value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, zinc, and magnesium), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, and zinc), supplements (vitamin D, iron, iron + multivitamin + calcium-D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, and zinc), supplements (vitamin D, iron + vitamin D, iron, iron + multivitamin + calcium-D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and reaction, supplements (vitamin D, zinc, multivitamin, zinc + vitamin D, iron, iron + multivitamin zinc + vitamin D, multivitamin + zinc + omega-3, and iron + calcium), and macronutrient (fiber and simple sugar); ⁵ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and socioeconomic status; and sumber 5 + micronutrients (calcium and caffeine), supplements (vitamin D, zinc, multivitamin + zinc + omega-3, and iron + calcium), and macronutrient (fiber and simple sugar): ² adjusted for energy, age, infected with COVID-19, and socioeconomic status; and iron + calcium), and macronutrient (fiber and simple sugar): ²	sulted from c alue <0.05 sh upplements (with COVID + vitamin D, 2-19, and soc itamin + calc	ome-way ANOV ows a significan zinc, multivitar -19, body mass iron, iron + mul :ioeconomic sta ium-D, multivi	A, and the nur it level of assoc nin, iron + vita index, and sou fivitamin, zinc tus; and ⁶ numl tamin + zinc +	mbers are reportiation. ¹ Adjuste ciation. ¹ Adjuste amin D, iron, iro cioeconomic sta cioeconomic sta cioeconomic cioec	ted as mean ± d for energy, <i>i</i> on + multivita itus; ⁴ number nultivitamin + titrients (calciu iron + calcium	SD. *Mot ige, infect min, zinc 3 + micrc calcium m and ca m and ca	dels 1 and 2 we ed with COVI. :+ vitamin D, : onutrients (thii D, and multivi ffeine), supple: acronutrient (ere resulted froi D-19, and body and multivitam amine, riboflav itamin + zinc +. ments (vitamin fiber and simp	n covariance al mass index; ² r in + zinc + ome in, niacin, B6, omega-3), and (D, zinc, multi ele sugar).	nalysis, ar nodel 1 + ega-3), an folate, vit macronu vitamin, c	ud the numbers micronutrient d macronutrie amin B12, iror amin fiber an calcium, iron +	s are reported is (thiamine, ni (the and s) (the and s) (ther and s) (the and zinc), su and zinc), su d simple sugar vitamin D, irc	as mean ± SE. * acin, vitamin B acin, vitamin B imple sugar); ³ implements (vii c); ³ adjusted fo. on, iron + multi on, iron + multi	Model 2 112, iron, adjusted tamin D, r energy, ivitamin,

						Toutiloo o	f difformet	Toutiloo of difformut converse of turne fatter acide	ine fatter aci	20				
			Ę	-					1115-1ally all	5	Ę	 		
			Tertile (Tertile of natural source (g/d)	ce (g/d)		lertile of	lertile of artificial source (g/d)	irce (g/d)		lertile	Tertile of total source (g/d)	e (g/d)	
Variable		Participants N=245	T1: < 341.4 N = 81	T2: 341.4-482.2 N = 82	T3: >482.2 $N = 82$	P value	T1: <39.8 N = 81	T2: 39.8–71.4 N = 82	T3: >71.4 N = 82	<i>P</i> value	T1: < 402.1 N = 81	T1: 402.1-549.7 N = 82	T3: >549.7 N=82	<i>P</i> value
	Crude	51.8 (13.2)	53.3 (14.5)	50.7 (12.5)	51.4 (12.7)	0.421	51.4 (11.7)	52.1 (13.4)	51.9 (14.6)	0.939	52.6 (13.8)	50.9 (12.9)	52 (13.1)	0.710
Appetite score	¹ Model	I	53.3 (1.4)	51.2 (1.4)	51 (1.4)	0.497	52.5 (1.5)	51.3 (1.4)	51.7 (1.5)	0.843	52.6 (1.5)	51.1 (1.4)	51.8 (1.5)	0.770
	² Model 2	Ι	54.3 (1.56)	51.1 (1.43)	50 (1.62)	0.174	52.3 (1.54)	51.9 (1.45)	51.3 (1.62)	0.909	52.8 (1.57)	51.3 (1.44)	51.3 (1.66)	0.733
	Crude	29.5 (32.6)	32.2 (33.1)	32.5 (33.8)	23.9 (30.7)	0.165	20.8 (31.2)	29.3 (32)	38.3 (32.6)	0.003	28.9 (31.1)	30.6 (34.4)	29 (32.7)	0.930
Mood score	⁷ Model 1	I	37.6 (3.5)	34.1 (3.4)	17 (3.5)	<0.0001	25.2 (3.7)	30.5 (3.5)	32.8 (3.8)	0.384	35 (3.6)	33.5 (3.4)	20.1 (3.7)	0.015
	⁴ Model 2	Ι	33.6 (3.97)	30.6 (3.39)	24.5 (4.26)	0.399	28.4 (3.62)	31.4 (3.3)	29.2 (3.85)	0.854	29.3 (3.99)	30.9 (3.36)	28.4 (4.2)	0.889
	Crude	24.8 (3.9)	24.9 (4.3)	24.1 (3.2)	25.2 (4.1)	0.174	24 (3.3)	25.5 (3.8)	24.8 (4.4)	0.050	24.8 (4.2)	24.5 (3.4)	25 (4.2)	0.685
Overweight and	⁷ Model 1	I	24.9 (0.4)	24.1 (0.4)	25.3 (0.4)	0.169	23.7 (0.4)	25.5 (0.4)	25.1 (0.4)	0.012	24.7 (0.4)	24.4(0.4)	25.1 (0.4)	0.625
obesity	⁶ Model 2	Ι	25.3 (0.5)	24.3 (0.42)	24.7 (0.53)	0.268	23.9 (0.45)	25.6 (0.41)	24.8 (0.48)	0.016	25.3 (0.5)	24.4 (0.42)	24.6 (0.53)	0.330
	Crude	80 (13)	78.9 (15.8)	78.9 (10.5)	82.1 (12)	0.186	79.5 (10.1)	80.9 (15.2)	79.6 (13.3)	0.763	78.7 (15.5)	80.5 (9.6)	80.8 (13.3)	0.546
Waist circumference	⁵ Model	I	78.3 (1.2)	80 (1.1)	81.6 (1.2)	0.198	81 (1.2)	79.4 (1.1)	79.5 (1.2)	0.618	78.3 (1.2)	80.9 (1.1)	80.7 (1.2)	0.252
	⁶ Model 2	Ι	80 (1.75)	78.9 (1.47)	81.1 (1.86)	0.639	79 (1.59)	80.9 (1.45)	80 (1.68)	0.649	80.1 (1.74)	80 (1.48)	79.9 (1.86)	0.998
	Crude	0.49 (0.07)	0.48 (0.09)	0.49 (0.06)	0.50 (0.07)	0.237	0.48 (0.06)	0.49 (0.09)	0.48 (0.07)	0.667	0.48 (0.09)	0.49 (0.05)	0.49 (0.07)	0.582
Waist-to-height ratio	³ Model 1		0.4 (0.009)	0.4 (0.009)	0.5 (0.009)	0.107	0.4 (0.009)	0.4 (0.009)	0.4 (0.009)	0.518	0.4 (0.009)	0.4 (0.009)	0.5 (0.009)	0.340
	⁶ Model 2		0.49 (0.011)	0.48 (0.009)	0.5 (0.011)	0.586	0.48 (0.010)	0.49 (0.009)	0.49 (0.010)	0.580	0.49 (0.010)	0.49 (0.009)	0.49 (0.011)	0.991
*The crude model was resulted from one-way ANOVA, and the numbers are reported as mean ± SD. *Models 1 and 2 was resulted from covariance analysis, and the numbers are reported as mean ± SE. *Model 2 is the main model. <i>P*</i> P value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, miacin, vitamin B12, iron, zinc, and magnesium), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, and zinc), supplements (vitamin D, zinc, unultivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, and zinc), supplements (vitamin D, zinc, unultivitamin + calcium D, iron, iron + multivitamin 2, and materiant (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and "number 5 + micronutrients (radicum and caffeine), supplements (vitamin D, zinc, multivitamin D, iron, iron + vitamin D, iron, iron + within D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin zinc + vitamin D, and macronutrients (fiber and simple sugar); ³ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and "number 5 + micronutrients (radicum and caffeine), supplements (vitamin D, zinc, multivitamin , iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, iron, iron + multivitamin D, and iron + calcium), and macronutrient (fiber and simple sugar).	esulted from lue <0.05 sh supplements with COVI + vitamin D D-19, and sc vitamin + cal	tone-way ANO ⁷ ows a significan s (zinc, multivita D-19, body mas 1, iron, iron + mu ocioeconomic st lcium-D, multiv	VA, and the ni t level of asson amin, iron + vi as index, and s ultivitamin, ziu atus; and ⁶ nur ritamin + zinc	umbers are report iation. ¹ Adjusted Itamin D, iron, irv ocioeconomic sta nc + vitamin D, m nber 5 + micronu + omega-3, and i	ed as mean ± for energy, a: on + multivits tutus; ⁴ number nultivitamin + turients (calciu iron + calcium	SD. *Modd ge, infected umin, zinc - 3 + microu - calcium-L um and caff 1), and ma	els 1 and 2 wa. 1 with COVII + vitamin D, i nutrients (thi), and multivi feine), supple icronutrient (are reported as mean ± SD. *Models 1 and 2 was resulted from covariance analysis, and the numbers are reported as mean ± SE. *Model 2 is ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ³ adjusted nomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, and zinc), supplements (vitamin D, amin D, multivitamin + calcium-D, and multivitamin + zinc + omega-3), and macronutrient (fiber and simple sugar); ⁵ adjusted for energy, + micronutrients (calcium and caffeine), supplements (vitamin D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin, ga-3, and iron + calcium), and macronutrient (fiber and simple sugar); ⁵ adjusted for energy,	covariance an mass index; ² , in + zinc + orr in, niacin, B6 omega-3), and t D, zinc, mult ole sugar).	ialysis, an model 1 + nega-3), ai folate, vi d macron ivitamin,	d the numbers micronutrien ad macronutri tamin B12, irc tarrient (fiber a calcium, iron	are reported as is (thiamine, nic ent (fiber and s; n, and zinc), su nd simple sugar + vitamin D, iro	mean \pm SE. * N tcin, vitamin l imple sugar); pplements (vi); ⁵ adjusted fc n, iron + mult	Addel 2 is 312, iron, ³ adjusted tamin D, or energy, iivitamin,

TABLE 4: Appetite, mood, and anthropometric indices in tertiles of different sources of trans-fatty acids.

							Tertiles of different fatty acids	ent fatty acide					
			Tertile of <i>w</i> 3 (g/d)	(g/d)		-	Tertile of MUFA (g/d)	v (g/d)		Tert	Tertile of <i>w3/w</i> 6 ratio (g/d)	tio (g/d)	
Variable		T1: <0.34	T2: 0.34–0.49	T3: >0.49	<i>P</i> trend	T1: <18.4	T2: 18.4–24.2	T3: >24.2	P trend	T1: <0.03	72:0.03-0.04	<i>T</i> 3: >0.04	P trend
		N = 81	N = 82	N = 82		N = 81	N = 82	N = 82		N = 75	N = 86	N = 84	
	Crude	1	1.2 (0.6–2.3)	1.2 (0.1–2.5)	0.643	1	$0.9 \ (0.4 - 1.9)$	$0.6 \ (0.3-1.6)$	0.254	1	1 (0.5–2.1)	1.6 (0.8 - 3.3)	0.133
High appetite	'Model 1	1	1.2 (0.6–2.5)	1.2 (0.5–2.7)	0.581	1	0.7 (0.3–1.6)	$0.3 \ (0.1 - 1)$	0.054	1	1.1 (0.5–2.1)	1.6 (0.8 - 3.3)	0.175
JI0	² Model 2	1	1.18 (0.4–3.2)	1.18 (0.4–3.2) 1.10 (0.4–2.7)	0.899	1	4.10 (1.3–12.7)	2.38 (0.8-6.4)	0.022	1	0.65 (0.27-1.52)	0.62 (0.28–1.4)	0.124
	Crude	1	$0.7 \ (0.3 - 1.5)$	0.3 (0.2-0.7)	0.006	1	1 (0.4-2)	$0.3 \ (0.1-0.7)$	0.003	1	1.1 (0.5–2.2)	0.7 (0.3-1.4)	0.383
Poor mood	'Model 1	1	$0.9 \ (0.4 - 1.8)$	0.6 (0.3–1.4)	0.318	1	1.3 (0.6–3)	0.8 (0.3–2.1)	0.752	1	1.1 (0.5–2.3)	0.7 (0.3–1.5)	0.449
	⁴ Model 2	1	1.11 (0.43–2.85)	1.13 (0.46–2.75)	0.826	1	1.91 (0.63–5.80)	2.47 (0.96–6.33)	0.305	1	1.12 (0.49–2.57)	1.13 (0.62–2.88)	0.739
	Crude	1	0.9 (0.4 - 1.7)	$1 \ (0.5-1.9)$	0.946	1	$0.8 \ (0.4 - 1.6)$	1 (0.5–2)	0.821	1	1 (0.5–1.9)	1.1 (0.6–2.1)	0.651
Overweight and	Model 1	1	$0.8 \ (0.4 - 1.7)$	1 (0.5–2.2)	0.860	1	$0.8 \ (0.4 - 1.7)$	1 (0.4–2.5)	0.881	1	0.9 (0.5–1.8)	1.1 (0.6–2.2)	0.606
obesity	⁶ Model 2	1	0.81 (0.46–1.79)	0.75 ($0.35-1.60$)	0.646	1	0.95 ($0.38-2.39$)	0.87 (0.39–1.92)	0.952	1	0.68 (0.33-1.37)	0.68 ($0.34-1.36$)	0.275
	Crude	1	$0.6 \ (0.3 - 1.4)$	$0.4 \ (0.2 - 1)$	0.066	1	$1 \ (0.5-2.3)$	0.9 (0.4 - 1.9)	0.883	1	1 (0.4 - 2.1)	1 (0.5–2.2)	0.851
High waist	Model 1	1	0.5 (0.1 - 1.6)	0.2 (0.08-0.9)	0.047	1	$1.1 \ (0.4-3.4)$	1.4 (0.3 - 5.8)	0.565	1	0.7 (0.2–2)	0.8 (0.2–2.3)	0.710
circumference	⁶ Model 2	1	2.15 (0.83–5.53)	1.49 (0.63–3.54)	0.111	1	0.81 (0.27–2.45)	1.01 (0.38–2.64)	0.694	1	0.75 (0.32-1.72)	0.77 (0.34–1.71)	0.490
	Crude	1	$0.9 \ (0.4 - 1.7)$	$0.9 \ (0.4 - 1.7)$	0.804	1	0.9 (0.5 - 1.8)	1.1 (0.6–2.2)	0.578	1	1.4(0.7-2.6)	1 (0.5–1.9)	0.886
Waist-to-height ratio	'Model 1	1	$0.8 \ (0.4 - 1.6)$	0.8 (0.4 - 1.8)	0.680	1	0.9 (0.4 - 1.8)	1.1 (0.5–2.7)	0.730	1	1.3 (0.6–2.6)	1 (0.5–2)	0.871
0	⁶ Model 2	1	1.03 (0.46–2.29)	0.92 (0.43–1.99)	0.910	1	0.78 (0.31–1.98)	0.82 ($0.36-1.84$)	0.623	1	0.72 ($0.35-1.45$)	1.07 (0.54–2.11)	0.377
*The <i>P</i> trend was reported from logistic regression, and the results are based on the odds ratio or OR (95% CI). *Model 2 is the main model. <i>P* P</i> value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, and zinc) + macronutrient (fiber and simple sugar), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, multivitamin + zinc + omega-3) and socioeconomic status; ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status: ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), and macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, multivitamin, zinc + vitamin D, zinc, multivitamin, zinc + vitamin D, iron, iron + multivitamin, zinc + vitamin D, multivitamin + calcium-D, and multivitamin + zinc, omega-3); ⁵ adjusted for energy, age, infected with COVID-19, and socioeconomic status; ⁴ number 5 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), and macronutrient (fiber and simple sugar), supplements (vitamin D, iron, iron + multivitamin, zinc + vitamin D, iron, iron + multivitamin + calcium-D, multivitamin + calcium-D.	d from logist COVID-19, on + multiviti onutrients (th on + multiviti on + multiviti of calcium	ic regressic and body J amin, zinc niamine, ri amin, zinc and caffeir in + zinc +	on, and the results <i>e</i> mass index; ² model + vitamin D, multi, iboflavin, niacin, Bé + vitamin D, multi ne), macronutrient · omega-3, and iron	are based on the oc I 1 + micronutrient vitamin + zinc + or: 5, folate, vitamin E vitamin + calcium- (fiber and simple : 1 + calcium).	lds ratio or s (thiamin nega-3) an nega-3, an 12, iron, z -D, and mu sugar), sup	c OR (95% e, niacin, v d socioeco zinc, and n ultivitamir pplements	CI). *Model 2 is th vitamin B12, iron, ; nonmic status; ³ adj nagnesium), and n n + zinc + omega-3 (vitamin D, zinc, 1	te main model. <i>P</i> * and zinc) + macro usted for energy, a nacronutrient (fib s, ⁵ adjusted for enu multivitamin, calc	<i>P</i> value <0 nutrient (fi ge, infecteo er and sim rrgy, age, ii num, iron +	05 shows a ber and sim ber and sim i with COV ple sugar), t nfected with vitamin D	significant level c ple sugar), suppla TD-19, body mass supplements (vita a COVID-19, and , iron, iron + mult	f association. ¹ Ad ements (zinc, mult s index, and socioc min D, zinc, mult socioeconomic st ivitamin, zinc + vi	iusted for ivitamin, cconomic ivitamin, atus; and tamin D,

International Journal of Clinical Practice

TABLE 5: Odds ratio and 95% confidence interval for unfavorable variables in tertiles of different fatty acids.

multivitamin + calcium-D, multivitamin + zinc + omega-3, and iron + calcium), and macronutrient (fiber + simple sugar) in model 2.

3. Results

3.1. Participant Characteristics. The participants' mean age was 38.7 ± 6.4 years, and their mean BMI, waist circumference, and waist-to-height ratio were 24.8 ± 3.9 kg/m², 80 ± 13 cm, and 0.49 ± 0.07 cm, respectively. Due to this study being conducted during the COVID-19 outbreak, the incidence of COVID-19 in participants was assessed from 2020 to 2021. Eighty-three participants (33.9%) were infected with COVID-19 during the previous year, and the history of infection was adjusted as a confounder in our models. Participants reported mostly low levels of physical activity (54.7%), with only 4% classified as having high physical activity. A total of 44.5% of participants (n = 109) were in the low socioeconomic status group. Table 7 represents the sociodemographic characteristics of the participants.

3.2. Dietary Intake of Participants. The average consumption of energy, macronutrients, fatty acids, vitamins, minerals, and dietary groups across the three tertiles of edible oils consumption are presented in Table 8. All of these (excluding energy intake) are adjusted for energy intake and reported as mean \pm SD. The average daily energy consumption and daily fat intake were 2,039.7 \pm 614.1 kcal/d and 70.8 \pm 25.8 g/d, respectively. Intake of fat and monosaturated fatty acids was significant in both group of animal fat and vegetable liquid oil consumption (*P* value < 0.001), while intake of protein and carbohydrate was just significant in the group of vegetable oil consumption (*P* value < 0.001).

3.3. Consumption of Liquid Vegetable Oils. Sunflower and frying oils were the most often consumed liquid oils in this study (n = 135 reporting consumption). Sesame oil was also typical (n = 25 reporting consumption), while three respondents did not report using any liquid vegetable oils. Olive oil use was separated from other liquid oils in the FFQ. We observed that while many participants (n = 167) utilized olive oil, the average daily consumption was low (2.8 ± 3.5 g/d). The consumption of liquid vegetable oils is presented in Table 1.

3.4. Appetite across Tertiles of Dietary Oils and Fatty Acids and Trans-Fatty Acid Sources. Tables 3, 4, and 9 provide evidence that the mean score of appetite was insignificant across tertiles of edible oils consumption and different fatty acid source. In the final model, the insignificant association was also observed in vegetable oils groups (OR: 2.50; 95% CI: 1.02–36.11; *P* trend = 0.712) and in animal fat oils groups (OR: 1.98; 95% CI: 0.88–5.55; *P* trend = 0.141; Table 10). Participants with a moderate intake of MUFA were four times more likely (OR: 4.10; 95% CI: 1.31–12.7; *P* trend = 0.022) to have a high appetite compared to those

with low consumption of MUFA. However, in all other groups, the association between highest intake of w3 (OR: 1.10; 95% CI: 0.44–2.74; *P* trend = 0.899) and w3/w6 ratio (OR: 0.62; 96% CI: 0.28–1.42; *P* trend = 0.124) were insignificant compared to those without consumption in final models (Tables 5 and 6). Furthermore, the association between the highest consumption of manufactured fatty acids (OR: 0.87; 95% CI: 0.33–2.26; *P* trend = 0.724) or natural fatty acids (OR: 1.23; 95% CI: 0.49–3.09; *P* trend = 0.843) and a high appetite were insignificant (Tables 5 and 6).

3.5. Mood across Tertiles of Dietary Oils and Fatty Acids and Trans-Fatty Acid Sources. The mean mood score was not significantly different among tertiles of edible oil and fatty acid intake, except for the group of participants who consumed MUFA (P value = 0.053; Tables 3, 4, and 9). There were no significant associations between the consumption of liquid vegetable oils (OR: 1.4; 95% CI: 0.6-3.4; P trend = 0.726) or animal oils (OR: 0.5; 95% CI: 0.2-1.7; P trend = 0.787) and poor mood when compared to participants who reported low levels of consumption (i.e., tertile 1; Table 10). Similar associations were observed for associations between other various fatty acid sources and poor mood including w3 (OR: 1.13; 95% CI: 0.46-2.75; P trend = 0.827), MUFA (OR: 2.47; 95% CI: 0.96-6.33; P trend = 0.365), and *w*3/*w*6 (OR: 1.13; 95% CI: 0.62–2.87; *P* trend: 0.199). Finally, there was no evidence of a significant association between high consumption of natural fatty acids (OR: 0.41; 95% CI: 0.14-1.17; P trend = 0.199) or artificial fatty acids sources (OR: 0.74; 95% CI: 0.30-1.82; P trend = 0.318) and poor mood (Tables 5 and 6).

3.6. Anthropometric Indices across Tertiles of Edible Oils and Different Fatty Acids Sources. There was no evidence of a significant association between dietary oil consumption and anthropometric indices across tertiles of intake, with the exception of those who consumed artificial fatty acids sources (P value = 0.016; Tables 7 and 9).

There was no significant association between the use of large quantities of liquid oil and anthropometric indices including overweight and obesity (OR: 1.03; 95% CI: 0.49-2.1; *P* trend = 0.989), WC (OR: 1.47; 95% CI: 0.6-2.7; *P* trend = 0.626), or WTHR (OR: 1.29; 95% CI: 0.6-2.7; *P* trend = 0.628) compared to those that consumed low amounts of liquid oil (i.e., tertile 1). Similar associations were observed for the association between animal oil consumption and overweight and obesity (OR: 0.88; 95% CI: 0.4-1.7; *P* trend = 0.826), WC (OR: 0.46; 95% CI: 0.3-1.26; *P* trend = 0.280), and WHtR (OR: 0.46; 95% CI: 0.3-1.28; *P* trend = 0.280; Table 10).

Various fatty acids sources including w3 (OR: 0.75; 95% CI: 0.35–1.60; *P* trend = 646), MUFA (OR: 0.87; 95% CI: 0.39–1.92; *P* trend = 0.952), w3/w6 ratio (OR: 0.68; 95% CI: 0.34–1.36; *P* trend = 0.275), natural fatty acids (OR: 1.10; 95% CI: 0.48–2.55; *P* trend = 0.466), and artificial fatty acids source (OR: 0.91; 95% CI: 0.42–1.91; *P* trend = 0.143) were not significantly associated with overweight and obesity (Tables 5 and 6).

										,			
						Tertiles (Tertiles of different sources of trans-fatty acids	ces of trans-fatt	ty acids				
		Terti	Tertile of natural sources (g/d)	urces (g/d)		Tertil	Tertile of artificial sources (g/d)	ources (g/d)		Tert	Tertile of total sources (g/d)	ces (g/d)	
Variable		T1: <341.4	T2: 341.4–482.2	T3: >482.2	<i>P</i> trend	T1: <39.8	T2: 39.8–71.4	T3: >71.4	<i>P</i> trend	<i>T</i> 1: <402.1	Tl: 402.1–549.7	T3: >549.7	<i>P</i> trend
		N = 81	N = 82	N = 82		N = 81	N = 82	N = 82		N = 81	N = 86	N = 82	
	Crude	1	1.5 (0.7 - 3)	1.1 (0.5–1.9)	0.959	1	0.6 (0.3–1.2)	0.8 (0.4 - 1.6)	0.645	1	1.5 (0.7 - 3.1)	$0.8 \ (0.4 - 1.6)$	0.645
High appetite	'Model 1	1	1.3 (0.6–2.8)	0.9 (0.4 - 1.9)	0.921	1	0.7 (0.3–1.5)	0.8 (0.3–2)	0.766	1	1.4(0.7-3)	0.7 (0.3–1.5)	0.446
11. 0	² Model 2	1	0.91 (0.33–2.5)	1.23 (0.49–3.09)	0.843	1	1.35 (0.48–3.80)	0.87 (0.33–2.26)	0.724	1	1.73 (0.61–5.60)	2.16 (0.83–5.60)	0.391
	Crude	1	$0.8 \ (0.4 - 1.5)$	1.2 (0.6–2.5)	0.468	1	0.6 (0.3–1.2)	0.4 (0.2-0.7)	600.0	1	$0.8 \ (0.4 - 1.6)$	0.8 (0.4 - 1.6)	0.652
Poor mood	Model 1	1	0.9 (0.4 - 1.9)	3.2 (1.4-7.5)	0.007	1	0.7 (0.3-1.5)	$0.8 \ (0.3 - 1.8)$	0.650	1	0.9 (0.4 - 1.9)	2.3 (1-5.3)	090.0
	⁴ Model 2	1	0.39 (0.11-1.35)	0.41 (0.14-1.17)	0.199	1	0.87 (0.33–2.30)	0.74 (0.30-1.82)	0.825	1	0.74 (0.23–2.39)	0.63 (0.23–1.68)	0.717
	Crude	1	1.4 (0.7–2.7)	$0.8 \ (0.4 - 1.6)$	0.683	1	0.6(0.3-1.1)	0.7 (0.3–1.3)	0.298	1	1.1 (0.6–2.2)	0.9 (0.4 - 1.7)	0.803
Overweight and	JModel	1	1.4 (0.7–2.8)	$0.8 \ (0.4 - 1.6)$	0.654	1	0.5(0.2-1)	$0.5\ (0.2-1.1)$	0.093	1	1.1 (0.6–2.2)	$0.8 \ (0.4 - 1.7)$	0.711
obesity	⁶ Model 2	1	0.67 (0.24–1.80)	1.10 (0.48–2.55)	0.466	1	1.80 (0.76–4.29)	0.91 (0.42–1.91)	0.143	1	0.60 (0.22–1.63)	0.93 (0.4–2.14)	0.283
	Crude	1	1.2 (0.5–2.8)	0.6(0.3-1.4)	0.276	1	$0.7 \ (0.3 - 1.6)$	0.7 (0.3-1.4)	0.367	1	$0.8 \ (0.4 - 1.8)$	0.6 (0.2–1.3)	0.202
High waist	Model 1	1	0.6 (0.2–1.9)	0.5 (0.1–1.8)	0.353	П	1.7 (0.5–4.9)	1.4 (0.4 - 4.8)	0.492	1	$0.4 \ (0.1 - 1.4)$	$0.4 \ (0.1 - 1.6)$	0.214
circumference	⁶ Model 2	1	0.90 (0.30–2.68)	1.41 (0.53–3.72)	0.792	1	1.24 (0.45–3.42)	0.89 ($0.36-2.18$)	0.634	1	1 (0.33–3.05)	1.18 (0.46–3.05)	0.976
	Crude	1	1.3 (0.7–2.5)	$0.8 \ (0.4 - 1.5)$	0.573	1	$0.7 \ (0.4 - 1.4)$	$0.8 \ (0.4 - 1.5)$	0.573	1	1.1 (0.6–2.2)	0.9 (0.5–1.8)	0.929
Waist-to-height ratio	/Model 1	1	1.3 (0.7–2.6)	0.7 (0.3–1.5)	0.481	1	0.6 (0.3–1.2)	0.6 (0.2–1.3)	0.195	1	1.1 (0.6–2.2)	$0.8 \ (0.4 - 1.8)$	0.751
0	⁶ Model 2	1	0.84 (0.31–2.25)	1.32 (0.57–3.03)	0.643	1	1.28 (0.54–3.06)	0.84 (0.39–1.83)	0.505	1	0.59 (0.23–1.59)	0.91 (0.39–2.11)	0.267
*The <i>P</i> trend was reported from logistic regression, and the results are based on the odds ratio or OR (95% CD). *Model 2 is the main model. <i>P</i> , * <i>P</i> value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, and zinc), macronutrient (fiber and simple sugar), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin, zinc + vitamin D, and multivitamin, zinc + onega-3), and socioeconomic status; ³ adjusted for energy, age, infected with COVID-19, body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, multivitamin, zinc + vitamin D, iron, iron + with COVID-19, and socioeconomic status; and ⁶ number 5 + micronutrients (ealcium and caffeire), macronutrient (fiber and simple sugar), supplements (vitamin, zinc + vitamin D, iron, iron + witamin D, iron, iron + witamin D, multivitamin + zinc + onega-3, and simple sugar), supplements (vitamin D, zinc, multivitamin, calcium-D, multivitamin + zinc + onega-3, and iron + calcium-D.	d from logist n COVID-19 ron + multivi mber 3 + mic min D, iron, i micronutrie itamin + calci	tic regressio , and body 1 itamin, zinc ronutrients iron + multi nts (calciun ium-D, mul	n, and the results a mass index; ² mode c+vitamin D, and t (thiamine, ribofla vitamin, zinc+vita n and caffeine), m thivitamin + zinc +c	re based on the od 11 + micronutrien multivitamin + zi tvin, niacin, B6, f min D, multivitan min D, multivitan acronutrient (fib	ds ratio or ts (thiamii nc + omegi olate, vitai nin + calciu r and sim 1 + calcium	• OR (95% ¹ ne, niacin, a-3), and s min B12, i nm-D, and nple sugar)	sed on the odds ratio or OR (95% CI). *Model 2 is the main model. <i>P</i> , * <i>P</i> value <0.05 shows a significant level of association. ¹ Adjusted for micronutrients (thiamine, niacin, vitamin B12, iron, and zinc), macronutrient (fiber and simple sugar), supplements (zinc, multivitamin, tivitamin + zinc + omega-3), and socioeconomic status; ³ adjusted for energy, age, infected with COVID-19, body mass index, and so- niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, D, multivitamin + calcium-D, and multivitamin + zinc + omega-3); ³ adjusted for energy, age, infected with COVID-19, and socioeconomic autrient (fiber and simple sugar), supplements (vitamin D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin, ga-3, and iron + calcium).	te main model. P, , and zinc), macro ttus. ³ adjusted for agnesium), macro ac + omega-3); ⁵ ad ttamin D, zinc, m	*P value <(nutrient (f energy, ag nutrient (j justed for e nultivitamii).05 shows : ber and sin ;e, infected Ther and si fiber and si nergy, age, 1, calcium,	significant level c ple sugar), supple with COVID-19, mple sugar), supj infected with COV iron + vitamin D,	f association. ¹ Adj ements (zinc, mult body mass index, blements (vitamin often- tron, iron + mult iron, iron + mult	usted for ivitamin, and so- D, zinc, conomic ivitamin,

TABLE 6: Odds ratio and 95% confidence interval for unfavorable variables in tertiles of trans-fatty acids.

Variable A or (year)				lertiles o	lertiles of edible oils				
Variable A oe (vear)		Tertile of	Tertile of vegetable liquid oil (g/d)	oil (g/d)		Tertil	Tertile of animal fat (g/d)	g/d)	
А де (уезг)	Participants $N = 245$	T1: <6 $N=85$	T2: 6-9 N = 81	T3: >9 N = 79	P value	T1: < 2.08 N = 59	T2: 2.08-4.48 N = 78	T3: >4.48 N = 108	P value
A de (vear)		Qua	Quantitative variables/mean ± SD	es/mean ± SD					
(mal) ager	37.8 (6.4)	38.2 (6.6)	40.1 (6.2)	37.7 (6.1)	0.045	38.9 (6.7)	38.2 (6.4)	38.9 (6.1)	0.787
Weight (kg)	65.5 (11.5)	65.8 (11.6)	64.8(10.9)	65.8 (12.2)	0.799	65.4(11.4)	66.1 (12.4)	65.1 (11.1)	0.828
Height (cm)	162.4 (5.4)	161.8(5.5)	162.1 (5)	163.2(5.8)	0.205	163.2 (5.7)	162 (5.8)	162.2(5)	0.393
Waist (cm)	80.0 (13.0)	78.9 (14.4)	80.8 (10.9)	80.4 (13.5)	0.630	78.8 (16.2)	81 (12.8)	79.9 (11.2)	0.611
BMI (kg/m ²)	24.8 (3.9)	25.1 (3.9)	24.5(3.6)	24.6 (4.2)	0.675	24.5(3.9)	25.1 (4.1)	24.7 (3.7)	0.635
Waist-to-height ratio (cm)	0.49 (0.07)	0.48(0.08)	0.49 (0.06)	0.49 (0.08)	0.705	0.48(0.09)	0.50(0.07)	0.49 (0.06)	0.473
Physical activity (MET-min/week)	k) 929.7 (1,178.4)	1,017.4 (1,285.6)	776.5 (735.4) 992.4 (1 Qualitative variable/N (%)	992.4 (1,404.5) ble/N (%)	0.358	1,078 (1,226.5)	971 (1,507.6)	818.6 (830.4)	0.370
Yes	s 108 (44.1)	30 (27.8)	46 (42.6)	32 (29.6)	0.016	37 (33)	40 (43.6)	60 (60.4)	0.400
Supprentent	o 137 (55.9)	55 (40.1)	35 (25.5)	47 (34.3)	C10.0	22 (20.4)	38 (35.2)	48 (44.4)	0.400
Low	w 134 (54.7)	46 (34.3)	44 (32.8)	44 (32.8)		24 (17.9)	44 (32.8)	66 (49.3)	
Physical activity Medium	ium 101 (41.2)	34 (33.7)	36 (35.6)	31 (30.7)	0.591	33 (32.7)	29 (28.7)	39 (38.6)	0.071
High	gh 10 (4.1)	5 (50)	1(10)	4(40)		2 (20)	5 (50)	3 (30)	
Marital attains	s 162 (66.1)	56 (34.6)	54 (33.3)	52 (32.1)		32 (39)	51 (51.6)	79 (71.4)	2100
INTALLIAL STALLS NO	0 83 (33.9)	29 (34.9)	27 (32.5)	27 (32.5)	766.0	27 (32.5)	27 (32.5)	29 (34.9)	0.04/
Low	w 109 (44.5)	38 (34.9)	36 (33)	35 (32.1)		31 (28.4)	32 (29.4)	46 (42.2)	
Socioeconomic status Medium	ium 67 (27.3)	27 (40.3)	17 (25.4)	23 (34.3)	0.435	12 (17.9)	24 (35.8)	31 (46.3)	0.617
High	gh 69 (28.2)	20 (29)	28 (40.6)	21 (30.4)		16 (23.2)	22 (31.9)	31 (44.9)	
High school	chool 1 (0.4)	1(100)	0	0		1 (100)	0	0	
Education Diploma		4 (57.1)	2 (28.6)	1(14.3)	0.442	1 (14.3)	4 (57.1)	2 (28.6)	0.261
College	ege 237 (96.7)	80 (33.8)	79 (33.3)	78 (32.9)		57 (24.1)	74 (31.2)	106(44.7)	
Infacted with COMP 10 Yes	s 83 (33.9)	25 (30.1)	29 (34.9)	29 (34.9)	0 556	20 (24.1)	29 (34.9)	34(41)	0.72.0
	0 162 (66.1)	60 (37)	52 (32.1)	50 (30.9)	0000	39(24.1)	49 (30.2)	74 (45.7)	077.0

TABLE 7: Characteristics of participants in tertiles of vegetable liquid oil and animal fat.

10

	Tertile	Tertile of vegetable liquid oil (g/d)	iil (g/d)		Te	Tertile of animal fat (g/d)	(p	
Variable	<i>T</i> 1: <6	T2: 6–9	T3: >9	P value	T1: <2.08	T2: 2.08-4.48	T3: >4.48	P value
	N = 85	N = 81	N = 79		N = 59	N = 78	N = 108	
Energy (kcal/d)	1,853.7 (559.7)	1,950.1 (519.2)	2,331.6 (658.5)	<0.0001	1,956.9 (617.4)	1,936.2 (481.3)	2,159.6 (673.7)	0.024
Carbohydrate (g/d)	260.87 (81.43)	273.68 (77.26)	319.16 (114.59)	<0.0001	284.05 (111.27)	269.01 (77.42)	249.58 (96.73)	0.195
Protein (g/d)	70.59 (22.02)	73.38 (21.51)	86.07 (25.12)	< 0.0001	74.32 (22.59)	75.93 (21.45)	78.12 (26)	0.596
Fat (g/d)	62.33 (25.08)	66.38 (21.86)	84.59 (25.40)	< 0.0001	62.82 (23.76)	65.43 (18.93)	79.15 (28.93)	0.0001
Fiber (g/d)	15.32 (0.56)	17.37 (6.79)	20.95(9.95)	<0.0001	18.56 (9.32)	16.09 (5.77)	18.66(8.28)	0.065
Caffeine (mg/d)	106.79 (77.03)	99.9 (82.11)	127.96 (94.20)	0.094	102.60(82.84)	111.45 (81.94)	111.04(88.73)	0.623
Linoleic acid (g/d)	10.09 (5.05)	11.27 (4)	17.50 (6.77)	<0.0001	13.01 (7.83)	11.92(4.86)	13.48 (6.16)	0.240
α -Linolenic acid (g/d)	0.320(0.178)	$0.370 \ (0.236)$	0.501 (0.297)	<0.0001	$0.356\ (0.280)$	$0.372 \ (0.187)$	0.433 (0.271)	0.103
w3/w6 ratio	0.040(0.012)	0.039 (0.013)	0.035(0.013)	0.017	0.034 (0.012)	0.039 (0.011)	0.040(0.014)	0.025
SFA (g/d)	22.42 (9.46)	23.34 (9.10)	26.66 (9.65)	0.010	18.86 (7.05)	22.39 (6.84)	28.10 (10.67)	0.0001
MUFA (g/d)	20.36 (8.64)	21.87 (8.08)	27.47 (8.39)	<0.0001	20.50 (7.67)	21.18 (6.67)	26.03(10.04)	0.0001
PUFA (g/d)	12.66 (5.60)	14.12 (4.59)	20.59 (7.52)	< 0.0001	15.62(8.63)	14.49 (5.22)	16.47 (6.88)	0.022
Cholesterol (mg/d)	272.47 (130.78)	278.78 (96.23)	330.40 (147.66)	0.007	258.01 (135.19)	285.74 (115.06)	317.90 (130.36)	0.013
			Vitamins	JS				
Thiamine (mg)	1.67(0.45)	1.82(0.51)	2.11 (0.82)	< 0.0001	1.79 (0.612)	1.8(0.580)	1.94(0.648)	0.212
Riboflavin (mg)	1.99(0.74)	2.09 (0.73)	2.47 (1.05)	< 0.0001	1.99(0.709)	2.20(0.816)	2.63(0.986)	0.166
Niacin (mg)	19.24 (5.93)	21.10 (7.73)	24.61 (10.03)	< 0.0001	20.75 (7.52)	20.76 (6.90)	22.64 (9.49)	0.209
Vitamin B6 (mg)	1.52(0.69)	1.65 (0.72)	2.05 (1.05)	< 0.0001	1.73 (0.072)	1.59(0.682)	1.84 (0.971)	0.143
Vitamin B9 (μg)	294.45(128.91)	325.48 (123.10)	403.88 (214.09)	< 0.0001	331.02 (164.73)	317.59 (138.79)	361.09 (182.15)	0.188
Vitamin B12 (μg)	4.20(1.92)	4.51(1.67)	6.62 (6.84)	< 0.0001	4.15(1.91)	5.44(4.33)	5.34(5.06)	0.153
Vitamin C (mg)	114.56 (67.98)	128.19 (68.75)	154.07 (93.15)	0.004	$138.68 \ (88.10)$	113.48 (56.66)	141.80(58.06)	0.040
			Minerals	ls				
Calcium (mg)	893.29 (398.03)	893.37 (325.21)	1.011.61 (385.28)	< 0.0001	870.58 (339.68)	973.63 (386.62)	934.27 (381.05)	0.279
Magnesium (mg)	238.60 (77.49)	248.84 (76.07)	300.95 (111.29)	< 0.0001	261 (106.53)	250.32 (72.89)	271.18 (97.95)	0.320
Zinc (mg)	8.80(3.05)	9.26 (3.05)	10.92 (3.51)	< 0.0001	9.31(3.10)	9.59 (2.99)	9.84(3.66)	0.608
Fe (mg)	13.62 (4.09)	14.57 (4.43)	17.95 (6.41)	<0.0001	15.11 (5.95)	14.50 (4.36)	16.04(5.64)	0.146
Selenium (mg)	0.07 (0.024)	0.087 (0.022)	0.07 (0.042)	0.003	0.07 (0.038)	0.07 (0.031)	0.08 (0.027)	0.107
			Food groups					
Grains (g)	351.3(112.41)	373.38 (101.06)	413.02 (187.26)	0.017	365.47 (154.53)	370.06(154.85)	391.72 (118.68)	0.416
Fruits (g)	254.03(194.50)	296.13 (179.97)	330.29 (245.52)	0.065	328.02 (287.27)	247.52 (130.37)	305.67 (201.96)	0.057
Vegetables (g)	262.34 (137.56)	302.27 (162.98)	379.23 (236.26)	< 0.0001	323.03 (179.51)	281.11 (166.06)	331.09(205.74)	0.183
Meat and its products (g)	114.90(54.43)	120.79 (49.77)	143.76 (62.21)	0.003	119.27 (59.44)	124.64(50.65)	130.99 (59.48)	0.428
Beans (g)	28.32 (20.82)	32.04 (21.83)	41.30 (42.75)	0.019	35.44(43.03)	34.07 (29.92)	32.56 (21.12)	0.837
Dairy products (g)	379.33 (288.56)	335.29 (195.25)	386.30 (266.14)	0.384	317.99 (237.19)	411.13 (278.95)	361 (232.58)	0.100
Nuts and seeds (g)	13.78 (11.73)	16.57 (9.84)	19.23 (18.61)	0.043	15.71 (17.59)	14.69 (1.44)	18.82 (14.32)	0.045
Fats (g)	16.79 (13.54)	20.73 (12.83)	32.62 (15.88)	<0.0001	16.62 (12.26)	17.33 (7.73)	31.03 (17.84)	0.0001

TABLE 8: Dietary intake of participants in tertiles of liquid vegetable oil and animal fat.

						Tertiles of	Tertiles of edible oils			
			Tertile of	Tertile of vegetable liquid oil (g/d)	l oil (g/d)		Ter	Tertile of animal fat (g/d)	g/d)	
Variable		Participants N = 245	T1: < 6 N = 85	T2: 6-9 N = 81	T3: >9 N = 79	P value	T1: < 2.08 N = 59	T2: $2.08-4.48$ N = 78	T3: >4.48 N = 108	P value
	Crude	51.8 (13.2)	52.6 (14)	50.6 (12.2)	52.3 (13.4)	0.579	50.3 (15)	50.8 (10.7)	53.4 (13.8)	0.270
Appetite score	¹ Model 1	·	51.9(1.4)	51.2(1.4)	52.4 (1.5)	0.841	50.5(1.6)	50.2(1.4)	53.7 (1.2)	0.133
•	² Model 2	I	51.9 (1.42)	50.4(1.44)	53.2 (1.52)	0.427	51.1 (1.67)	50 (1.47)	53.5 (1.25)	0.198
	Crude	29.5 (32.6)	30.5 (31.3)	22.6 (27.8)	35.5 (37.4)	0.041	33.1 (36.2)	26.7 (28.5)	29.6 (33.5)	0.527
Mood score	³ Model 1	Ι	32.5 (3.4)	24.8 (3.5)	31.2 (3.6)	0.256	34.2 (4.1)	28 (3.5)	28 (3)	0.427
	⁴ Model 2		32.9 (3.33)	26.1 (3.35)	29.4 (3.55)	0.361	33.7 (3.9)	29.6 (3.47)	27.1 (2.92)	0.415
	Crude	24.8 (3.9)	25.1 (3.9)	24.5 (3.6)	24.6 (4.2)	0.675	24.5 (3.9)	25.1 (4.1)	24.7 (3.7)	0.635
Overweight and obesity	⁵ Model 1	Ι	25.3 (0.42)	24.3(0.42)	24.7 (0.45)	0.293	24.5(0.50)	25.2 (0.44)	24.6 (0.37)	0.503
	⁶ Model 2		25.1 (0.42)	24.3(0.43)	24.8 (0.44)	0.458	24.7 (0.50)	25.1 (0.44)	24.5 (0.37)	0.579
	Crude	80 (13)	78.9 (14.4)	80.8(10.9)	80.4 (13.5)	0.630	78.8 (16.2)	81 (12.8)	79.9 (11.2)	0.611
Waist circumference	³ Model 1	Ι	78.2 (1.1)	81 (1.1)	80.8 (1.2)	0.188	79.3 (1.3)	80.4(1.2)	80 (1)	0.835
	⁶ Model 2		79.1 (1.47)	79.8 (1.49)	81.1 (1.53)	0.643	79.4 (1.74)	81 (1.52)	79.6 (1.29)	0.745
	Crude	0.49 (0.07)	0.48 (0.08)	0.49 (0.06)	$0.49 \ (0.08)$	0.705	0.48(0.09)	0.50(0.07)	0.49~(0.06)	0.473
Waist-to-height ratio	³ Model 1	I	0.49 (0.009)	0.49 (0.009)	0.49 (0.009)	0.879	0.48(0.010)	0.50(0.009)	0.49 (0.007)	0.414
	⁶ Model 2		0.48(0.009)	0.49 (0.009)	0.49~(0.009)	0.743	$0.48\ (0.010)$	0.49(0.009)	0.49(0.008)	0.699
*The crude model was resulted from one-way ANOVA, and the numbers are reported as mean ± SD. *Models 1 and 2 was resulted from covariance analysis, and the numbers are reported as mean ± SE. *Model 2 is the main model. <i>P</i> * <i>P</i> value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, and zinc), subelements (zinc, multivitamin, iron + vitamin D, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omea-3), and macronutrient (fiber, simple suar): ³ adjusted for energy, age, COVID-19.	l from one-way A 0.05 shows a signi in. iron + vitamii	NOVA, and the nu ificant level of asso n D, iron, iron + mu	mbers are reported : ciation. ¹ Adjusted fo litivitamin, zinc + vi	as mean ± SD. *Mo or energy, age, CO ¹ tamin D, and multi	dels 1 and 2 was res VID-19, and body r ivitamin + zinc + on	ulted from cova nass index; ² m	ariance analysis, an odel 1 + micronutr acronutrient (fiber.	d the numbers are ref ents (thiamine, niaci simple sugar): ³ adius	oorted as mean ± SE. in, vitamin B12, irou sted for energy, age,	*Model 2 is 1, and zinc), COVID-19,
body mass index, and socioeconomic status; ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), supplements (vitamin D, zinc, multivitamin, iron + vitamin D, iron, zinc, and magnesium), supplements (vitamin D, zinc, multivitamin, iron + vitamin D, iron, iron	conomic status; multivitamin, zir	⁴ number 3 + micro 1c + vitamin D, mul	onutrients (thiamin ltivitamin + calcium	e, riboflavin, niaci -D, and multivitan	in, B6, folate, vitan nin + zinc + omega-	nin B12, iron, 3), and macror	zinc, and magnes nutrient (fiber and	um), supplements (simple sugar); ⁵ adjus	vitamin D, zinc, m ted for energy, age,	ultivitamin, COVID-19,
and socioeconomic status. "number 5 + micronutrients (calcium and caffene), supplements (vitamin D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, multi- vitamin + calcium-D, multivitamin + zinc + omega-3, and iron + calcium), and macronutrient (fiber and simple sugar).	umber 5 + micro amin + zinc + om	onutrients (calcium rega-3, and iron + c	n and caffeine), sur alcium), and macro	pplements (vitamir mutrient (fiber and	ı D, zınc, multıvıta d simple sugar).	umin, calcium,	iron + vitamin D,	ıron, iron + multivit	amın, zınc + vitami	n D, multi-

TABLE 9: Appetite, mood, and anthropometric indices in tertiles of vegetable liquid oil and animal fat.

					Tertiles of	Tertiles of edible oils			
		Te	Tertile of vegetable liquid oil (g/d)	iid oil (g/d)			Tertile of animal fat (g/d)	(b/g)	
Variable		71: <6 M 95	T2: 6–9 M 01	T3: >9	P trend	T1: <2.08	T1: 2.08–4.48	T3: >4.48	P trend
		cg = N	N = 81	N = /9		V = V	N = /8	N = 108	
	Crude	1	1.8 (0.9 - 3.6)	0.9 (0.5 - 1.9)	0.975	1	$0.9 \ (0.4 - 2.1)$	$0.6 \ (0.2 - 1.2)$	0.111
High appetite	¹ Model 1	1	1.5 (0.7 - 3.2)	$0.8 \ (0.4 - 1.7)$	0.489	1	1 (0.4 - 2.4)	0.5 (0.2 - 1.1)	0.073
	² Model 2	1	1.26(0.5 - 3.02)	2.50 (1.02-6.11)	0.712	1	2.19(0.86-5.5)	1.98 (0.8 - 4.4)	0.141
	Crude	1	1.6 (0.8 - 3.2)	$0.4 \ (0.3 - 1.2)$	0.186	1	$0.8 \ (0.3 - 1.6)$	$0.8 \ (0.4 - 1.6)$	0.681
Poor mood	³ Model 1	1	1.6(0.7-3.3)	0.9 (0.4 - 1.9)	0.878	1	$0.7 \ (0.3 - 1.6)$	0.9(0.4-2)	0.959
	⁴ Model 2	1	0.89 (0.3 - 2.4)	1.4(0.6-3.4)	0.726	1	$1.01 \ (0.4-2.3)$	0.5 (0.2–1.7)	0.787
	Crude	1	0.9 (0.5 - 1.7)	1 (0.5 - 1.9)	0.943	1	$0.9 \ (0.4 - 1.8)$	1 (0.5 - 1.9)	0.897
Overweight and obesity	⁵ Model 1	1	1.2(0.6-2.3)	1.1 (0.5 - 2.2)	0.713	1	0.9 (0.4 - 1.9)	$1 \ (0.5 - 2.1)$	0.772
	⁶ Model 2	1	0.99(0.4-2.03)	1.03(0.49-2.1)	0.989	1	0.9 (0.4 - 1.9)	0.88(0.4 - 1.7)	0.820
	Crude	1	0.8(0.4-1.8)	0.7 (0.3 - 1.6)	0.532	1	1 (0.4 - 2.3)	1.2 (0.5 - 2.6)	0.590
High waist circumference	³ Model 1	1	0.5 (0.1 - 1.5)	0.5 (0.1 - 1.7)	0.297	1	1.2(0.4-3.8)	1.3 (0.4 - 3.6)	0.632
	⁶ Model 2	1	1.53 (0.6 - 3.6)	1.47 (0.6 - 2.7)	0.626	1	0.70(1.46 - 4.3)	$0.46\ (0.3-1.26)$	0.280
	Crude	1	0.9 (0.5 - 1.7)	0.9 (0.4 - 1.7)	0.801	1	$0.8 \ (0.4 - 1.7)$	$1.1 \ (0.6-2.2)$	0.499
Waist-to-height ratio	³ Model 1	1	1.2 (0.6 - 2.3)	0.9 (0.4 - 1.8)	0.927	1	$0.8 \ (0.4 - 1.7)$	1.2 (0.6 - 2.4)	0.405
ı	⁶ Model 2	1	1.2 (0.5 - 2.4)	1.29 (0.6–2.7)	0.626	1	0.7 (0.3 - 1.4)	0.46(0.3-1.26)	0.280
*The <i>P</i> trend was reported from logistic regression, and the results are based on the odds ratio or OR (95% CI). *Model 2 is the main model. <i>P* P</i> value <0.05 shows a significant level of association. ¹ Adjusted for energy, age, infected with COVID-19, and body mass index; ² model 1 + micronutrients (thiamine, niacin, vitamin B12, iron, and zinc), macronutrient (fiber and simple sugar), supplements (zinc, multivitamin, iron + vitamin D, iron, iron + multivitamin, zinc + vitamin D, and multivitamin + zinc + omega-3), and socioeconomic status. ³ adjusted for energy, age, infected with COVID-19, body mass index, and so cioeconomic status. ³ adjusted for energy, age, infected with COVID-19, body mass index, and so cioeconomic status. ³ andjusted for energy, age, infected with COVID-19, and socioeconomic status. ³ adjusted for energy, age, infected with COVID-19, and socioeconomic status. ⁴ number 3 + micronutrients (thiamine, riboflavin, niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, multivitamin + rainc + omega-3); ⁵ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and ⁶ number 3 + micronutrients (vitamin D, multivitamin + calcium-D), and magnesium D, iron, iron + witamin D, iron, iron + multivitamin + calcium-D, and anot (fibers on d effents) supplements (vitamin D, zinc, multivitamin + calcium), and anot magnesim - zinc + omega-3); ⁵ adjusted for energy, age, infected with COVID-19, and socioeconomic status; and ⁶ number 3 + micronutrients (vitamin D, iron, iron + utiamin D, iron, iron + vitamin D, iron, iron + vitamin D, iron, iron + otherwise and ⁶ number 3 - microsconomic status and energy, age, infected with COVID-19, and socioeconomic status and ⁶ number 3 - microsconomic status and energy age infected with COVID-19, and socioeconomic status and ⁶ number 3 - microsconomic status and	ogistic regression, -19, and body ma ultivitamin, zinc + -microntrients (t on, iron + multivit trients (calcium au trients (calcium au	and the result: and the result: vitamin D, an thiamine, ribo amin, zinc + vi nd caffeine), s	s are based on the odds ratio or (del 1 + micronutrients (thiamine d multivitamin + zinc + omega- flavin, niacin, B6, folate, vitam (tamin D, multivitamin + calciun upplements (vitamin D, zinc, rr urplements (fiber - and simmla second)	sed on the odds ratio or OR (95% CI). *Model 2 is the main model. <i>P*P</i> value <0.05 shows a significant level of association. ¹ Adjusted for nicronutrients (thiamine, niacin, vitamin B12, iron, and zinc), macronutrient (fiber and simple sugar), supplements (zinc, multivitamin, ivitamin + zinc + omega-3), and socioeconomic status, ³ adjusted for energy, age, infected with COVID-19, body mass index, and so- niacin, B6, folate, vitamin B12, iron, zinc, and magnesium), macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, D, multivitamin + calcium-D, and multivitamin, macronutrient (fiber and simple sugar), supplements (vitamin D, zinc, D, multivitamin + calcium-D, and multivitamin D, zinc, multivitamin, calcium, iron + vitamin D, iron, iron + multivitamin D, zinc, multivitamin, calcium D, iron, iron + vitamin D, iron, iron + witamin D, iron, iron + witamin D, zinc, multivitamin + calcium-D, multivitamin + calcium).	odel 2 is the mai B12, iron, and z nomic status: 3a ic, and magnesii amin + zinc + on ium, iron + vitar	n model. <i>P</i> * <i>P</i> valu inc.), macronutriei djusted for energ alm), macronutrie nega-3); ⁵ adjusted nin D, iron, iron.	<pre>te <0.05 shows a signifu th (fiber and simple sug y, age, infected with C int (fiber and simple su for energy, age, infected + multivitamin, zinc + v</pre>	cant level of association. gar), supplements (zinc, 1 OVID-19, body mass ir ugar), supplements (vita 1 with COVID-19, and sc ritamin D, multivitamin	¹ Adjusted for multivitamin, ndex, and so- min D, zinc, scioeconomic + calcium-D,
m (> ngama - anna - annan mm		, alla 11140.	ament (more and ameter	c angmi.					

International Journal of Clinical Practice

TABLE 10: Odds ratio and 95% confidence interval for unfavorable variables in tertiles of edible oils.

There was no evidence of a significant association between consuming various fatty acid sources including w3(OR: 1.49; 95% CI: 0.63–3.54; *P* trend = 0.111), MUFA (OR: 1.01; 95% CI: 0.38–2.64; *P* trend = 0.694), w3/w6 ratio (OR: 0.77; 95% CI: 0.34–1.7; *P* trend = 0.490), natural fatty acids (OR: 1.41; 95% CI: 0.53–3.72; *P* trend = 0.792), or artificial fatty acids (OR: 0.89; 95% CI: 0.38–2.18; *P* trend = 0.634), and odds of a high WC (Tables 5 and 6).

Similarly, there was no evidence of a significant association between consumption of w3 (OR: 0.92; 95% CI: 0.43–1.99; *P* trend = 0.910), MUFA (OR: 0.82; 95% CI: 0.36–1.84; *P* trend = 0.623), w3/w6 ratio (OR: 1.07; 95% CI: 0.54–2.11; *P* trend = 0.377), natural fatty acids sources (OR: 1.32; 95% CI: 1.32–0.57; *P* trend = 0.643), and artificial fatty acids sources (OR: 0.84; 95% CI: 0.39–1.83; *P* trend = 0.505), and odds of having a high waist-to-height ratio (Tables 5 and 6).

4. Discussion

To the best of our knowledge, this is the first study that has investigated the association between edible oils and anthropometric indices, mood, and appetite in the female staff of Tehran University of Medical Sciences. The present study found no significant associations between the consumption of edible oils or fatty acid sources and mood, anthropometric indices, or appetite. However, individuals who consumed moderate amounts of MUFA were more likely to have a higher appetite.

Dietary oils and fats are important sources of energy and different types of fatty acids are necessary for physiological functions. In contrast, overconsumption of dietary oils may have adverse effects on health, such as an increased risk of chronic diseases, diabetes, and obesity [27]. In the present study, energy intake was higher with increased consumption of vegetable liquid oils and animal fat. Natural fats and oils are a combination of MUFA, PUFA, and saturated fatty acids [28]. The results of this study indicated that the intake of PUFA increased with the consumption of liquid vegetable oils. A study assay to determine the fatty acid composition of several vegetable oils found that oils, such as corn oil (PUFA: 48 ± 4.5 g/d) or sunflower oil (PUFA: 59.5 ± 7.5 g/d), were considered to have a high amount of PUFA [29]. Furthermore, our findings suggested that MUFA and saturated fatty acids intake was higher with higher consumption of animal fats. Previous work by Gilani et al. evaluating animal oils [30] and Nazari et al. [31] found similar results (SFA: 56 ± 4.1 g/d, MUFA: $24.8 \pm 1.8 \text{ g/d}$).

There are many studies that have examined the relationship between olive oil consumption and chronic disease risk [32–34]. In the present study, 167 participants reported consuming olive oil, but the amount of olive oil consumed by participants ($2.88 \pm 3.5 \text{ g/d}$) was much lower than the average intake of olive oil ($22.7 \pm 44 \text{ g/d}$) reported in a previous literature review of studies that examined the effects of the Mediterranean diet on health and diseases [35].

Appetite is an important factor to be considered for the regulation of body weight. Many factors such as medications, mood, dietary choices, neurotransmitters, and hormones such as leptin, ghrelin, glucagon-like peptide (GLP-1), cholecystokinin (CCK), and YY peptide (PYY) are involved in controlling appetite [36]. Findings in the present study suggested that higher consumption of MUFA from various dietary sources increased the risk of having a high appetite. Our findings are consistent with a comprehensive review of the literature that found that MUFA consumption was linked to a weaker PYY response compared to PUFA consumption and suggested that a high MUFA diet may enhance appetite [37]. However, other research evaluating the role of fatty acid consumption on appetite has contradicted our findings. A study that evaluated 12 overweight patients with type 2 diabetes found that MUFA (i.e., the predominant fatty acid in olive oil) had a greater effect on GLP-1 stimulation when compared to saturated fatty acid (i.e., found in butter) [38]. GLP-1 is one of the primary hormones that influences and regulates satiety. In other words, the findings suggested that consuming MUFA would result in greater GLP-1 stimulation, theoretically resulting in a lower appetite compared to consuming saturated fatty acids. Another study found that the reduction in ghrelin (hunger hormone) after PUFA and MUFA consumption was significantly greater when compared to saturated fatty acid consumption [39]. However, a clinical trial found that consuming high amounts of PUFA, MUFA, or trans-fatty acids had no effect on appetite or energy consumption in overweight subjects [40]. The conflicting findings may be due to differences in study design, populations, and measurement tools. For instance, the clinical experiment was conducted over a brief period of time (3 days), or perhaps overweight persons were less impacted by manipulation and dietary modifications in the lab setting with calorie meter. A study evaluating 40 normal-weight adults found that PUFA consumption resulted in stronger appetite control compared to consuming MUFA or saturated fatty acids [38]. One of the possible mechanistic reasons for the inverse relationship between PUFA consumption and body weight or appetite may be the association with fatty acid beta-oxidation changes [38, 41] and increased mitochondrial respiration of liver cells and cardiac and skeletal muscle [42]. Finally, a study by Kozimor et al. with an RCT design observed an increase in satiety after consuming saturated fatty acid sources compared to MUFA [43]. However, the conflicting findings from this study may be due to the very high percentage of fat used in this study (providing 70% of a person's energy from fat) compared to other studies.

The present study found no relationship between dietary oil or fatty acid consumption and mood. Many studies have found that the Mediterranean diet, which is low in trans- and saturated-fatty acids and rich in omega-3 fatty acids, was associated with better mood and lower levels of depression [32, 44, 45]. Some studies have found that the Western diet, characterized as high consumption of red meat, processed foods, fast foods, and sweets, and low consumption of fruits and vegetables, was associated with poor mental health [46–48]. In the present study, participants may be more aware of their consumption of processed foods compared to the general population resulting in more controlled consumption. Previous work has found a reduced risk of depression and mental disorders with omega-3 fatty acids intake [49–51]. Unexpectedly, our findings did not suggest that omega-3 fatty acid intake was associated with mood. However, it is important to consider that this relationship has been found in randomized controlled trials and clinical trials evaluating omega-3 supplementation, whereas observational studies have suggested conflicting findings [49–51].

According to our findings, obesity was related to the higher intake of artificial sources of trans-fatty acids. Furthermore, in our study, a higher intake of omega-3 fatty acids was associated with decreased odds of having abdominal adiposity (i.e., high waist circumference). Various studies have shown that dietary fat intake is positively associated with the risk of having overweight or obesity [52, 53]. However, the consumption of calories from fat alone may only have a small effect on weight, and rather, the type of fatty acid, especially trans-fatty acid, saturated-fatty acid, and animal fats, is a more important factor [54]. A study aiming to determine the relationship between different types of fat intake and long-term weight changes in 121,000 American adults found that higher intakes of saturated- and trans-fatty acids were directly associated with weight gain in both men and women [28]. Furthermore, another study observed that high consumption of artificial trans-fatty acids prevented weight loss, especially in women [55], which is aligned with findings in previous studies and the present study. Other studies have also shown that the consumption of artificial trans-fatty acids was associated with obesity in children [56, 57]. Trans-fatty acids have been suggested to increase body mass index and waist circumference by altering some SNPs (single nucleotide polymorphisms) of the FTO (fat mass and obesity-associated) gene [58]. These fatty acids have also been associated with changes in intestinal microbiota [59], which may influence obesity risk.

A study by Micallef et al. found that plasma omega-3 fatty acids were inversely associated with BMI, waist circumference, and hip circumference, especially in obese individuals [60]. Furthermore, a study by Haghravan et al. in 50 overweight women found that body weight, body fat percentage, and waist circumference were significantly reduced in those that received omega-3 supplementation compared to the control group [61]. A possible mechanistic explanation for these findings may be increased fat oxidation [62] and increased satiety after omega-3 intake [63]. However, other studies with RCT design have found no association between omega-3 intake and changes in weight and waist circumference [64, 65].

The present study has limitations that are important to consider in the interpretation of the findings. The study design was cross-sectional, which does not allow for the determination of cause-and-effect relationships between dietary oils or fatty acid consumption and appetite, mood, and anthropometric indices; also, our low sample size of the study led to a decrease in the study power and the lack of significance of the main results. To collect dietary intake from participants, an FFQ was used, which is subject to recall bias, social desirability bias, and a possibility of over- or under-estimating dietary intake. However, we mitigated the risk of over- and under-reporting by establishing reasonable energy intake cut-offs prior to statistical analysis. The study population consisted of female staff of Tehran University of Medical Sciences in Iran, and thus, the findings are not generalizable to males or other populations. Notably, many questions within the questionnaires used in this study may be subject to errors or changes in response due to participant burden. To address this possibility, the answers of each person were checked by a research assistant, and in the case of a concern, we called the person to verify the answers. Finally, while we collected important demographic information, we did not account for all the possible factors (e.g., smoking status) that may have influenced the associations.

The strengths of the present study were that it was, to the best of our knowledge, the first study to evaluate the relationship between dietary oils consumption and anthropometric indices, mood, and appetite in women staff of Tehran University of Medical Sciences. The food frequency questionnaire used in this study had 168 items and is validated, reliable, and covered most of the foods commonly consumed by participants. Also, in this study, physical activity state and the relationship between fatty acids (omega-3, MUFA, and omega-3/omega-6 ratios) and trans-fatty acid sources (natural, artificial, and total sources) were surveyed by appetite, mood, and anthropometric indices. Finally, our analyses were adjusted for many important and clinically relevant confounders (such as nutrients, supplements, energy, etc.).

5. Conclusion

In the present study, we found a significant association between moderate intake of MUFA and a higher appetite but no evidence of an association between dietary oils consumption and anthropometric indices or mood. A balanced diet low in fast food meals, processed foods, cakes, cookies, and sweets is suggested to limit the consumption of artificial trans-fatty acids.

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Ethical Approval

This study was approved by the ethics committee of Tehran University of Medical Sciences.

Consent

Informed consent was obtained online from all participants in the study.

Disclosure

Mobina Zeinolabedin is considered a co-first author.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Authors' Contributions

NK, LA, and MM designed the study; MM supported the analysis of the POMS questionnaire and mood assessment; NK carried out the study; NK and MZ analyzed the data; NK and LA interpreted the findings; NK drafted the manuscript; and MZ and LA revised the final manuscript. NB commented on the presentation of data, and his comments improved the quality of the paper significantly. He also commented on the different parts of the study and reviewed the paper scientifically and edited the paper for language errors. All authors read and approved the final manuscript.

Acknowledgments

The authors thank the directors of the School of Nutrition and Dietetics at Tehran University of Medical Sciences for allowing them to conduct a cross-sectional study for the purposes of determining the relationship between dietary oils and anthropometric indices, mood, and appetite among women staff of Tehran University of Medical Sciences. The Human Ethical Committee of Tehran University of Medical Science approved the study protocol (IR.TUMS.MEDICINE.REC.1400.241).

References

- M. Mirzaei and M. Nikamal, "Relationship between anthropometrics and quality of life with depression in employed women aged 25–40 years in Yazd city," *Journal of Shahid Sadoughi University of Medical Sciences*, vol. 28, no. 4, pp. 2564–2573, 2020.
- [2] https://www.who.int/news-room/fact-sheets/detail/obesityand-overweight.
- [3] S. Djalalinia, S. Saeedi Moghaddam, A. Sheidaei et al., "Patterns of obesity and overweight in the Iranian population: findings of STEPs 2016," *Frontiers in Endocrinology*, vol. 11, p. 42, 2020.
- [4] C. M. Apovian, "Obesity: definition, comorbidities, causes, and burden," *American Journal of Managed Care*, vol. 22, no. 7 Suppl, pp. s176–s185, 2016.
- [5] S. M. Cheong, M. Kandiah, K. Chinna, Y. M. Chan, and H. A. Saad, "Prevalence of obesity and factors associated with it in a worksite setting in Malaysia," *Journal of Community Health*, vol. 35, no. 6, pp. 698–705, 2010.
- [6] A. Rahmani, K. Sayehmiri, K. Asadollahi, D. Sarokhani, F. Islami, and M. Sarokhani, "Investigation of the prevalence of obesity in Iran: a systematic review and meta-analysis study," *Acta Medica Iranica*, vol. 53, no. 10, pp. 596–607, 2015.
- [7] C. S. Crandall, "Prejudice against fat people: ideology and selfinterest," *Journal of Personality and Social Psychology*, vol. 66, no. 5, pp. 882–894, 1994.
- [8] M. E. Moore, A. Stunkard, and L. Srole, "Obesity, social class, and mental illness," *JAMA*, vol. 181, no. 11, pp. 962–966, 1962.
- [9] Y. C. Chooi, C. Ding, and F. Magkos, "The epidemiology of obesity," *Metabolism*, vol. 92, pp. 6–10, 2019.

- [10] M. Fong, A. Li, A. J. Hill et al., "Mood and appetite: their relationship with discretionary and total daily energy intake," *Physiology & Behavior*, vol. 207, pp. 122–131, 2019.
- [11] T. Ljungberg, E. Bondza, and C. Lethin, "Evidence of the importance of dietary habits regarding depressive symptoms and depression," *International Journal of Environmental Research and Public Health*, vol. 17, no. 5, p. 1616, 2020.
- [12] T. Maher, M. Deleuse, S. Thondre, A. Shafat, and M. E. Clegg, "A comparison of the satiating properties of medium-chain triglycerides and conjugated linoleic acid in participants with healthy weight and overweight or obesity," *European Journal* of Nutrition, vol. 60, no. 1, pp. 203–215, 2021.
- [13] T. Maher and M. E. Clegg, "Dietary lipids with potential to affect satiety: mechanisms and evidence," *Critical Reviews in Food Science and Nutrition*, vol. 59, no. 10, pp. 1619–1644, 2019.
- [14] N. Torres-Castillo, J. A. Silva-Gomez, W. Campos-Perez et al., "High dietary ω-6:ω-3 PUFA ratio is positively associated with excessive adiposity and waist circumference," *Obes Facts*, vol. 11, no. 4, pp. 344–353, 2018.
- [15] C. S. Thesing, M. Bot, Y. Milaneschi, E. J. Giltay, and B. W. Penninx, "Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders," *Psychoneuroendocrinology*, vol. 87, pp. 53–62, 2018.
- [16] X. Liu, P. M. Kris-Etherton, S. G. West et al., "Effects of canola and high-oleic-acid canola oils on abdominal fat mass in individuals with central obesity," *Obesity*, vol. 24, no. 11, pp. 2261–2268, 2016.
- [17] K. R. Polley, F. Kamal, C. M. Paton, and J. A. Cooper, "Appetite responses to high-fat diets rich in mono-unsaturated versus poly-unsaturated fats," *Appetite*, vol. 134, pp. 172–181, 2019.
- [18] F. Zamora Zamora, "Olive oil and body weight. Systematic review and meta-analysis of randomized controlled trials," *Spanish magazine of Public Health*, vol. 92, 2018.
- [19] S. Saedi, M. Noroozi, N. Khosrotabar, S. Mazandarani, and B. Ghadrdoost, "How canola and sunflower oils affect lipid profile and anthropometric parameters of participants with dyslipidemia," *Medical Journal of the Islamic Republic of Iran*, vol. 31, no. 1, pp. 23–28, 2017.
- [20] S. Hosseinpour-Niazi, P. Mirmiran, F. Hosseini-Esfahani, and F. Azizi, "Is the metabolic syndrome inversely associates with butter, non-hydrogenated- and hydrogenated-vegetable oils consumption: Tehran lipid and glucose study," *Diabetes Research and Clinical Practice*, vol. 112, pp. 20–29, 2016.
- [21] A. Safaee, A. Pourhoseingholi, M. Pourhoseingholi et al., "Overweight and obesity and related factors in urban Iranian population aged between 20 to 84 years," *Annals of Medical and Health Sciences Research*, vol. 3, no. 2, pp. 171–176, 2013.
- [22] "IPAQ-questionnaire," https://ugc.futurelearn.com/uploads/ files/bc/c5/bcc53b14-ec1e-4d90-88e3-1568682f32ae/IPAQ_ PDF.pdf.
- [23] S. M. M. Hazavehei, "Comparing the effect of two methods of presenting physical education ii course on the attitudes and practices of female students towards regular physical activity in Isfahan university of medical sciences," *Iranian Journal of Medical Education*, vol. 8, no. 19, 2008.
- [24] D. M. L. M. D. L. F. McNair, EdITS Manual for the Profile of Mood States (POMS), Educational and Industrial Testing Service, San Diego, CA, USA, 1992.
- [25] L. Azadbakht and A. Esmaillzadeh, "Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women," *Journal of Nutrition*, vol. 139, no. 2, pp. 335–339, 2009.

- [26] K. Al-Rubean, A. M. Youssef, Y. Al Farsi et al., "Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study," *Annals of Saudi Medicine*, vol. 37, no. 1, pp. 21–30, 2017.
- [27] H. Eyre, R. Kahn, R. M. Robertson et al., "Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American cancer society, the American diabetes association, and the American heart association," *Circulation*, vol. 109, no. 25, pp. 3244–3255, 2004.
- [28] X. Liu, Y. Li, D. K. Tobias et al., "Changes in types of dietary fats influence long-term weight change in US women and men," *Journal of Nutrition*, vol. 148, no. 11, pp. 1821–1829, 2018.
- [29] V. Kostik, S. Memeti, and B. Bauer, "Fatty acid composition of edible oils and fats," *Journal of Hygienic Engineering and Design*, vol. 4, pp. 112–116, 2013.
- [30] S. Gholami Gilani, "Fatty acid profile and heavy metal (copper, chromium and cobalt) content in animal oils in Ilam province," *Journal of Food Hygiene*, vol. 10, no. 38, pp. 15–30, 2020.
- [31] B. Nazari, "Determination of fatty acid profiles in ghee and olive oil with emphasis on trans fatty acids by gas chromatography," *Journal of Shahrekord Uuniversity of Medical Sciences*, vol. 10, no. 4, pp. 57–63, 2009.
- [32] J. Rienks, A. J. Dobson, and G. D. Mishra, "Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: results from a large community-based prospective study," *European Journal of Clinical Nutrition*, vol. 67, no. 1, pp. 75–82, 2013.
- [33] C. Donat-Vargas, H. Sandoval-Insausti, J. L. Penalvo et al., "Olive oil consumption is associated with a lower risk of cardiovascular disease and stroke," *Clinical Nutrition*, vol. 41, no. 1, pp. 122–130, 2022.
- [34] L. Schwingshackl, A. M. Lampousi, M. P. Portillo, D. Romaguera, G. Hoffmann, and H. Boeing, "Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials," *Nutrition & Diabetes*, vol. 7, no. 4, p. e262, 2017.
- [35] C. Davis, J. Bryan, J. Hodgson, and K. Murphy, "Definition of the mediterranean diet; a literature review," *Nutrients*, vol. 7, no. 11, pp. 9139–9153, 2015.
- [36] J. C. G. Halford, J. A. Harrold, E. J. Boyland et al., "Serotonergic drugs: effects on appetite expression and use for the treatment of obesity," *Drugs*, vol. 67, no. 1, pp. 27–55, 2007.
- [37] J. A. Cooper, "Factors affecting circulating levels of peptide YY in humans: a comprehensive review," *Nutrition Research Reviews*, vol. 27, no. 1, pp. 186–197, 2014.
- [38] C. Thomsen, H. Storm, J. J. Holst, and K. Hermansen, "Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes," *The American Journal of Clinical Nutrition*, vol. 77, no. 3, pp. 605–611, 2003.
- [39] J. L. Stevenson, H. C. Clevenger, and J. A. Cooper, "Hunger and satiety responses to high-fat meals of varying fatty acid composition in women with obesity," *Obesity*, vol. 23, no. 10, pp. 1980–1986, 2015.
- [40] A. Flint, B. Helt, A. Raben, S. Toubro, and A. Astrup, "Effects of different dietary fat types on postprandial appetite and energy expenditure," *Obesity Research*, vol. 11, no. 12, pp. 1449–1455, 2003.
- [41] E. Doucet, N. Almeras, M. White, J. P. Despres, C. Bouchard, and A. Tremblay, "Dietary fat composition and human

adiposity," European Journal of Clinical Nutrition, vol. 52, no. 1, pp. 2–6, 1998.

- [42] S. Kaur, "Considerations for development of low-cost supplementary foods for lactating women in India-a review," *Nutrition & Food Science*, vol. 51, no. 3, 2020.
- [43] A. Kozimor, H. Chang, and J. A. Cooper, "Effects of dietary fatty acid composition from a high fat meal on satiety," *Appetite*, vol. 69, pp. 39–45, 2013.
- [44] R. S. Opie, C. Itsiopoulos, N. Parletta et al., "Dietary recommendations for the prevention of depression," *Nutritional Neuroscience*, vol. 20, no. 3, pp. 161–171, 2017.
- [45] A. Sánchez-Villegas, M. A. Martinez-Gonzalez, R. Estruch et al., "Mediterranean dietary pattern and depression: the PREDIMED randomized trial," *BMC Medicine*, vol. 11, no. 1, p. 208, 2013.
- [46] W. H. Oddy, M. Robinson, G. L. Ambrosini et al., "The association between dietary patterns and mental health in early adolescence," *Preventive Medicine*, vol. 49, no. 1, pp. 39–44, 2009.
- [47] P. A. Ford, K. Jaceldo-Siegl, J. W. Lee, W. Youngberg, and S. Tonstad, "Intake of Mediterranean foods associated with positive affect and low negative affect," *Journal of Psychosomatic Research*, vol. 74, no. 2, pp. 142–148, 2013.
- [48] T. N. Akbaraly, E. J. Brunner, J. E. Ferrie, M. G. Marmot, M. Kivimaki, and A. Singh-Manoux, "Dietary pattern and depressive symptoms in middle age," *British Journal of Psychiatry*, vol. 195, no. 5, pp. 408–413, 2009.
- [49] C. Sanhueza, L. Ryan, and D. R. Foxcroft, "Diet and the risk of unipolar depression in adults: systematic review of cohort studies," *Journal of Human Nutrition and Dietetics*, vol. 26, no. 1, pp. 56–70, 2013.
- [50] A. M. Taylor and H. D. Holscher, "A review of dietary and microbial connections to depression, anxiety, and stress," *Nutritional Neuroscience*, vol. 23, no. 3, pp. 237–250, 2020.
- [51] N. Parletta, D. Zarnowiecki, J. Cho et al., "A Mediterraneanstyle dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: a randomized controlled trial (HELFIMED)," *Nutritional Neuroscience*, vol. 22, no. 7, pp. 474–487, 2019.
- [52] L. Lissner and B. L. Heitmann, "Dietary fat and obesity: evidence from epidemiology," *European Journal of Clinical Nutrition*, vol. 49, no. 2, pp. 79–90, 1995.
- [53] N. E. Sherwood, R. Jeffery, S. French, P. Hannan, and D. Murray, "Predictors of weight gain in the pound of prevention study," *International Journal of Obesity*, vol. 24, no. 4, pp. 395–403, 2000.
- [54] A. E. Field, W. C. Willett, L. Lissner, and G. A. Colditz, "Dietary fat and weight gain among women in the nurses' health study," *Obesity*, vol. 15, no. 4, pp. 967–976, 2007.
- [55] V. Chajès, C. Biessy, P. Ferrari et al., "Plasma elaidic acid level as biomarker of industrial trans fatty acids and risk of weight change: report from the EPIC study," *PLoS One*, vol. 10, no. 2, Article ID e0118206, 2015.
- [56] N. Ghazavi, E. Rahimi, Z. Esfandiari, and A. Shakerian, "Accuracy of the amount of trans-fatty acids in traffic light labelling of traditional sweets distributed in Isfahan, Iran," *ARYA Atheroscler*, vol. 16, no. 2, pp. 79–84, 2020.
- [57] M. Honicky, S. M. Cardoso, L. R. A. de Lima et al., "Added sugar and trans fatty acid intake and sedentary behavior were associated with excess total-body and central adiposity in children and adolescents with congenital heart disease," *Pediatric Obesity*, vol. 15, no. 6, Article ID e12623, 2020.
- [58] G. Koochakpour, Z. Esfandiar, F. Hosseini-Esfahani et al., "Evaluating the interaction of common FTO genetic variants,

added sugar, and trans-fatty acid intakes in altering obesity phenotypes," *Nutrition, Metabolism, and Cardiovascular Diseases*, vol. 29, no. 5, pp. 474–480, 2019.

- [59] Y. Hua, R. Fan, L. Zhao et al., "Trans-fatty acids alter the gut microbiota in high-fat-diet-induced obese rats," *British Journal of Nutrition*, vol. 124, no. 12, pp. 1251–1263, 2020.
- [60] M. Micallef, I. Munro, M. Phang, and M. Garg, "Plasma n-3 Polyunsaturated Fatty Acids are negatively associated with obesity," *British Journal of Nutrition*, vol. 102, no. 9, pp. 1370–1374, 2009.
- [61] S. Haghravan, S. A. Keshavarz, R. Mazaheri, Z. Alizadeh, and M. A. Mansournia, "Effect of omega-3 PUFAs supplementation with lifestyle modification on anthropometric indices and Vo2 max in overweight women," *Archives of Iranian Medicine*, vol. 19, no. 5, pp. 342–347, 2016.
- [62] C. Couet, J. Delarue, P. Ritz, J. M. Antoine, and F. Lamisse, "Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults," *International Journal of Obesity*, vol. 21, no. 8, pp. 637–643, 1997.
- [63] D. Parra, A. Ramel, N. Bandarra, M. Kiely, J. A. Martinez, and I. Thorsdottir, "A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss," *Appetite*, vol. 51, no. 3, pp. 676–680, 2008.
- [64] H. E. Bays, K. C. Maki, R. T. Doyle, and E. Stein, "The effect of prescription omega-3 fatty acids on body weight after 8 to 16 weeks of treatment for very high triglyceride levels," *Post-graduate Medicine*, vol. 121, no. 5, pp. 145–150, 2009.
- [65] M. Rafraf, E. Mohammadi, M. Asghari-Jafarabadi, and L. Farzadi, "Omega-3 fatty acids improve glucose metabolism without effects on obesity values and serum visfatin levels in women with polycystic ovary syndrome," *Journal of the American College of Nutrition*, vol. 31, no. 5, pp. 361–368, 2012.