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Objective. To investigate the clinical application of the three-dimensional (3D) radiomics model of the CT image in the diagnosis
and identifcation of ureteral calculus and phlebolith.Method. Sixty-one cases of ureteral calculus and 61 cases of phlebolith were
retrospectively investigated. Te enrolled patients were randomly categorized into the training set (n� 86) and the testing set
(n� 36) with a ratio of 7 : 3. Te plain CT scan images of all samples were manually segmented by the ITK-SNAP software,
followed by radiomics analysis through the Analysis Kit software. A total of 1316 texture features were extracted. Ten, the
maximum correlation minimum redundancy criterion and the least absolute shrinkage and selection operator algorithm were
used for texture feature selection.Te feature subset with the most predictability was selected to establish the 3D radiomics model.
Te performance of the model was evaluated by the receiver operating characteristic (ROC) curve, and the area under the ROC
curve (AUC) was also calculated. Additionally, the decision curve was used to evaluate the clinical application of the model.
Results. Te 10 selected radiomics features were signifcantly related to the identifcation and diagnosis of ureteral calculus and
phlebolith. Te radiomics model showed good identifcation efciency for ureteral calculus and phlebolith in the training set
(AUC� 0.98; 95%CI: 0.96–1.00) and testing set (AUC� 0.98; 95%CI: 0.95–1.00).Te decision curve thus demonstrated the clinical
application of the radiomics model. Conclusions. Te 3D radiomics model based on plain CT scan images indicated good
performance in the identifcation and prediction of ureteral calculus and phlebolith and was expected to provide an efective
detection method for clinical diagnosis.

1. Introduction

Ureteral calculus is one of the most common diseases in the
urinary system and is also a common disease-causing acute
abdomen clinically, with a high incidence and recurrence rate,
which adversely afects human health and life [1–5]. Patients
with ureteral calculus need timely intervention and treatment.
Terefore, an accurate diagnosis of ureteral calculus is of great
importance [1]. Currently, various methods have been de-
veloped for the clinical detection of urinary calculus. Te ab-
dominal plain flm shows a certain diagnostic efect on positive
calculus, but it can barely detect negative calculus. Ultrasound
can show calculus and urinary tract obstruction, but it is easily
afected by the experience and manipulation of the doctors.

However, computed tomography (CT) can clearly show the
location, size, and quantity of calculus, urinary tract obstruction,
and the changes in surrounding structures [1]. However, for
some patients with a urinary tract infection or emaciation, the fat
space surrounding the ureter disappears on plain CT scan
images, and it may be difcult for radiologists to accurately track
the path of the ureter [6]. In addition, ureteral calculus and
phlebolith are not specifc in CT images, showing high-density
nodular shadows.Tus, it is difcult to distinguish them only by
the image features observed by the naked eye [7].

As a novel and noninvasive technology, radiomics can
mine the texture features in medical images in high-
throughput and quantify the visual image data through
a variety of advanced image processingmethods, followed by
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objective and quantitative analysis [8]. Texture features
include frst-order features, shape and higher-order features
(such as the gray-level cooccurrence matrix (GLCM), gray-
levelrun-length matrix (GLRLM), gray-level size zone ma-
trix (GLSZM), neighborhood gray-tone diference matrix
(NGTDM), etc.). First-order features are analyzed based on
the single pixel or voxel, which describe the texture of ROI
by measuring the distribution of intensity levels of voxels
and do not show the spatial relationship of voxels. Shape is
a description of the geometric characteristics of ROI. Gray-
level cooccurrence matrix (GLCM) belongs to the second-
order gray histogram; it describes the spatial relationships of
pairs of pixels or voxels with predefned grayscale intensities
and distances in diferent directions. Gray-levelrun-length
matrix (GLRLM) describes the spatial distribution in-
formation of continuous pixels with the same gray level in
one or more directions. Gray-level size zone matrix
(GLSZM), whose principle is similar to GLRLM, emphasizes
that the counts of the number of zones of adjoining pixels or
voxels with the same gray level form the basis of the matrix.
A wider and fatter matrix means a more homogeneous
texture. Diferent from GLCM calculation, GLSZM may be
computed by the distance of diferent pixels or voxels that
defne the neighborhood. Neighborhood gray-tone difer-
ence matrix (NGTDM) describes the sum of diferences
between the gray level of a pixel or voxel and the average gray
level of its neighboring pixels or voxels within a predefned
distance [9, 10].

Currently, the radiomics model is being widely applied
for medical imaging and is included in studying the images
obtained by various examination equipment and various
diseases, including those of tumors, such as malignancy
evaluation, histological classifcation and grading [8, 11–15],
wettability prediction, efcacy evaluation, and prognosis
prediction [16–18]. Additionally, radiomics has shown
promising results and a clinical application potential in
predicting the prognosis of COVID-19 pneumonia patients
[19], calculus component analysis, and evaluation of treat-
ment efects [1, 3, 4, 20, 21]. In this study, we analyzed the
features of CT image texture parameters between ureteral
calculus and phlebolith through radiomics. We aimed to
minemore quantitative information in CTimages conducive
to clinical diagnosis and identify an efective, convenient,
and noninvasive detection method for clinical diagnosis.

2. Materials and Methods

2.1. Clinical Data. Tis study was approved by the ethics
committee of Jiangxi Provincial People’s Hospital, and all
patients signed the informed consent form. Data of 122
patients with ureteral calculus and phlebolith who un-
derwent an abdominal plain CT scan in Jiangxi Provincial
People’s Hospital were collected retrospectively analyzed to
clarify the three-dimensional (3D) structure of the focus.
Among the 122 cases, 61 had ureteral calculus, and 61 had
phlebolith cases. Patients in the ureteral calculus group were
50.52± 15.02 years old (range� 19–84 years old), with
a male/female ratio of 39 : 22. Patients in the phlebolith
group were 54.15± 15.10 years old (range� 19–84 years old),

with a male/female ratio of 34 : 27. All patients received
abdominal plain CT scan, had complete image data with
good quality, and were diagnosed through imaging and
clinical diagnosis and treatment.

2.2. Examination Method and Scanning Parameters. All
subjects in this study received routine abdominal plain CT
scans. During the examination, patients were in a supine
position and raised their hands above the head. Before
scanning, patients were trained to reduce the interference
caused by respiratory motion artifacts. Scanning parameters
of the dual-source CT (Siemens, Germany): tube volta-
ge� 120 kV, tube current� 150mAs, scanning layer thick-
ness and layer spacing� 5mm, and reconstruction layer
thickness� 1mm (1.25mm).

2.3. Image Segmentation. CT thin-section images can more
clearly show the appearance of the lesions and contain more
abundant texture information. Hence, axial CT thin-section
reconstructed image was used for image processing and
texture analysis in this study. All patient images were
imported into the ITK-SNAP (Version 3.6.0, http://www.
itksnap.org/pmwiki/pmwiki.php) software in DICOM for-
mat. Two abdominal radiologists (Doctor A has worked for
fve years and Doctor B has worked for more than 10 years)
manually segmented the entire focus. First, the two doctors
analyzed images from 25 randomly selected samples to
assess repeatability between groups. Doctor A then repeated
the same procedure. ICC values greater than 0.75 indicated
good consistency of feature extraction, and the rest of the
image segmentation was performed by doctor A. On axial
CT images, ROI should be sketched along the edge of the
focus and avoided for structures outside the focus. Finally,
they sketched the 3D region of interest (ROI) layer-by-layer
and in the whole range.

2.4. Extraction of Texture Features. Meanwhile, original
images and segmented ROI fles were imported into the
Analysis Kit (AK; Artifcial Intelligence Kit V3.0.2.,
Workbench2014, GE Healthcare). A total of 1316 texture
feature parameters were extracted, including frstorder
features (First_order), morphology (shape), GLCM,
GLRLM, GLSZM, GLDM, NGTDM, and converted features
based on logarithmic transformation (LOG; parameter
Sigma selection 2.0, 3.0), wavelet transformation (Wavelet;
Level 1), and local binary mode (LBP; Level 2, Radius 1.0,
Subdivision select 1). Normalization processing of each
feature value was performed based on Z-scores ((x− μ)/σ) to
eliminate the deviation on the extracted feature value.

2.5. Feature Selection and Model Establishment. First, the
Spearman rank correlation test was conducted to evaluate
the correlation between each feature parameter. Te feature
parameters with a correlation greater than 0.8 were retained.
Ten, feature texture screening was performed according to
the maximum correlation minimum redundancy (mRMR)
criterion and the least absolute shrinkage and selection
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operator (LASSO) algorithm. Te feature subset with the
most predictability was selected to establish a 3D radiomics
model.Te ROC curve was used to evaluate the performance
of the model. Finally, the clinical application of the model
was evaluated by the decision curve.

2.6. Data Analysis. Statistical analysis was conducted by R
software (Version: 3.4.4) and SPSS 22.0. General clinical
measurement data were expressed as the mean± standard
deviation (x± s). Te “GLMMET” software package in R
software was used for LASSO regression analysis. First, the
optimized feature subset was identifed by mRMR and the
LASSO algorithm for model establishment. Ten, the
LASSO coefcients of the selected features were weighted,
and the radiomics score (Rad-score) of each case was cal-
culated. Te prediction performance of the model was
quantitatively evaluated by the AUC, accuracy, specifcity,
and sensitivity according to ROC curves. Te higher AUC
value indicated that the model had better prediction
performance.

3. Results

CT images of 122 cases (61 cases of ureteral calculus and 61
cases of phlebolith) were included in this study. Patients
were divided into the training group (86 cases) and the
experimental group (36 cases) at the approximate ratio of 7 :
3. After mRMR and LASSO regression dimensionality re-
duction, redundant and irrelevant features were eliminated,
and 10 feature parameters with the optimized predictability
were identifed, including seven frstorder statistical features,
one GLCM feature, one GLSZM feature, and one NGTDM
feature (Figure 1). Te selected optimized feature subset was
used to establish a radiomics model for diagnosis and
prediction of ureteral calculus and phlebolith.

Rad-score was calculated according to the coefcient
weighting of the selected features:

Rad-score � −0.635 ∗ lbp_3D_m1_glszm_ZoneEntropy
+ 0.809 ∗ original_frstorder_10Percentile + 0.586 ∗
lbp_3D_m1_frstorder_MeanAbsoluteDeviation + 1.201 ∗
wavelet_LLH_frstorder_10Percentile + −0.924 ∗ log_sig-
ma_3_0_mm_3D_frstorder_90Percentile + −0.048 ∗ orig-
inal_glcm_ClusterShade + −0.285 ∗ lbp_3D_m1_frstorder_
Minimum + −0.725 ∗ lbp_3D_m1_frstorder_Kurtosis +
0.528 ∗ wavelet_LLL_frstorder_Minimum + 0.011 ∗
wavelet_HLL_ngtdm_Busyness + 0.075.

In this study, the Rad-score of the training set and testing
set showed a statistically signifcant diference (Figure 2),
demonstrating that radiomics features were closely associ-
ated with the identifcation and diagnosis of ureteral calculus
and phlebolith. Meanwhile, the Hosmer––Lemeshow test
showed no statistically signifcant diference between the
training set and testing set (p> 0.05), indicating good
goodness of ft of the proposed radiomics model. Te ac-
curacy, sensitivity, specifcity, and AUC in the training
group and the experimental group were 93.02%,88.89%,
93.02%, and 94.44% and 93.02%, 83.33%, 0.98, and 0.98,
respectively. Additionally, the reliability of our results was

verifed through the leave-group-out cross-validation
(LGOCV) test. Te average AUC of the training group
and the experimental group was 0.975 and 0.932, re-
spectively. Terefore, the results showed a good diagnosis
and prediction performance of the radiomics model in the
training group and the experimental group (Figure 3;
Table 1).

4. Discussion

Ureteral calculus, a common cause of acute renal colic, can
cause abdominal pain, hematuria, urinary tract obstruction,
urinary tract infection, and damage to renal function over
a long time and thus adversely afect human health [1, 22].
Phleboliths do not cause any discomfort and do not need any
treatment. Terefore, immediate diagnosis and treatment of
ureteral calculus are essential [23]. Currently, CT is regarded
as the “gold standard” for the diagnosis of ureteral calculus
because of its simple, rapid, and non-invasive operation and
multiplanar thin-layer reconstruction [7, 24]. However,
conventional diagnosis mainly depends on the relationship
between high-density focus and ureter. Te high-density
focus in the ureter is diagnosed as ureteral calculus. But,
when the fat contrast between the ureter and the sur-
rounding structures (e.g., blood vessels, accessories, in-
testinal tubes) is absent, it may be difcult to assess the
relationship between the high-density focus and the ureter
on unenhanced CT images [6, 7, 25]. In this case, patients
usually need additional examinations (e.g., retrograde
urography, enhanced CT, CTU, or ureteroscopy) to establish
the diagnosis, which increases the additional cost and po-
tential risk. Additionally, accurate diagnosis may also be
infuenced by the subjectivity and clinical experience of the
doctors.

Texture features can be employed to capture the ap-
pearance features of ROI in the images and analyze the
distribution heterogeneity of elements in ROI. Meanwhile,
texture features, without additional costs and examination,
can objectively and quantitatively refect the information in
the images that cannot be identifed by the naked eye and
have been widely applied in medicine [9, 24]. AK mainly
improves the accuracy of texture classifcation through the
texture features statistics method. In this study, using AK
software, 1316 texture feature parameters were extracted
from 122 objects. After dimension reduction, 10 texture
features with predictive signifcance were identifed by the
LASSO method to establish a 3D radiomics prediction
model, including frst-order and high-order features.

Te frst-order feature describes the texture by mea-
suring the distribution of voxel intensity in the ROI and does
not show the spatial relationship of voxels in the images.Tis
study found that seven feature parameters in the model were
frst-order features (e.g., 10 percentile, mean absolute de-
viation, 90 percentile, minimum, kurtosis), with the cor-
responding coefcient of wavelet_LLH_frst order_10
Percentile being the largest. Te results demonstrated that
the gray intensity distribution of ureteral calculus and pelvic
phlebolith was diferent, suggesting that frst-order features
were of great signifcance for the diagnosis of ureteral
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Figure 1: Radiomics features identifed by the LASSO regression method. (a) Te binomial deviation curve of the omics model with the
parameter λ. Te vertical axis represented the binomial deviation, and the horizontal axis represented log (λ) values; the parameter λ was
adjusted to identify the optimized feature subset. Te left vertical dotted line indicated log (λ) values corresponding to the optimized λ, and
the number represented the number of selected features. (b) Te changes in the radiomics model with λ. (c) Radiomics features screened
based on the CT model and the corresponding coefcients.
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calculus. Additionally, signifcant diferences were observed
in some high-order features, including origi-
nal_glcm_ClusterShade, lbp_3D_m1_glszm_ZoneEntropy
and wavelet_HLL_ngtdm_Busyness. GLCM describes the
spatial relationship of pixels or voxel pairs with certain gray
intensities and predefned distances in diferent directions.
Cluster shade represents the uniformity and skewness of
voxels in an image. GLSZM refects the uniformity of image
texture. Te randomness of the distribution of the internal
coefcients in grayscale images at the intensity level is
evaluated by regional entropy. Busyness describes the high
spatial frequency of pixel or voxel intensity changes.
Terefore, the higher busyness indicates higher spatial
frequency of ROI intensity changes in the lesions.Te ROI is
composed of many small areas with signifcantly diferent
gray levels. Tese diferences in high-order features in-
dicated the heterogeneity of the spatial structure of the
ureteral calculus [8, 9, 21, 26, 27].

Ureteral calculus has a concentric, layered, and micro-
crystalline structure [28, 29], suggesting that the micro-
structure of calculus is not single [30]. Meanwhile,
phlebolith adheres to the venous wall and is formed by
laminar fbrosis, central necrosis, calcium deposition, and
calcifcation of mural thrombus [23, 31], and ureteral cal-
culus is related to the long-term supersaturation of a com-
pound in urine [30, 32, 33], suggesting that the mechanism
of phlebolith and ureteral calculus is diferent. Traubici et al.
[34] found that phlebolith and ureteral calculus were dif-
ferent on X-ray plain flms. Phlebolith had radioactive light

transmission centers, which were not found in CT images.
Meanwhile, macroscopically visible lesion morphology,
marginal sign, and comet tail sign on unenhanced CT can
distinguish ureteral calculus from phlebolith
[7, 23, 29, 35, 36]. Tanidir et al. [37] measured the density
and volume of ureteral calculus and phlebolith on CT images
and found diferences in CT images when the volume was
171mm3 and the density was 643 HU (sensitivity� 75% and
75%, specifcity� 100% and 93%). Additionally, Lee et al.
[25] applied the artifcial neural networks (ANN) method to
analyze the morphological features of the ureteral calculus
and phlebolith and found some diferences. Meanwhile, they
also analyzed the internal texture features and found that
skewness and diference histogram variation could distin-
guish ureteral calculus from phlebolith. De Perrot et al. [38]
reported that radiomics and machine learning could accu-
rately distinguish renal calculus and venous calculus using
the low-dose CT (AUC was 0.902, PPV was 81.5%, and NPV
was 90.0%). In a radiomics study by automatic segmenta-
tion, Homayounie [2] found that the combination of
3D_log_sigma of short-run low gray-level emphasis, ex-
ponential of run variance, run entropy (GLRLM features),
and GLCM_maximal correlation coefcient could efectively
diagnose the renal calculus (AUC� 0.84, 95%
CI� 0.78–0.89). Te combination of GLCM_inverse dif-
ference moment normalized, NGTDM_exponential of
coarseness and GLRLM_3D_log_sigma of short-run low
gray-level emphasis showed better diagnostic performance
(AUC� 0.9 and 95% CI� 0.85–0.93). Furthermore,
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Figure 2: (a) Rad-score of ureteral calculus and phlebolith in the training group and the experimental group, and labels 0 and 1 cor-
responded to phlebolith and ureteral calculus, respectively. (b) Te decision curve of the radiomics model.
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Mohammadinejad et al. 4 has reported that the semi-
automated radiomic analysis of urinary stones is able to
provide similar accuracy compared with manual measure-
ments for predicting urinary stone passage. Terefore,
studies in this line of research present the potential to,
conservatively, improve the quality of life of patients with
calculus. Te fndings in these studies are consistent with
those in the present study, further suggesting a diference in
the microstructure of ureteral calculus and phlebolith.

In this study, the texture features of plain CT images of
ureteral calculus and phlebolith were compared and ana-
lyzed by radiomics and model establishment. Te results
showed signifcant diferences in the feature parameters
between ureteral calculus and phlebolith, indicating a good
identifcation efciency of the proposed radiomics model
(the AUC of the training group and the experimental group
was 0.98 and 0.98, the PPV was 93.0% and 85.0%, and the
NPV was 93.0% and 93.8%, respectively). Meanwhile, the
Hosmer––Lemeshow test and decision curve were per-
formed to further verify the stability of the diagnostic
performance of the proposed radiomics model. Terefore,
the radiomics model is feasible to quantitatively distinguish

ureteral calculus from pelvic phlebolith, showing the po-
tential application of the radiomics model outside the feld of
cancer.

Previous studies have reported that the identifcation
efciency of radiomics based on diferent CTsuppliers was
stable, without signifcant diferences [2, 10, 11, 39].
Hence, the data in this study were obtained from CT
examination equipment of diferent manufacturers. Te
established model based on the optimized texture features
extracted from these data showed good prediction per-
formance. Moreover, the LGOCV test verifed that the
prediction performance of the proposed model was re-
liable, indicating that the proposed radiomics model had
certain robustness. Meanwhile, the proposed model
preliminarily showed the potential correlation between
the feature parameters in each prediction subset and the
prediction of ureteral calculus, which was not reported
previously. However, the exact correlation between each
feature parameter and ureteral calculus needs
further study.

Tis study had some limitations: (1) it was a retrospective
study with limited samples; there may be selection bias; (2)
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Figure 3: (a) Te prediction model based on plain CT scan images. Te AUC of the training group (n� 86) was 0.98, and the AUC of the
experimental group (n� 36) was 0.98 (AUC: the area under the curve). (b)Te AUC distribution of the training group and the experimental
group in LGOCV.

Table 1: Te diagnostic performance of the radiomics model in the training group and the experimental group.

Group AUC Accuracy Sensitivity Specifcity Pos.pred.value Neg.pred.value
Train 0.98 (95% CI:0.96–1.00) 0.930 0.930 0.930 0.930 0.930
Test 0.98 (95% CI:0.95–1.00) 0.889 0.944 0.833 0.850 0.938
AUC� area under the ROC curve; CI� confdence interval.
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classifcation research was not performed on ureteral cal-
culus, while the texture parameters of calculus in diferent
categories are diferent; and (3) this is a single-center study,
and multicenter research is expected in the future.

5. Conclusions

Te radiomics model established in this study, based on
plain CT images, showed good predictive performance for
ureteral calculus and phlebolith, which was expected to
provide an efective and convenient detection method for
clinical diagnosis to alleviate the heavy clinical pressure.
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