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Aim. We intended to provide the clinical evidence that artificial intelligence (AI) could be used to assist doctors in the diagnosis of
intracerebral hemorrhage (ICH). Methods. Studies published in 2021 were identified after the literature search of PubMed,
Embase, and Cochrane. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to perform the quality
assessment of studies. Data extraction of diagnosis effect included accuracy (ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), negative predictive value (NPV), area under curve (AUC), and Dice scores (Dices). ,e pooled effect with
its 95% confidence interval (95%CI) was calculated by the random effects model. I-Square (I2) was used to test heterogeneity. To
check the stability of the overall results, sensitivity analysis was conducted by recalculating the pooled effect of the remaining
studies after omitting the study with the highest quality or the random effects model was switched to the fixed effects model.
Funnel plot was used to evaluate publication bias. To reduce heterogeneity, recalculating the pooled effect of the remaining studies
after omitting the study with the lowest quality or perform subgroup analysis. Results. Twenty-five diagnostic tests of ICH via AI
and doctors with overall high quality were included. Pooled ACC, SEN, SPE, PPV, NPV, AUC, and Dices were 0.88 (0.83∼0.93),
0.85 (0.81∼0.89), 0.90 (0.88∼0.92), 0.80 (0.75∼0.85), 0.93 (0.91∼0.95), 0.84 (0.80∼0.89), and 0.90 (0.85∼0.95), respectively. ,ere
was no publication bias. All of results were stable as revealed by sensitivity analysis and were accordant as outcomes via subgroups
analysis. Conclusion. Under the background of the fourth industrial revolution, AI might be an effective and efficient tool to assist
doctors in the clinical diagnosis of ICH.

1. Introduction

Appearance of the fourth industrial revolution was based on
the digitization and big data analysis [1]. ,e typical rep-
resentatives were artificial intelligence (AI) and blockchain
[2]. Without exception, there were more and more AI
technologies or various software applied in medicine, es-
pecially in medical imageology [3]. Stroke was a major cause
of death and disability globally; in particular, hemorrhagic
strokes (including intracerebral and subarachnoid hemor-
rhage) had a relatively stable incidence adjusted for age in
high-income countries but an increasing incidence in low-
income and middle-income countries each year [4]. Of the

15 million strokes reported worldwide annually, intracere-
bral hemorrhage (ICH) accounts for approximately 10% to
15% of all stroke cases in the United Statement, Europe, and
Australia and approximately 20% to 30% of strokes in Asia
[5]. ,e median 30-day mortality rate after ICH is ap-
proximately 15–50%, and only 20% of patients regain
functional independence within three months after the ictus
[6]. ,erefore, ICH, as a stroke subtype with high mortality
and poor functional outcome in survivors, needed the ac-
curate and objective evidence of neuroimaging to make a
definite diagnosis [7]. AI used to diagnose ICH based on
neuroimaging gradually became a trend to promote the
development of intelligent medicine and efficiency of
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clinicians recently [8]. Apart from economic interest and
development of AI industries, in the aspect of diagnostics,
there was no evidence that AI could assist doctors in
practically clinical work. In view of that the development of
AI industries was quick as a flash, we intend to perform a
novel systemic review and meta-analysis based on recent
diagnostic tests, which were able to represent the state of the
art AI technologies, to verify the hypothesis that AI might be
an effective and efficient tool to diagnose ICH.

2. Materials and Methods

2.1. Search Strategy. Literature search was performed in
three public electronic databases of PubMed, Embase and
Cochrane. ,e strategy of literature search was as follows:
(((((((((((((((((Intelligence, Artificial[Title/Abstract]) OR
(“Artificial Intelligence”[Mesh])) OR (Computational In-
telligence[Title/Abstract])) OR (Intelligence, Computational
[Title/Abstract])) OR (Machine Intelligence[Title/Ab-
stract])) OR (Intelligence, Machine[Title/Abstract])) OR
(Computer Reasoning[Title/Abstract])) OR (Reasoning,
Computer[Title/Abstract])) OR (AI (Artificial Intelligence)
[Title/Abstract])) OR (Computer Vision System∗[Title/
Abstract])) OR (System∗, Computer Vision[Title/Ab-
stract])) OR (Vision System∗, Computer[Title/Abstract]))
OR (Knowledge Acquisition (Computer)[Title/Abstract]))
OR (Acquisition, Knowledge (Computer)[Title/Abstract]))
OR (Knowledge Representation∗ (Computer)[Title/Ab-
stract])) OR (Representation, Knowledge (Computer)[Title/
Abstract])) OR ((((“Machine Learning”[Mesh]) OR
(Learning, Machine[Title/Abstract])) OR (Transfer Learning
[Title/Abstract])) OR (Learning, Transfer[Title/Abstract])))
AND (((((((((((((“Cerebral Hemorrhage”[Mesh]) OR
(Hemorrhage∗, Cerebrum[Title/Abstract])) OR (Cerebrum
Hemorrhage∗[Title/Abstract])) OR (Cerebral Parenchymal
Hemorrhage∗[Title/Abstract])) OR (Hemorrhage∗, Cerebral
Parenchymal[Title/Abstract])) OR (Parenchymal Hemor-
rhage∗, Cerebral[Title/Abstract])) OR (Intracerebral Hem-
orrhage∗[Title/Abstract])) OR (Hemorrhage∗, Intracerebral
[Title/Abstract])) OR (Hemorrhage∗, Cerebral[Title/Ab-
stract])) OR (Cerebral Hemorrhages[Title/Abstract])) OR
(Brain Hemorrhage∗, Cerebral[Title/Abstract])) OR (Cere-
bral Brain Hemorrhage∗[Title/Abstract])) OR (Hemor-
rhage∗, Cerebral Brain[Title/Abstract])).

2.2. Inclusion Criteria. (1) Language and regions of articles
were not restricted; (2) articles were published in 2021; (3)
diagnostic tests; (4) true-positive participates were patients
suffered ICH; (5) true-negative participates were people
without abnormal condition in neuroimaging; (6) the gold
standard was that professional physicians, who were blind to
tests, diagnose ICH or no ICH referring to the International
Classification of Diseases and recent international standards
guidelines; (7) full-automatic or semi-automatic diagnostic
conclusions via AI technologies were used to compare with
full-manual diagnostic outcomes via professional physician;
(8) analysis or assessment of diagnosis effect was performed
completely.

2.3. Exclusion Criteria. (1) Duplication; (2) reviews, com-
ments, letters, case reports, protocols of clinic trials, and
conference papers; (3) animal experiments; (4) and contents
of articles were irrelevant to this meta-analysis.

2.4. Quality Assessment. ,e quality assessment of the in-
cluded articles was performed via the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) by the soft-
ware Review Manager 5.3 before data extraction. We con-
sidered that the study might be assessed to have higher
quality for its larger number of included patients in studies
with the same assessment in QUADAS-2.

2.5. Data Extraction. All the original data used to assess di-
agnosis effect were extracted including accuracy (ACC), sen-
sitivity(SEN), specificity (SPE), positive predictive value (PPV),
negative predictive value (NPV), area under curve (AUC), and
Dice scores (Dices),. In addition, some confounders, which
might result in errors, were adjusted, including different di-
agnosis purposes, AI technologies, and other factors.

2.6. Statistical Analysis. Relative numbers and their 95%
confidence intervals (95%CI) were used to describe count
data. Meta-analysis was performed using corresponding
modules in Software for Statistics and Data Science (Stata,
version 15.1; College Station, Texas 77845 USA). ,e pooled
effect with its 95%CI was calculated by the random effects
model. I-Square (I2) was used to test the heterogeneity.
Sensitivity analysis was performed to evaluate the stability of
overall results by recalculating the pooled effect of the
remaining studies after omitting the study with the highest
quality or the random effects model was switched to fixed
effects model. Funnel plot symmetry and Egger’s regression
were used to evaluate publication bias. To reduce hetero-
geneity, recalculating the pooled effect of the remaining
studies after omitting the study with the lowest quality or
perform subgroups analysis. All p values were two-sided
with a significant level at 0.05.

3. Results

3.1. Literature Search and Study Characteristics. Totally, 142
articles were retrieved from 3 databases according to the
strategy. After screening according to the inclusion and
exclusion criteria, 25 articles [9–33] of diagnostic tests were
enrolled ultimately (Figure 1). A total of 23071 ICH patients
participated in all the tests, who were manually diagnosed by
professional physicians referring to the gold standard of ICH
diagnosis in the latest international clinical guidelines
(Table 1). 24 AI technologies or methods based on clinical
features and neuroimaging were participate in all the tests.
,e aims of the tests were classified into 4 main aspects:
detection of ICH, segmentation of ICH in neuroimaging,
prediction of prognosis, and hematoma enlargement in ICH
patients. ,e conclusion with the same tendency was that AI
could effectively assist diagnosis of ICH. Specially, four
articles (Lu Li, Yu Lei, Stefan Pszczolkowski, Masahito
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Figure 1: Process of literature search.

Table 1: Characters of studies included (“a” presented that 2 styles of hematoma volume were studied independently in one study. “b”
presented that 2 solutions of ICH were studied independently in one study. “c” presented that 2 aims were studied independently in one
study. “∗” presented that the same first author performed another study).

Author Application AI ICH patient
participation Conclusion

Ryan A. Rava ICH detection Canon’s AUTOStroke solution ICH
detection algorithm 200 It was able to accurately detect ICH

Chang Ho Kim ICH detection
A cascaded deep-learning-based

automated segmentation algorithm
(CDLA)

5702 It can improve diagnostic accuracy
in specific doctor groups

Jeremy J. Heit ICH detection
RAPID ICH (an automated hybrid 2D-

3D convolutional neural network
application)

308
It is highly accurate in the detection

of ICH and in the volumetric
quantification

Valeriia
Abramova ICH segmentation A 3D U-net architecture with squeeze-

and-excitation blocks 76 It significantly improved
segmentation results

Nico Buls ICH detection Aidoc version 1.3, Tel Aviv, Israel 500 It was an adjunct to current real-time
radiology workflow

Lu Li1a Big ICH detection
and segmentation

U-net-based CNN architectures:
convolutional networks for biomedical

image segmentation
130

It shows great advantages compared
with human experts on hemorrhage

lesion diagnosis

Lu Li2
Small ICH

detection and
segmentation

U-net-based CNN architectures:
convolutional networks for biomedical

image segmentation
130

It shows great advantages compared
with human experts on hemorrhage

lesion diagnosis

Matthew
F. Sharrock ICH segmentation DeepBleed 500

It can be incorporated into the
workflow of an ICH clinical trial

series

Ruijuan Chen ICH detection
Restricted Boltzmann machine, deep

belief network, stacked autoencoder, and
denoising autoencoder

590
It can effectively improve the
reconstruction accuracy and
prediction speed of the image

Daniel Ginat ICH detection Aidoc (Tel Aviv, Israel) 1829 It is associated with a significantly
shorter scan view delay

Suting Zhong ICH prediction A backbone neural network MF
(multifeatures)—dense net 34

,e improved method can effectively
improve the monitoring

performance
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Katsuki) included two independent data extraction. Lu Li’s
study separated hematoma volume to “big” and “small”
groups to study independently. Yu Lei’s study studied the
risk of ICH and occurrence of ICH independently. Stefan
Pszczolkowski’ study had two study aims independently:
detection of ICH and prediction of prognosis in ICH pa-
tients. Masahito Katsuki wrote 2 different articles as the
same first author.

3.2. Quality Assessment of Studies. ,e assessment of article
quality via QUADAS-2 is shown in Figure 2. In the Risk of Bias
section, four studies (Lu Li, Suting Zhong, Valeriia Abramova,
Yoshiyuki Watanabe) were evaluated as high risk and five
studies (Chang Ho Kim, Jeremy J. Heit, Ryan A. Rava, Ruijuan
Chen, Daniel Ginat) were evaluated as unclear risk in the
Patient Selection segment, and in addition, three studies
(ChangHoKim, Jeremy J. Heit, RyanA. Rava) were assessed to

Table 1: Continued.

Author Application AI ICH patient
participation Conclusion

Yu Lei1b ICH occurrence
detection

A deep ResNet-152 model (CVPR 2016,
Las Vegas, NV, USA) 460 It was valuable and could assist in

automatic diagnosis of MMD

Yu Lei2 ICH hemorrhage
detection

A deep ResNet-152 model (CVPR 2016,
Las Vegas, NV, USA) 500

It was valuable and could assist in
timely recognition of the risk for

rebleeding

Carlos Fernandez-
Lozano ICH prediction Random forest algorithm 1100

It can be effectively used in long-
term outcome prediction of

mortality and morbidity of stroke
patients

Andrew N. Hall ICH prediction Decision tree-based algorithms 284 Patient outcomes are predictable to a
high level in patients with ICH

Jawed Nawabi ICH prediction Random forest algorithm (python scikit-
learn environment v0.20.3) 520

It provided the same discriminatory
power as multidimensional clinical

scoring systems

Xinghua Xu ICH prediction

Support vector machine, K-nearest
neighbor, logistic regression, decision
tree, extreme gradient boosting, random

forest

270 Accurate prognostic prediction
models of HICH

Masahito Katsuki ICH prediction
DLframework, prediction one (Sony
network communications inc., Tokyo,

Japan)
140

,e accuracy was superior to
previous statistically calculated

models

Fengping Zhu ICH prediction Support vector machine, random forest 1668 It exhibited good prediction
accuracy and efficiency

Qian Chen HE
Artificial intelligence kit version 3.0.0.R,
the least absolute shrinkage and selection

operator algorithm
1153 It outperformed the clinical-only

model in the prediction of HE

Stefan
Pszczolkowski1 HE

Elastic-net parameterizations, selected
radiomics-based features using grid

optimization
1732

It was better than radiological signs
on the prediction of hematoma

expansion

Stefan
Pszczolkowski2c ICH prediction

Elastic-net parameterizations, selected
radiomics-based features using grid

optimization
1732

It was better than radiological signs
on the prediction of poor functional

outcome

Zuhua Song HE
Naı̈ve bayes (NB), support vector

machine, K-nearest neighbor, logistic
regression, decision tree, random forest

261 It could improve the discrimination
of early HE

Linyang Teng HE A model based on convolutional neural
network termed U-net 1899

It has higher specificity and
sensitivity in the prediction of early

hematoma enlargement
Masahito
Katsuki∗ ICH prediction Prediction one (Sony network

communications inc., Tokyo, Japan) 184 It could be performed with high
accuracy

Yiqing Zhao ICH detection Logistic regression, random forest 890
It performed well for identifying

incident stroke and for determining
the type of stroke

Joel McLouth ICH detection CINAR v1.0 device (Avicenna.ai, La
Ciotat, France) 255 It can be effective in the detection of

ICH

Yoshiyuki
Watanabe ICH detection Computer-assisted detection systemwith

U-net 24
It significantly improved the

diagnostic performance and reduced
the reading time
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unclear risk in other segments. In the Applicability Concerns
section, four studies (Lu Li, Suting Zhong, Valeriia Abramova,
YoshiyukiWatanabe)were evaluated as high concern and three
studies (Chang Ho Kim, Jeremy J. Heit, Ryan A. Rava) were
evaluated as unclear concern in the Patient Selection segment,
and in addition, three studies (Chang Ho Kim, Jeremy J. Heit,
Ryan A. Rava) were assessed to unclear risk in other segments.

Except outcomes of the assessment above, any segment was
assessed to low risks in the Risk of Bias section or low concerns
in the Applicability Concerns section as well as other studies.

3.3.DataAnalysis. Total pooled ACC, SEN, SPE, PPV, NPV,
AUC, and Dices were 0.88 (0.83∼0.93), 0.85 (0.81∼0.89), 0.90
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Figure 2: Quality assessment of studies via quality assessment of diagnostic accuracy studies-2.
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Nico Buls

Study ID Accuracy (95% CI) Weight
(%)

Lu Li1

Lu Li2

Ruijuan Chen

Suting Zhong

Yu Lei1

Yu Lei2

Carlos Fernandez-Lozano

Andrew N. Hall

Jawed Nawabi

Fengping Zhu

Yiqing Zhao

Yoshiyuki Watanabe

Overall (I2 = 98.6%, P < 0.001)

0.93 (0.90, 0.96)

0.94 (0.90, 0.99)

0.49 (0.31, 0.67)

0.96 (0.94, 0.98)

0.98 (0.97, 1.00)

0.98 (0.97, 0.99)

0.91 (0.89, 0.92)

0.80 (0.75, 0.85)

0.79 (0.77, 0.80)

0.77 (0.75, 0.78)

0.98 (0.94, 0.99)

0.80 (0.68, 0.89)

0.81 (0.73, 0.90)

0.88 (0.83, 0.93)

0.306 1 3.27

8.56

8.33

1.63

8.69

8.76

8.78

8.73

7.86

8.71

8.71

8.61

5.82

6.79

100.00

NOTE: Weights are from random effects analysis

Ryan A. Rava

Study ID Sensitivity (95% CI) Weight
(%)

Jeremy J. Heit

Nico Buls

Danial Ginat

Yu Leu1

Yu Lei2

Jawed Nawabi

Stefan Pszczolkowski1

Stefan Pszczolkowski2

Linyang Teng

Joel McLouth

Yoshiyuki Watanabe

Overall (I2 = 95.9%, P < 0.001)

0.93 (0.90, 0.96)

0.96 (0.91, 0.98)

0.84 (0.68, 0.94)

0.88 (0.88, 0.90)

0.97 (0.93, 1.00)

0.94 (0.91, 0.97)

0.77 (0.75, 0.79)

0.63 (0.55, 0.72)

0.70 (0.64, 0.75)

0.82 (0.79, 0.54)

0.91 (0.87, 0.94)

0.74 (0.64, 0.83)

0.554 1 1.81

9.44

9.36

4.76

9.79

9.35

9.51

9.57

5.89

7.79

9.43

9.23

5.88

0.85 (0.81, 0.89) 100.00

NOTE: Weights are from random effects analysis

(a)

Figure 3: Continued.
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Ryan A. Rava

Study ID Specificy (95% CI) Weight
(%)

Jeremy J. Heit

Nico Buls

Danial Ginat

Yu Leu1

Yu Lei2

Jawed Nawabi

Stefan Pszczolkowski1

Stefan Pszczolkowski2

Linyang Teng

Joel McLouth

Yoshiyuki Watanabe

Overall (I2 = 98.5%, P < 0.001)

0.93 (0.92, 0.94)

0.95 (0.91, 0.98)

0.94 (0.91, 0.96)

0.96 (0.96, 0.97)

0.98 (0.97, 0.99)

0.90 (0.86, 0.94)

0.76 (0.72, 0.79)

0.69 (0.64, 0.74)

0.74 (0.69, 0.80)

0.71 (0.66, 0.76)

0.98 (0.96, 0.99)

0.99 (0.99, 0.99)

0.554 1 1.81

10.24

8.22

9.17

10.43

10.27

7.90

7.34

5.56

5.14

5.21

10.06

10.47

0.90 (0.88, 0.92) 100.00

NOTE: Weights are from random effects analysis

Ryan A. Rava

Study ID Positive Predictive
Value (95% CI)

Weight
(%)

Jeremy J. Heit

Nico Buls

Danial Ginat

Jawed Nawabi

Stefan Pszczolkowski1

Stefan Pszczolkowski2

Yiqing Zhao

Overall (I2 = 98.5%, P < 0.001)

0.85 (0.83, 0.87)

0.96 (0.91, 0.98)

0.61 (0.46, 0.74)

0.86 (0.84, 0.87)

0.89 (0.87, 0.91)

0.42 (0.35, 0.49)

0.73 (0.67, 0.78)

0.86 (0.74, 0.93)

0.80 (0.75, 0.85)

0.355 1 2.82

16.04

15.58

4.76

16.22

16.08

7.73

13.11

10.49

100.00

NOTE: Weights are from random effects analysis

(b)

Figure 3: Continued.
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Ryan A. Rava

Study ID Negative Predictive
Value (95% CI)

Weight
(%)

Jeremy J. Heit

Nico Buls

Danial Ginat

Jawed Nawabi

Stefan Pszczolkowski1

Stefan Pszczolkowski2

Yiqing Zhao

Overall (I2 = 94.7%, P < 0.001)

0.98 (0.97, 0.99)

0.95 (0.91, 0.98)

0.98 (0.96, 0.99)

0.96 (0.96, 0.97)

0.94 (0.93, 0.95)

0.84 (0.80, 0.88)

0.71 (0.66, 0.76)

0.92 (0.90, 0.98)

0.93 (0.91, 0.95)

0.657 1 1.52

15.78

11.40

15.17

16.19

15.74

9.47

5.82

10.42

100.00

NOTE: Weights are from random effects analysis

Chang Ho Kim

Study ID Area Under
Curve (95% CI)

Weight
(%)

Suting Zhong

Carlos Fernandez-Lozano

Andrew N. Hall

Jawed Nawabi

Xinghua Xu

Masahito Katsuki

Fengping Zhu

Qian Chen

Stefan Pszczolkowski1

Stefan Pszczolkowski2

Zuhua Song

Linyang Teng

Masahito Katsuki

Overall (I2 = 98.1%, P < 0.001)

0.97 (0.95, 0.98)

0.638 1 1.57

7.72

0.85 (0.81, 0.88) 7.40

0.88 (0.83, 0.92) 7.24

0.85 (0.84, 0.87) 7.68

0.84 (0.83, 0.86) 7.68

0.92 (0.82, 0.97) 6.50

0.88 (0.75, 1.00) 5.02

0.98 (0.96, 0.99) 7.67

0.82 (0.77, 0.88) 6.92

0.69 (0.64, 0.75) 6.63

0.78 (0.74, 0.82) 7.25

0.87 (0.85, 0.95) 7.19

0.78 (0.76, 0.80) 7.63

0.73 (0.68, 0.73) 7.47

0.84 (0.80, 0.89) 100.00

NOTE: Weights are from random effects analysis

(c)

Figure 3: Continued.
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(0.88∼0.92), 0.80 (0.75∼0.85), 0.93 (0.91∼0.95), 0.84
(0.80∼0.89), and 0.90 (0.85∼0.95). Heterogeneity of pooled
ACC, SEN, SPE, PPV, NPV, AUC, and Dices were 98.6%
(p< 0.001), 95.9% (p< 0.001), 98.5% (p< 0.001), 95.1%
(p< 0.001), 94.7% (p< 0.001), 98.1% (p< 0.001), and 28.5%
(p � 0.237), respectively (Figure 3).

3.4. Publication Bias and Sensibility Analysis. ,ere was
symmetrical distribution in funnel plots (Figure 4). In
sensibility analysis, after the study with the highest quality
omitted or random effect model was transformed to the fixed
effect model, pooled ACC (Fengping Zhu), SEN (Linyang
Teng), SPE (Linyang Teng), PPV (Stefan Pszczolkowski),
NPV (Stefan Pszczolkowski), AUC(Linyang Teng), and
Dices (no article omitted because only 2 articles were in-
cluded to perform meta-analysis of Dices) were 0.87
(0.82∼0.92) or 0.92 (0.92∼0.93), 0.85 (0.81∼0.90) or 0.88
(0.87∼0.89), 0.91 (0.89∼0.93) or 0.99 (0.99∼0.99), 0.88
(0.84∼0.91) or 0.87 (0.86∼0.88), 0.96 (0.95∼0.97) or 0.96
(0.96∼0.97), 0.85 (0.80∼0.89) or 0.89 (0.89∼0.90), and 0.90
(0.87∼0.94). Heterogeneity of pooled ACC, SEN, SPE, PPV,
NPV, AUC, and Dices in sensibility analysis was 98.7%
(p< 0.001) or 98.6% (p< 0.001), 96.0% (p< 0.001) or 95.9%
(p< 0.001), 98.5% (p< 0.001) or 98.5% (p< 0.001), 88.9%
(p< 0.001) or 95.1% (p< 0.001), 87.8% (p< 0.001) or 94.7%
(p< 0.001), 97.8% (p< 0.001) or 98.1% (p< 0.001), and
28.5% (p � 0.235) (Table 2).

3.5. Subgroups Analysis. Due to high heterogeneity com-
panying, the study with the lowest quality might be the
source of this phenomenon. After those studies omitted in
the meta-analysis of ACC (Yoshiyuki Watanabe), SEN
(Yoshiyuki Watanabe), SPE (Yoshiyuki Watanabe), PPV
(Ryan A. Rava), NPV (Ryan A. Rava), and AUC (Zuhua
Song), pooled effects were 0.88 (0.83∼0.94), 0.86 (0.81∼0.90),
0.88 (0.88∼0.91), 0.78 (0.72∼0.84), 0.92 (0.89∼0.94), and 0.84

(0.79∼0.89) with the heterogeneity of 98.7% (p< 0.001),
96.2% (p< 0.001), 97.4% (p< 0.001), 95.7% (p< 0.001),
94.8% (p< 0.001), and 98.2% (p< 0.001) (Table 2).

However, heterogeneity was still high. We considered
that different aims of studies might be another source.
,erefore, we performed subgroup analysis of ICH detec-
tion, ICH segmentation, ICH prediction, and hematoma
enlargement (Figure 5). In subgroup analysis of ICH de-
tection, pooled ACC, SEN, SPE, PPV, NPV, and AUC were
0.92 (0.89∼0.95), 0.92 (0.88∼0.95), 0.96 (0.94∼0.98), 0.87
(0.82∼0.92), 0.97 (0.95∼0.98), and 0.84 (0.64∼1.10). ,eir
heterogeneity was 91.6% (p< 0.001), 88.2% (p< 0.001),
98.0% (p< 0.001), 90.3% (p< 0.001), 76.3% (p � 0.001), and
99.5% (p< 0.001). In the subgroup analysis of ICH seg-
mentation, pooled ACC and AUC were 0.70 (0.37∼1.33) and
0.90 (0.85∼0.95). ,eir heterogeneity was 90.5% (p< 0.001)
and 28.5% (p � 0.237). In the subgroup analysis of ICH
prediction, pooled ACC, SEN, SPE, PPV, NPV, and AUC
were 0.86 (0.76∼0.97), 0.74 (0.67∼0.81), 0.75 (0.73∼0.78),
0.81 (0.66∼0.98), 0.82 (0.62∼1.08), and 0.87 (0.82∼0.92).
,eir heterogeneity was 99.3% (p< 0.001), 80.7%
(p � 0.023), 0.0% (p � 0.563), 95.9% (p< 0.001), 98.0%
(p � 0.001), and 96.4% (p< 0.001). In the subgroup analysis
of Hematoma Enlargement, pooled SEN, SPE, and AUC
were 0.73 (0.53∼0.93), 0.70 (0.67∼0.73), and 0.79
(0.73∼0.85).,eir heterogeneity was 92.9% (p< 0.001), 0.0%
(p � 0.586), and 87.8% (p< 0.001).

4. Discussion

We performed a novel systemic review and meta-analysis
based on studies with high qualities in general. According
to total meta-analysis of data, the diagnosis effect of AI was
ACC > 0.83, Dices > 0.85, AUC> 0.80, SEN> 0.81,
SPE > 0.88, PPV > 0.75, and NPV> 0.91 with a stable
outcome of sensibility analysis, which might mean a rel-
atively high agreement and similarity of full-manually

Valeriia Abramova

Study ID Scores (95% CI) Weight
(%)

Matthew F. Sharrock

Overall (I2 = 28.5%, P = 0.237)

0.86 (0.79, 0.94)

0.788 1 1.27

29.55

0.91 (0.87, 0.95) 70.45

0.90 (0.85, 0.95) 100.00

NOTE: Weights are from random effects analysis

(d)

Figure 3: Pooled accuracy/sensitivity/specificity/positive predictive value/negative predictive value/area under curve/dice scores of artificial
intelligence used in ICH diagnosis.
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Figure 4: Continued.
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diagnostic conclusions, a relatively high authenticity of
actual diagnostic conclusions, a relatively low rate of
missed diagnosis and misdiagnosis, a relatively high ac-
curacy of screening true ICH patients in people with risk of
ICH, and a high accuracy of confirming true no risks of
ICH in healthy people. Yet in the subgroup analysis of
different aims, in addition to the great mass of outcomes in
accord with total pooled effects, there were some invalid
outcomes. ,e AUC of ICH detection was in the range of
0.64 to 1.10, which meant that it might be lack of au-
thenticity for AI to detect ICH. ,e ACC of ICH seg-
mentation was in the range of 0.37 to 1.33, which meant
that the agreement of full-manually diagnostic conclusions
might be controversial. For two abovementioned purposes,
we considered that the factor-influenced identification of
hematoma lesion via AI might be due to the fuzzy boundary
between edema and hematoma during absorbing of ICH or
in neuroimaging of small hematoma lesion. ,e NPV of

ICH prediction was in the range of 0.62 to 1.08, which
meant that AI might not confirm true ICH patients without
some outcomes of prognosis. In this solution, we con-
sidered that subjectivity, which was unique to humans,
might be the mingled influencing factor, because operation
of AI was based on the binary system or other algorithmic
languages, which was absolutely objective. Classification
was usually involved in the assessment of prognosis in
clinical work. Hence, when dealing with the common
boundary of two grades, AI might not make decisions like
humans flexibly, which might be a congenital defect of AI.
However, generally, our results resembled the conclusion
of meta-analysis published that it was effective for AI to
detect brain metastasis [34].

Limits also appeared in our meta-analysis. We only
selected articles published in 2021, which might influence
the results because we considered that recent AI technol-
ogies might remedy previous defects, which would reduce

1

-2 -1 0
logDice Scores

Funnel plot with pseudo 95% confidence limits

St
an

da
rd

 E
rr

or
 o

f l
og

D
ic

e S
co

re
s

1 2

0.8

0.6

0.4

0.2

0

(b)

Figure 4: Funnel plots of overall accuracy/sensitivity/specificity/positive predictive value/negative predictive value/area under curve/dice
scores of artificial intelligence used in ICH diagnosis.

Table 2: Sensibility analysis of overall accuracy/sensitivity/specificity/positive predictive value/negative predictive value/area under curve/
dice scores of artificial intelligence used in ICH diagnosis.

Modification
Accuracy
(95%CI)
(Study)

Sensitivity
(95%CI)
(Study)

Specificity
(95%CI)
(Study)

Positive
predictive value

(95%CI)
(Study)

Negative
predictive value

(95%CI)
(Study)

Area under
curve

(95%CI)
(Study)

Dice scores
(95%CI)
(Study)

,e study with the
highest quality
omitted

I2 � 98.7%
0.87

(0.82∼0.92)
(Fengping

Zhu)

I2 � 96.0%
0.85

(0.81∼0.90)
(Linyang
Teng)

I2 � 98.5%
0.91

(0.89∼0.93)
(Linyang
Teng)

I2 � 88.9%
0.88 (0.84∼0.91)

(Stefan
Pszczolkowski)

I2 � 87.8%
0.96 (0.95∼0.97)

(Stefan
Pszczolkowski)

I2 � 97.8%
0.85

(0.80∼0.89)
(Linyang
Teng)

N/A

,e study with the
lowest quality
omitted

I2 � 98.7%
0.88

(0.83∼0.94)
(Yoshiyuki
Watanabe)

I2 � 96.2%
0.86

(0.81∼0.90)
(Yoshiyuki
Watanabe)

I2 � 97.4%
0.88

(0.88∼0.91)
(Yoshiyuki
Watanabe)

I2 � 95.7%
0.78 (0.72∼0.84)
(Ryan A. Rava)

I2 � 94.8%
0.92 (0.89∼0.94)
(Ryan A. Rava)

I2 � 98.2%
0.84

(0.79∼0.89)
(Zuhua
Song)

N/A

Fixed effect model
I2 � 98.6%

0.92
(0.92∼0.93)

I2 � 95.9%
0.88

(0.87∼0.89)

I2 � 98.5%
0.99

(0.99∼0.99)

I2 � 95.1%
0.87 (0.86∼0.88)

I2 � 94.7%
0.96 (0.96∼0.97)

I2 � 98.1%
0.89

(0.89∼0.90)

I2 � 28.5%
0.90

(0.87∼0.94)
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Accuracy
Nico Buls
Lu Li1
Lu Li2
Ruijuan Chen
YU Lei1
YU Lei2
Yiqing Zhao
Yoshiyuki Watanabe
Subtotal (I2 = 91.6%, p < 0.001)

Sensitivity
Ryan A. Rava
Jeremy J. Heit
Nico Buls
Daniel Ginat
Yu Lei1
Yu Lei2
Joel McLouth
Yoshiyuki Watanabe
Subtotal (I2 = 88.2%, p < 0.001)

Negative Predictive Value
Ryan A. Rava
Jeremy J. Heit
Nico Buls
Daniel Ginat
Yiqing Zhao
Subtotal (I2 = 78.3%, p = 0.001)

Area Under Curve
Chang Ho Kim
Masahito Katsuki
Subtotal (I2 = 99.5%, p < 0.001)

Overall (I2 = 98.1%, p < 0.001)
NOTE: Weights are from random effects analysis

Specificity
Ryan A. Rava
Jeremy J. Heit
Nico Buls
Daniel Ginat
Yu Lei1
Yu Lei2
Joel McLouth
Yoshiyuki Watanabe
Subtotal (I2 = 98.0%, p < 0.001)

Positive Predictive Value
Ryan A. Rava
Jeremy J. Heit
Nico Buls
Daniel Ginat
Yiqing Zhao
Subtotal (I2 = 90.3%, p < 0.001)

0.93 (0.90, 0.96)
0.94 (0.90, 0.99)
0.49 (0.31, 0.67)
0.96 (0.94, 0.98)
0.98 (0.97, 0.99)
0.91 (0.89, 0.92)
0.80 (0.68, 0.89)
0.81 (0.73, 0.90)
0.92 (0.89, 0.95)

0.93 (0.90, 0.96)
0.96 (0.91, 0.98)
0.84 (0.68, 0.94)
0.88 (0.88, 0.90)
0.97 (0.93, 1.00)
0.94 (0.91, 0.97)
0.91 (0.87, 0.94)
0.74 (0.64, 0.83)
0.92 (0.88, 0.95)

0.93 (0.92, 0.94)
0.95 (0.91, 0.98)
0.94 (0.91, 0.96)
0.96 (0.96, 0.97)
0.98 (0.97, 0.99)
0.90 (0.86, 0.94)
0.98 (0.96, 0.99)
0.99 (0.99, 0.99)
0.96 (0.94, 0.98)

0.85 (0.83, 0.87)
0.96 (0.91, 0.98)
0.61 (0.46, 0.74)
0.86 (0.84, 0.87)
0.86 (0.74, 0.93)
0.87 (0.82, 0.92)

0.98 (0.97, 0.99)
0.95 (0.91, 0.98)
0.98 (0.96, 0.99)
0.96 (0.96, 0.97)
0.92 (0.90, 0.98)
0.97 (0.95, 0.98)

0.97 (0.95, 0.98)
073 (0.68, 0.73)
0.84 (0.64, 1.10)

0.93 (0.91, 0.94)

.306 1 3.27

3.08

Study ID ICH
Detection (95% CI)

Weight
(%)

2.68
0.12
3.40
3.62
3.49
0.83
1.24

18.46

3.08
2.98
0.62
3.61
2.98
3.18
2.83
0.89

20.17

3.62
2.93
3.53
3.68
2.75

16.50

3.60
2.94
6.54

100.00

3.61
2.93
3.25
3.68
3.62
2.82
3.55
3.69

27.14

3.34
2.98
0.32
3.49
1.06

11.19

(a)

Figure 5: Continued.
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NOTE: Weights are from random effects analysis

Accuracy

Lu Li1 0.94 (0.90, 0.99) 34.98

Lu Li2 0.49 (0.31, 0.67) 3.50

Subtotal (I2 = 90.5%, p = 0.001) 0.70 (0.37, 1.33) 38.47

Dice

Valeriia Abramova 0.86 (0.79, 0.94) 26.57

Matthew F. Sharrock 0.91 (0.87, 0.95) 34.96

Subtotal (I2 = 28.5%, p = 0.237) 0.90 (0.85, 0.95) 61.53

Overall (I2 = 77.4%, p = 0.004) 0.89 (0.82, 0.96) 100.00

.306 1 3.27

Study ID ICH
Segmentation (95% CI)

Weight
(%)

(b)

Figure 5: Continued.
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NOTE: Weights are from random effects analysis

Accuracy
Suting Zhong
Carlos Fernandez-Lozano
Andrew N. Hall
Jawed Nawabi
Fengping Zhu
Subtotal (I2 = 99.3%, p < 0.001)

Sensitivity
Jawed Nawabi

0.98 (0.97, 1.00)
0.80 (0.75, 0.85)
0.79 (0.77, 0.80)
0.77 (0.75, 0.78)
0.98 (0.94, 0.99)
0.86 (0.76, 0.97)

0.77 (0.75, 0.79)
0.70 (0.64, 0.75)
0.74 (0.67, 0.81 )

0.76 (0.72, 0.79)
0.74 (0.69, 0.80)
0.75 (0.73, 0.78)

0.89 (0.87, 0.91 )
0.73 (0.67, 0.78)
0.81 (0.66, 0.98)

0.94 (0.93, 0.95)
0.71 (0.66, 0.76)
0.82 (0.62, 1.08)

0.85 (0.81 , 0.88)
0.88 (0.83, 0.92)
0.85 (0.84, 0.87)
0.84 (0.83, 0.86)
0.92 (0.82, 0.97)
0.88 (0.75, 1.00)
0.98 (0.96, 0.99)
0.78 (0.74, 0.82)
0.87 (0.82, 0.92)

0.83 (0.80, 0.87)

5.11
4.59
5.08
5.08
5.03

24.90

5.04
Stefan Pszczolkowski2
Subtotal (I2 = 80.7%, p = 0.023)

4.35
9.39

Area Under Curve
Suting Zhong
Carlos Fernandez-Lozano
Andrew N. Hall
Jawed Nawabi
Xinghua Xu
Masahito Katsuki
Fengping Zhu
Stefan Pszczolkowski2
Subtotal (I2 = 96.4%, p < 0.001)

4.90
4.80
5.10
5.09
4.29
3.28
5.09
4.80

37.35

Overall (I2 = 98.3%, p < 0.001) 100.00

Positive Predictive Value
Jawed Nawabi
Stefan Pszczolkowski2
Subtotal (I2 = 95.9%, p < 0.001)

Negative Predictive Value
Jawed Nawabi
Stefan Pszczolkowski2
Subtotal (I2 = 98.0%, p < 0.001)

5.07
4.42
9.48

5.12
4.42
9.54

Specificity
Jawed Nawabi
Stefan Pszczolkowski2
Subtotal (I2 = 0.0%, p = 0.563)

4.85
4.48
9.33

.624 1 1.6

Study ID ICH
Prediction (95% CI)

Weight
(%)

(c)

Figure 5: Continued.
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the heterogeneity. Significant heterogeneity was noted in our
study like the published meta-analysis of AI used in prev-
alence and diagnosis of neurological disorders [35], the
causes of which might be as follows: (1) the AI models used
in these included studies were different. ,e operation
mechanisms or databases of the AI models differed across
studies. (2) ,e research objectives also differed including
the detection of ICH, segmentation of ICH in neuroimaging,
prediction of prognosis, and hematoma enlargement in ICH
patients. (3) ICH patients participated in few studies in-
cluded not only intraparenchymal hemorrhage but also
intraventricular hemorrhage, subdural hemorrhage, or
subarachnoid hemorrhage. (4) All the original data used to
assess diagnosis effect could be influenced to each other. (5)
Number of samples was stark contrast.

In our opinion, although AI as a medical tool will bring
great commercial profits to its designers and make the
clinical work of doctors more efficient, whether AI systems
can be used to diagnose ICH still requires more research
evidences with cross-regional, multicenter, and large
sample size. ,e objective and accurate division of he-
matoma, perihematoma edema, infarction focus, and
normal tissue, especially in the stage of hematoma ab-
sorption and perihematoma edema developing, is the key
for AI to analyze neuroimaging data of ICH. Moreover,
when designers and researchers are constructing the da-
tabase for mechanical learning, some potential problems

may appear that the etiology classification of ICH is am-
biguous, and the choice of research indicators or dependent
variables is not comprehensive enough. Addressing these
defects is closely related to continuously optimizing the
clinical guideline of ICH. ,erefore, while AI is updating,
more evidences originated from high-quality and author-
itative clinical researches are the real basis of its devel-
opment of clinical applications.

5. Conclusion

Under the background of the fourth industrial revolution, AI
might be an effective and efficient tool to assist doctors in the
clinical diagnosis of ICH.
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NOTE: Weights are from random effects analysis

Area Under Curve

Qian Chen 0.82 (0.77, 0.88) 12.52

Stefan Pszczolkowski1 0.69 (0.64, 0.75) 11.66

Zuhua Song 0.87 (0.85, 0.95) 13.37

Linyang Teng 0.78 (0.76, 0.80) 14.88

Subtotal (I2 = 87.8%, p < 0.001) 0.79 (0.73, 0.85) 52.42

Overall (I2 = 89.0%, p < 0.001) 0.76 (0.72, 0.80) 100.00

Specificity

Stefan Pszczolkowski1 0.69 (0.64, 0.74) 12.50

Linyang Teng 0.71 (0.66, 0.76) 12.18

Subtotal (I2 = 0.0%, p = 0.586) 0.70 (0.67, 0.73) 24.68

Sensitivity

Stefan Pszczolkowski1 0.63 (0.55, 0.72) 8.38

Linyang Teng 0.82 (0.79, 0.84) 14.53

Subtotal (I2 = 92.9%, p < 0.001) 0.73 (0.57, 0.93) 22.90

.554 1 1.81

Study ID Hematoma
Enlargement (95% CI)

Weight
(%)

(d)

Figure 5: Subgroup analysis of ICH detection/ICH segmentation/ICH prediction/hematoma enlargement.
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